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Abstract
Background  The inference of biological relations between individuals is fundamental to understanding past human 
societies. Caregiving, resource sharing and sexual behaviours are often mediated by biological kinship and yet the 
identification and interpretation of kin relationships in prehistoric human groups is difficult. In recent years, the advent 
of archaeogenetic techniques have offered a fresh approach, and when combined with more traditional osteological 
and interpretive archaeological methods, allows for improved interpretation of the burial practices, cultural 
behaviours, and societal stratification in ancient societies. Although archaeogenetic techniques are developing at 
pace, questions remain as to their accuracy, particularly when applied to the low coverage datasets that results from 
the sequencing of DNA derived from highly degraded ancient material.

Results  The performance of six of the most commonly used kinship identifcation software methods was explored 
at a range of low and ultra low genome coverages. An asymmetrical response was observed across packages, with 
decreased genome coverage resulting in differences in both direction and degree of change of calculated kinship 
scores and thus pairwise relatedness estimates are dependant on both package used and genome coverage. 
Methods reliant upon genotype likelihoods methods (lcMLkin, NGSrelate and NGSremix) show a decreased level of 
prediction at coverage below 1x, although were consistent in the particular relationships identified at these coverages 
when compared to the pseudohaploid reliant methods tested (READ, the Kennett 2017 method and TKGWV2.0). 
The three pseudohaploid methods show predictive potential at coverages as low as 0.05x, although the accuracy 
of the relationships identified is questionable given the increase in the number of relationships identifIed at the low 
coverage (type I errors).

Conclusion  Two pseudohaploid methods (READ and Kennett 2017) show relatively consistent inference of kin 
relationships at low coverage (0.5x), with READ only showing a significant performance drop off at ultralow coverages 
(< 0.2x). More generally, our results reveal asymmetrical kinship classifications in some software packages even at high 
coverages, highlighting the importance of applying multiple methods to authenticate kin relationships in ancient 
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Background
Over the past two decades, ancient DNA studies have 
made outstanding contributions to the understanding 
of historical human migrations that occurred on both a 
regional and continental scale [1–5]. However, as extrac-
tion and sequencing techniques improve and aDNA 
methods become both cheaper and more accessible, a 
renewed focus on individuals from a single site or region 
has developed. While this focus is often a component 
of larger studies [6], they are increasingly becoming the 
primary focus, for example with the identification of 
a kin-mediated burial in the Early Neolithic [7], social 
stratification of Irish Neolithic communities [8], social 
complexity in an Upper Palaeolithic community [9] and 
the most ancient, shared burial of monozygotic twins 
[10]. Much of the power of these studies derives from the 
ability to harness nuclear genome data to perform bio-
logical kinship calculations, which when combined with 
mitochondrial and Y-chromosome haplogroup informa-
tion allows for the creation of complex pedigrees that 
further inform understanding of the social striation and 
cultural practices of historic cultures and societies.

The most common method of identifying biological 
pairwise relatedness in genetic studies is the calculation 
of the kinship coefficient (ϕ): the probability that a pair 
of homologous alleles at an autosomal locus are identical 
by descent (IBD) [11] and whose value is directly linked 
to the biological relationship between the two individu-
als (0.25: sibling/parent/offspring, 0.125: grandparent/
aunt/uncle, etc.). When considering modern high qual-
ity human genomes, the abundance of phased autosomal 
data means the identification of these regions can allow 
for relatedness between individuals to be established, 
alongside ancestral signatures of admixture and inbreed-
ing [12, 13]. Notably however, genome data sequenced 
from archaeological human remains is generally of lower 
coverage, with the mapping of ancient read data to the 
reference often resulting in an incomplete and unphased 
genome [14]. To address the problem of missing data, 
several ancient DNA specific software packages have 
been developed which look to combine statistical meth-
ods developed for ancient genome data processing with 
the mathematical framework for the identification of IBD 
regions, to calculate and identify kinship in low coverage 
data.

The majority of ancient DNA kinship estimation soft-
ware packages calculate a pairwise ϕ  value but differ in 
terms of the statistical approach used to produce such a 
value. The most widespread approach treats the diploid 

human genome as haploid and performs pseudohaploid 
genotype calls across the genome [15]. This allows for 
genetic information to be obtained at a nucleotide site 
covered by only a single read, although this doesn’t con-
sider the uncertainty of such a call [16]. The second, more 
recent development is the use of a genotype likelihood 
approach that estimates the likelihood of each allele (A, 
C, T or G) at a given nucleotide position, and which was 
developed to consider the uncertainty in a nucleotide call 
when sequence data is of low coverage [17]. Such meth-
ods are incorporated with kinship coefficient calculations 
to estimate a kinship score and allow for biological rela-
tionships to be identified in low coverage datasets.

Despite developments in ancient DNA recovery, datas-
ets are still typically low in both data quantity and quality, 
resulting in low or even ultra-low genome coverage data 
(defined here as less than 2x mean genome coverage, and 
0.5x mean genome coverage respectively). This problem 
is typically not a consideration during the development 
of aDNA specific kinship estimation software packages, 
with the focus instead on data of intermediate (2x and 
over) genome coverage.

Here, we compare the performance of six related-
ness-inference software methods explicitly designed for 
ancient DNA data (NGSRemix [18], NGSRelate [19], 
lcMLkin [20], READ [21], TKGVW2.0 [22], and a method 
first described in Kennett et al. 2017 [23] and referred 
to from here on as the “Kennett method”), using three 
whole genome sequenced (WGS) ancient datasets show-
ing different levels of relatedness in source publications 
[9, 24, 25] and a dataset of modern genomes containing 
related individuals obtained from the Gambian Genome 
Diversity Project [26]. Sequence data at various levels of 
down sampled coverages are used as input to detect the 
response of each package at a range of shared pairwise 
coverages (mean 2.1x to 0.02x coverage). Given the true 
relationships in the ancient datasets are unknown, rather 
than looking to identify specific relationships across 
coverage we look to identify the degree of kinship value 
change across coverages. We treat results from the high-
est coverage datasets act as a baseline to which all down 
sampled results are compared, with greater deviation at 
low coverages indicative of lower accuracy and/or consis-
tency for the method. Sequence data from modern indi-
viduals of known pedigree are included to allow for false 
positive and negative rates to be calculated and support 
any findings from analysis of the ancient datasets.

material, along with the continuing need to develop laboratory methods that maximise data output for downstream 
analyses.

Keywords  Ancient DNA, Biological kinship, Relatedness, Low coverage, Pseudohaploid, Genotype likelihood
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Results
A total of 976 pairwise relationships were investigated, 
resulting in the calculation of 40 992 individual pair-
wise kin relationships across the six inference methods. 
Seven separate approaches (see material and methods) 
were used in this comparison, and all were successful in 
identifying biological relations within all datasets and 
across coverages (Fig. 1). All statistical tests reported in 
the main text have been performed on a combined data-
set containing the results of analysis on the three ancient 
WGS datasets. Results for each dataset can be found in 
the supplemental information (Table S1.1-1.14), but mir-
ror patterns seen in the combined WGS datasets. The 
mean genome coverage for all sequence data was calcu-
lated using coverage command in samtools v1.12 [27] 
(Table S1.15).

Pairwise mantel correlation tests found genome cov-
erage to significantly influence kinship inference (Fig. 1, 
Table S1.1-1.8) for the software packages lcMLkin (Man-
tel R: 0.13, p:0.01), NGSRemix (Mantel R: 0.04, p:0.01), 
NGSRelate (Mantel R: 0.08, p:0.01), the Kennett method 
(Mantel R: 0.07 p < 0.01) and TKGWV2.0 using both 

whole genome (Mantel R: 0.03, p:0.02) and SNP data 
(Mantel R: 0.03, p:0.01). No relationship between cov-
erage and resulting kinship score was found for READ 
(Table S1.9; Mantel R: 0.03, p:0.39). Differing responses 
to low coverage data were seen both between and across 
pseudo haploid and genotype likelihoods methods 
(Fig.  1), with genotype likelihood methods showing a 
greater correlation (higher observed correlated R value) 
between genome coverage and kinship score than pseudo 
haploid methods (Table S1.9). The number of relation-
ships identified across packages at the highest coverage 
was largely consistent, although TKGVW2.0 and the 
Kennett method predicted a greater degree of related-
ness in two of the three ancient datasets (Fig.  2). Both 
identity and the number of related pairs differed from 
those found in the source publication on a number of 
occasions, the most significant of which being within 
the dataset containing 15 individuals from a 5,000-y-old 
mass grave [24] which reported 55 kin relationships on 
publication but ranged from 10 to 53 across the seven 
methods at maximum coverage in this study. The degree 
of kin relatedness reported in the source paper was most 

Fig. 1  The effect of low coverage data on biological relationship calculations for the six relatedness methods compared in this study. Data from the three 
ancient datasets has been combined. Datapoint colours indicate the proportion of original reads sampled. Results of associated mantel tests can be 
found in Table S1.9. Details of the calculations to produce values corresponding to the proportion of maximum number of pairwise sites and the relative 
kinship score can be found in the supplemental information.
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similar to the results provided by the Kennett method 
and the two TKGWV2.0 methods (Table S1.9).

The genotype likelihood dependant packages lcMLkin 
and NGSRelate showed a decline in the number of rela-
tionships inferred as coverage decreased (Fig.  2). All 
relationships that continued to be inferred at reduced 
coverage were among those inferred at the highest cover-
age (Fig. 3). NGSRemix responded to decreasing genomic 
coverage by overpredicting the number of kin relation-
ships identified at intermediate genome coverages, before 
dropping sharply at ultra-low coverages (Fig. 2). At maxi-
mum coverage, it performs similarly to other genotype 
likelihood methods, with consistency seen in the specific 
pairwise relationships identified between these pack-
ages (Fig.  2, Table S1.10-13). The R0 (Adj. R2: 0.4436; 
p:<0.001), R1 (Adj. R2:0.467; p:<0.001) and KING (Adj. R2: 
0.0143; p:<0.001) summary statistics calculated through 
NGSRelate (Table S1.3) were found to be significantly 
affected by genome coverage, with variance increasing as 
pairwise coverage decrease (Fig. S1).

The number of biological relationships inferred by 
TKGVW2.0 was found to be consistent across all but 
the lowest coverage (Fig. 1), although there was inconsis-
tency in terms of the specific individual pairs being iden-
tified as related across these coverages (Table S1.9-1.13, 
Fig.  3). Despite the number of relationships remaining 
consistent across coverages, the number of specific rela-
tionships consistent with those inferred at the highest 
coverage level decreased as genome coverage decreased 
(Fig. 3). This may explain why no variation in kinship val-
ues produced by TKGVW2.0 are seen across genomic 
coverages (Fig.  1). Further, the number of kin relations 
identified for two of the three ancient datasets (Fig.  2) 
were higher than that seen in the four other approaches 
at the highest coverage.

The ability of READ to infer pairwise relationships 
showed an intermediate response to decreasing cover-
age (Figs.  1 and 2), and no correlation was identified 
between kinship score and genome coverage (Table S1.8). 
Only at ultra-low coverage does READ begin to func-
tion sub-optimally, with the consistency of relationships 

Fig. 2  Variation in the number of pairwise relationships identified between packages and across coverages. Data collated from the three ancient data-
sets. Solid bars indicate the number of consistent relationships identified at maximum and reduced coverage (consistency/false negatives/type II error). 
Translucent bars indicate the number of relationships across coverages not identified at maximum coverage (Accuracy/false positives/type I errors).
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(when compared to the highest coverage) identified (type 
I error)  rising ( Figs. S2 and S3). Results from the Ken-
nett method largely mirror those of READ, with genome 
coverage having little effect on performance except at the 
lowest two coverage class (Figs. 1 and 2; Figs. S2 and S3). 
The results of the Kennett method diverge from that of 
READ when applied to a dataset that consisted of five 
individuals from the Upper Palaeolithic that were pre-
viously reported as unrelated [9]. The Kennett method 
identifies 7 relationships at the highest coverage, a 
result only mirrored by the output of TKGWV2 (which 
is deemed inaccurate due to non-concordant allele fre-
quencies). No other method identifies relatedness within 
this dataset.

Modern data was incorporated to corroborate results 
of the ancient datasets for individuals of known relation-
ships and identify the impact of damage on kin estima-
tion. False negative and false positive rates are calculated, 
given the knowledge of true relationships (which is not 
known in the ancient datasets). The responses of each 
package to decreasing genome coverage largely mirrors 
that seen in the ancient datasets (Table S1.14; Figs.  S2 

and S3), with genotype likelihood methods lcMLkin 
and NGSRelate showing an increase in false negatives 
and thus underprediction at low coverage, and pseudo 
haploid methods (READ, TKGVW2.0 and the Kennett 
method) showing an overprediction of kin relationships 
at the lowest of coverages (false positives). However, in 
contrast with analysis of the ancient dataset, no dispar-
ity was identified in the number of relationships inferred 
at the highest coverage across packages (Fig. S2) and no 
overprediction was seen when NGSremix inferred rela-
tionships at intermediate coverages (Figs. S2 and S3).

Discussion
Asymmetrical responses to decreasing coverage can be 
seen across the six software methods. When consider-
ing the modern data, lower coverage data results in an 
increased proportion of false negatives (type II error) 
in the programs utilising genotype likelihood methods 
(NGSRelate, NGSremix and lcMLkin), whilst programs 
that use pseudo haploid calls for kinship classification 
(TKGVW2.0, READ and the Kennett method) have an 
increased number of false positives (type I error) (Figs. S2 

Fig. 3  The accuracy and consistency (as defined in the methods) of inferred relatedness at all coverage levels for each calculation method. Combined 
data from the three WGS ancient datasets was used as input (Table S1.10-14)
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and S3). This response to low genome coverage is mir-
rored in the ancient datasets, with genotype likelihood 
methods showing a drop in the accuracy and number 
of inferred relationships, and pseudo haploid methods 
showing a drop in the consistency (and overprediction at 
the lowest of coverages; Figs. 2 and 3). In general, pseudo 
haploid methods are shown to maintain performance 
(especially READ) at all but the lowest of coverages. The 
symmetry seen in package response across modern and 
ancient data indicates that the impact of DNA damage 
is negligible when compared to the impact of genome 
coverage.

We might expect that all genotype likelihood meth-
ods would respond in a similar manner to decreasing 
genome coverage, given that they are largely based upon 
the same statistical framework, and this is confirmed 
with results here, where prediction potential is seen to 
drop as genome coverage reduced. This is likely a prod-
uct of the increased uncertainty associated with genotype 
likelihood calls. The likelihood of a nucleotide being of a 
particular state (A, T, C or G) is calculated at each nucle-
otide site in the genome and is dependent on the num-
ber of reads and thus depth of coverage at each site. The 
lower the coverage at a particular site, the greater uncer-
tainty there is as to the true allelic state at this nucleo-
tide position. The increased allelic uncertainty at each 
site is compounded when considering pairwise relation-
ships using low coverage data, with the probability of two 
individuals sharing a specific allelic position declining as 
coverage decreases, and thus fewer shared sites for use in 
calculation.

The kinship coefficients produced by NGSRelate and 
lcMLkin appear accurate when mean pairwise genome 
coverage is over 2x, and it is thus proposed that such 
packages are reserved for higher coverage ancient data, 
although the lack of false positives even at the lowest cov-
erage would suggest that even for low coverage data these 
methods could be considered useful when the correct 
identification of a specific kin relationship is of particu-
lar importance. The R0, R1 and KING values calculated 
within NGSrelate show increased variance as coverage 
decreased (Fig.  S1), although unlike the calculated ϕ  
from this package, an increase in variance of these val-
ues would lead to incorrect kinship classification making 
this method less robust to missing data and more likely to 
result in type II error.

NGSRemix is anomalous in its response to decreasing 
coverage, with the overestimation of kin relations seen 
at intermediate genome coverage. This is a likely to be 
associated with its reliance on the ADMIXTURE package 
which requires data of sufficient quality to allow for the 
accurate determination of the number of admixed ele-
ments within an individual’s genome [28], with the accu-
rate identification of the number of ancestral proportions 

a requirement for accurate NGSremix kin calculations. 
Whilst identifying and incorporating admixture informa-
tion into a biological kinship calculation is undoubtedly 
useful and applicable when high coveage data is avaialble, 
its dependance on ADMIXTURE is a severe limitation 
and makes it unsuitable for ultra-low coverage data.

The three methods (READ, TKGVW2.0 and the Ken-
nett method) that use pseudohaploid calls appear to be 
more robust in terms of the variation seen in relative kin-
ship scores as coverage decreased. However, although 
the number of kin relationships identified is largely con-
sistent across coverage levels, this was largely due to an 
increase in false positives coupled with a proportional 
decrease in false negatives. At the lowest coverage level 
(0.02x mean sample coverage) all programs overpredict 
the number of relationships identified, leading to a drop 
in consistency and accuracy of kin relationships identi-
fied, and an increase in false positives (type I error).

Of the three pseudohaploid programs tested, our study 
identified READ as the most reliable, identifying a simi-
lar number of relationships as the likelihood methods 
at high coverage, and showing reasonable consistency 
in the specificity of relationships identified as coverages 
decreases. The program employs a normalisation step 
after pairwise shared alleles have been identified that 
was developed to overcome issues associated with miss-
ing/limited data [21]. This normalisation calculation is 
solely dependent on the input data and looks to identify 
the expected number of shared alleles between unre-
lated individuals. Therefore, even at low pairwise genetic 
coverage, it identifies the proportional differences in the 
shared number of alleles seen within the group rather 
than directly attributing the number of shared alleles to 
a specific kinship classification. Any pairwise kinship 
score that differs significantly from the expected value of 
a non-related pair is thus identified as related. It is this 
within-group comparative method that is the major nov-
elty of the program and may explains how it maintains 
relative consistency across the range of coverages.

The Kennett method performs similarly to READ in its 
accuracy and consistency across the four highest cover-
age levels, but overpredicts relationships at the lowest of 
coverage levels (0.02x and 0.11x mean coverage). Nota-
bly, the software performs to varying degrees of success 
across datasets, with a significant relationship between 
genome coverage and output kinship score in two of the 
three ancient datasets (Table S1.10) that is absent when 
analysing the two other datasets. Like READ, it relies 
upon a normalisation step solely dependent on the spe-
cific pairwise mismatch rate calculated from input data, 
although the calculation method of this value differs. The 
highest mismatch rate is predicted to be that of two unre-
lated individuals, with any significant deviation from this 
rate showing evidence for more shared pairwise sites and 
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thus a greater degree of relatedness. Use of this maxi-
mum mismatch rate in kinship calculation allows for the 
calculation of the relatedness coefficient, with the degree 
of mismatch rate difference proportional to biologi-
cal relatedness. In principle this method is sound, how-
ever in practice it struggles when no individuals within 
a test dataset are related. An example of this can be seen 
with the Upper Palaeolithic dataset [9], which was pre-
dicted to contain no related individuals by all calculation 
methods except the Kennett method, which predicted 
biological relationships across all coverage levels. Such 
overprediction can be easily avoided however with the 
initial examination of pairwise mismatch scores. If no 
significant difference is seen across mismatch rates, it 
can be assumed that no kin relationships exist with the 
dataset (or a far less likely scenario that all individuals 
are related to the same degree). Although both READ 
and Kennett methods use a normalisation step, READ is 
more robust across genome coverages given the relation-
ship seen between genome coverage and kinship score 
for two of the four datasets. On investigation, this is likely 
due to the overprediction by Kennett at the lowest cov-
erages (Table S1.13) and may stem from a normalisation 
step that considers only the highest pairwise mismatch 
rate value, which would become less precise as data is 
removed.

Perhaps the most notable shortcoming of both READ 
and Kennett methods is the requisite for a dataset of suf-
ficient sample size to allow for both a reliable maximum 
pairwise and normalisation value of the population to be 
calculated. There is potential to overcome this by allow-
ing for the manual input of normalisation values, but this 
requires knowledge of a reliable pairwise mismatch rates 
of the population being studied, which is difficult to pre-
dict when considering ancient human datasets.

TKGWV.2 is based upon pseudohaploid diploid geno-
type calls, but rather than solely using these to infer 
related individuals, it uses a given set of expected allele 
frequencies at shared nucleotide positions. This pro-
vides a reference of allele frequencies that are expected 
to be found within the population, and thus allows for 
the probability of two individuals sharing the same allelic 
state to be determined and fed into the kinship calcula-
tion. These allele frequencies add significant power to the 
analysis, and thus far fewer shared nucleotide positions 
are required for a kinship classification to be ascertained. 
In the dataset containing Viking individuals (where the 
allele frequencies provided were expected to be compa-
rable with those found in the population under study) 
TKGWV.2 performs strongly, with consistent predictions 
down to 1% of the original BAM file (0.02x mean cover-
age). However, when the allele frequencies used are not 
representative of the ancient population (as seen in the 
UP dataset), there is significant over-representation of 

the kin relationships. This is to be expected, and high-
lights the importance of using a set of allele frequencies 
that are representative of the group being studied [22]. 
When considering ancient populations, accurate pre-
Neolithic allele frequency information is lacking due 
to the sparseness of high coverage genomes needed for 
accurate allele frequencies to be calculated. We therefore 
suggest that this program be reserved for more contem-
porary populations for which accurate allele frequencies 
can be calculated.

An unforeseen outcome of this study was the reas-
sessment of studies that have previously employed a 
single software package to calculate kinship. Of the three 
ancient datasets used, results from the Koszyce data-
set are particularly striking, with fewer kin relationships 
identified when using 3 out of the 6 kinship methods 
than in the initial publication [24] (40 1st or 2nd order 
relationships in the source publication vs. 12 to 58 when 
using alternative packages). This serves to highlight how 
genetic relatedness predictions at low coverage can be 
significantly affected by the method of calculation and 
highlights the importance of using multiple indepen-
dent methods to ameliorate any software specific issues, 
and best allow for the inference of true relationships in 
archaeological studies.

Conclusion
The ability to determine a biological relationship in 
ancient populations is a crucial tool for establishing cul-
tural histories. Here we have highlighted that such identi-
fication is dependent on both the statistical method used 
and the pairwise genome coverage of the data. Genotype 
likelihood methods are robust to 2x mean coverage, and 
rarely succumb to false positives as coverage decreases. 
Pseudohaploid methods can identify relationships at 
coverages as low as 0.02x mean genome coverage, but 
at these ultra-low coverages false positives are increas-
ingly abundant. READ is the most suitable method at low 
to ultra-low coverages (and to a lesser extent the Ken-
nett method), but no single package is identified as best 
across all coverages. To best overcome the disparity seen 
at low coverage, we suggest the use of multiple kinship 
inference packages that use distinct calculation methods 
to best corroborate any kin relationships seen. What is 
clear from this study is that no method can sufficiently 
overcome a lack of and/or poor-quality sequence data, 
highlighting that the consistent developments of novel 
pre- and post-sequencing aDNA methodologies (robust 
capture methods, genome imputation etc.) must be sus-
tained over the coming years to maximise the quality and 
quantity of ancient sequence data.
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Methods
Four datasets of whole genome sequence (WGS) read 
data were used in this study, and run through identical 
computational pipelines developed expressly for each 
software package/method.

Ancient genomic datasets
Pre-aligned ancient read data from three independent 
sources were downloaded from the ENA database. All 
data had passed through authentication procedures that 
confirmed the DNA as being genuinely ancient [9, 24, 25, 
29], and laboratory methods followed standard ancient 
DNA extraction, library building and sequencing proto-
cols (outlined briefly in the supplemental material). All 
sequence data had been aligned to the GRCh37 reference 
genome and downloaded in the BAM format.

The three datasets containing genome wide sequence 
(WGS) data:

1)	 15 individuals from a single Late Neolithic mass 
grave (Koszyce) in Poland (~ 5kya) showing a varying 
degree of biological relatedness between individuals 
[24];

2)	 5 unrelated individuals from Sunghir, an Upper 
Palaeolithic cave site dated to around 34kya located 
in Western Russia [9];

3)	 28 individuals from a single Viking burial on the 
island of Saaremaa in Estonia (~ 1.3kya) who 
showed evidence for biological relatedness amongst 
individuals [25].

Details of the archaeological context for these three data-
sets, and the methods used to identify kin relationships 
in the source publication can be found in the supplemen-
tal material.

Modern genomic data
A modern genomic dataset was also included in this study 
to permit the analysis of individuals known to be related. 
Unaligned paired end sequence data of 15 Fula individu-
als from the Gambian Genome Diversity Project (GGVP) 
GCh37 were downloaded from the 1000Genomes Project 
Phase 3 database [26]. The fifteen individuals belonged to 
five discrete family units (father, mother, offspring) who 
were otherwise unrelated to all others.

Downloaded fastq sequence files were processed using 
ancient DNA specific software packages to provide a 
degree of conformity in the handling of both the mod-
ern and ancient datasets. Paired end reads were collapsed 
using AdapterRemovalv2 [30] under default settings, and 
aligned to human reference genome GCh37 using the 
aln function of bwa v0.7.17 [31]. Samtools v1.12 [27] was 
used to sort, remove duplicates, and quality filter (Q ≥ 30) 
bwa output files, and resulting in the creation of 15 BAM 
files containing modern sequence data curated to mirror 

the ancient datasets. Both transition and transversion 
sites were used for analysis.

Analytical pipeline
Both ancient and modern datasets were treated indepen-
dently and followed a standardised computational and 
analytical pipeline. Each BAM file was down sampled to 
1%, 5%, 10%, 25% and 50% of all reads present in the orig-
inal (100%) BAM file, with the coverage of all resulting 
BAMs determined using samtools v1.12 (mean genome 
coverage when combining all ancient WGS data: 100% = 
2.12x, 50% = 1.06x, 25% = 0.53x, 10%= 0.21x, 5% = 0.11x 
and 1% = 0.02x). Exact coverage details for all sequence 
files can be found in the supplemental information (Table 
S1.15).

These down sampled BAM files were indexed using 
samtools v1.12, and input into computational pipelines 
that had been created for each of the six relatedness 
methods being compared: NGSRemix [18], NGSRelate 
[19], lcMLkin [20], READ [21], TKGVW2.0 [22] and the 
Kennett method [23]. These six methods can be grouped 
into two categories: those using pseudohaploid geno-
type calling methods for biological kin identification, 
and those using genotype likelihoods. All analysis (unless 
otherwise stated) was restricted to 1240k nucleotide sites 
previously identified as polymorphic in ancient popula-
tions [32, 33]  to best overcome any issues with missing 
data and standardise all calculations across datasets and 
coverages.

Pseudohaploid genotype methods
READ
The READ package leverages genomic regions that are 
identical by descent (IBD) to calculate biological rela-
tionships between individuals. Here, with pseudohaploid 
data as input, each genome is divided into 1 million base 
pair regions and the proportion of non-matching alleles 
within each region is calculated (P0). This is repeated 
across the genome and for all possible pairwise compari-
sons. A normalisation step is then undertaken using the 
expected P0 values of a pair of non-related individuals 
within the group being analysed, resulting in a final relat-
edness prediction that is independent of within group 
genetic diversity, SNP ascertainment biases and marker 
densities variation [21]. The package offers three options 
for such normalisation step, with this study using the 
default mean P0 method (the mean P0 across all indi-
viduals) as the majority of individuals within each dataset 
were deemed to be unrelated in the source publication. 
After normalisation has occurred, a kinship classifica-
tion (either the first- or second- degree) is made using the 
normalised P0 score for each pairwise comparison.

A genotype calling method implemented using the 
pileupCaller from the software package sequenceTools 
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[34] was used to provide pseudo haploid genotype call 
data. The allelic state of a randomly selected read was 
sampled at each nucleotide site, resulting in a haploid 
genome representative of the read data input. This ran-
dom approach was used to mitigate the potential refer-
ence bias intrinsic to a consensus calling method. A 
pipeline combining samtools mpileup, and pileupCaller 
was used to carryout genotype calling, with genotypes 
being called at the 1240k nucleotide site list. This was to 
standardise the number and location of SNPs being used 
between datasets and coverages to reduce the impact of 
linkage disequilibrium, and thus allow for direct compar-
ison between datasets. EIGENSOFT function convertf 
v8.0.0 [35, 36]  and PLINK version 1.90b6.10 [37] was 
used to convert pileupCaller format files to the required 
format for READ (recode tped/tfam). READ was run 
using default settings and the standard mean normalisa-
tion step.

TKGWV2.0
The TKGWV2.0 package requires the user to provide 
a set of allele frequencies that correspond with those 
expected in the ancient population being analysed [22]. 
First, pseudohaploid genotype calls are made for a user 
determined set of nucleotide loci at polymorphic nucle-
otide sites (where a read is selected randomly at each 
site to avoid reference bias) before the identification of 
shared sites between all individual pair combinations. 
The expected allele frequencies at each of these sites is 
then leveraged from the set of allele frequencies provided 
by the user, before a pairwise relatedness estimation is 
performed (supplemental information). Such estimation 
is reliant on IBD regions and produces halved related-
ness coefficients (due to the haploid nature of the data) 
to allow for biological relatedness to be determined. This 
HRC (halved relatedness coefficient) value is analogous 
to the kinship coefficient ϕ  (HRC= ϕ  x 2).

TKGWV2.0 was installed through GitHub and run 
with default settings using allele frequencies generated 
from modern European CEU individuals sequenced for 
Phase 3 of the 1000 Genomes Project [26] for the three 
ancient datasets, and a set of allele frequencies calculated 
from 100 Fula individuals from the Gambian Genome 
Diversity Project (GGVP). Two iterations of the analy-
sis were run; the first used 22 million SNPs identified as 
polymorphic in modern populations (Auton et al., 2015), 
the second using the set of 1240k SNPs. Results for both 
methods were similar (Table S1.3-4), and thus only the 
1240k SNP results were incorporated into the main text 
and figures.

The “Kennett method” [23]
The Kennett method was first applied in 2017 [23] and 
has been widely used in subsequent publications looking 

to identify biological kinship in ancient populations 
(7,35,36, etc.). It leverages pseudohaploid genotype calls 
and is targeted at data that has been generated using 
SNP methods. Calculation is a two step process. The first 
requires the calculation of pairwise mismatch rates across 
all samples, and subsequent examining of these values to 
identify any significant difference between values across 
the dataset. If no significant difference in pairwise mis-
match rate is observed, then an assumption is made that 
no individuals are related, with the same degree of allele 
sharing across all individuals. If pairwise mismatch rates 
are found to differ significantly, then allele sharing is non 
uniform between individuals and thus a degree of relat-
edness is predicted within the group. Such data is thus 
carried forwards to a second step, which uses the maxi-
mum mismatch rate as a normalisation value (in a similar 
manner as READ) for relatedness coefficient prediction 
(described in the supplementary text).

There is currently no publicly available software that 
implements the Kennett method but given its preva-
lence in the literature it was incorporated into this study. 
GATK was used to call genotypes, PLINK used to calcu-
late mismatch rates and base R used to manipulate data 
and calculate the kinship coefficient.

Genotype likelihood methods
lcMLkin
lcMLkin uses genotype likelihoods to calculate the k0, k1 
and k2 summary statistics, that when combined allow for 
the calculation of the kinship coefficient ϕ .

A genotype likelihood calling method was imple-
mented in GATK version 4.1.9.0 [38]. The Haplotype-
Caller, CombineGVCFs and GenotypeGVCFs software 
tools within GATK were used to calculate genotype 
likelihoods at the 1240k nucleotide site list. This was to 
standardise the number and location of SNPs being used 
between datasets and coverages to reduce the impact of 
linkage disequilibrium, and thus allow for direct compar-
ison between datasets. GATK provided variant call files 
(VCFs) that contained genotype likelihoods information 
suitable for use in the three genotype likelihood methods: 
NGSrelate, lcMLkin and NGSremix.

lcMLkin was run with genotype likelihoods calculated 
using the GATK pipeline as described, with the output 
VCF files being input into lcMLkin using the phred-
scaled likelihoods option (-g phred). The package pro-
vides a subsidiary script (BAM2VCF.py) to call variants 
from a set of BAM files, but after preliminary testing this 
method was abandoned as the computational require-
ments were too great for analysis required for this study. 
This left GATK as the sole genotype likelihood estima-
tion package used in this study.
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NGSRelate
NGSRelate requires genotype likelihood data as input, 
and is reliant on the computation of nine Jacquard coeffi-
cients [39] that can be used for the calculation of a range 
of summary statistics that include the determination of 
ϕ . Each of the nine Jacquard coefficients are dependent 
on the specific assortment of alleles that can be produced 
in the offspring of two diploid individuals, of which 
there are 15 in total. If the paternal and maternal origin 
of each allele are discounted as uninformative, nine of 
particular significance in biological heredity calculations 
remain. Alongside the ϕ  calculation, NGSRelate uses an 
additional method to infer the relatedness of individu-
als through alleles that are identical by state (IBS) and 
2-dimension site frequency spectrum (2D SFS). This 
method uses three summary statistics, the R0, R1 and 
KING scores as reported here: Relatedness predictions 
are carried out by exploiting the relationships between 
R0, R1 and KING values: R1/KING and R0/KING [40], 
with the distribution of these ratios allowing for bio-
logical relatedness between individuals to be predicted 
through comparison to previously determined threshold 
values, which correspond to specific biological relations.

NGSRelate is a subsidiary package of ANGSD [16] and 
requires genotype likelihoods and allele frequencies as 
input. These genotype likelihoods and allele frequency 
calculations were performed using ANGSD version 0.929 
at 1240k SNP sites. Outputs were parsed to NGSRelate 
and kinship coefficients calculated.

NGSRemix
NGSRemix is a software package designed to allow for 
the calculation of kinship coefficients in admixed popu-
lations [18] using the program ADMIXTURE, which 
determines population dependant allele frequencies and 
individual ancestry proportions [28, 41]. For standard 
allele frequency kinship methods, allele frequencies are 
calculated across a genome and thus do not consider the 
potential for asymmetrical allele frequencies if individu-
als were recently admixed and thus contained ancestral 
components from two genetically distinct populations 
with nonconforming allele frequencies. This method 
seeks to determine the number of ancestral populations 
that contributed to an individual’s genome, and the pre-
cise allele frequencies of each ancestral component.

NGSRemix requires genotype likelihoods as input, 
which were calculated using the GATK pipeline as 
described previously. PLINK version 1.90b6.10 [37] was 
used to manipulate files and produce the required file 
format for input into ADMIXTURE version 1.3.5 [28], 
which was run using default settings. ADMIXTURE is 
essential to this method, as it determines the number of 
ancestral source populations, the specific ancestry com-
ponents, and the population specific allele frequencies 

for each individual. Although all datasets used were 
known to not contain any admixture individuals, a range 
of K values (number of ancestral source population) 
between 1 and 10 were used as input into ADMIXTURE 
to confirm this. Allele frequencies calculated from the K 
value (the lowest CV error) deemed most suitable at high 
coverage datasets was used as input into the NGSRemix 
program. NGSRemix was run using default settings.

Whilst six software packages were compared, we also 
included additional approaches within the packages 
where appropriate. This led to a total of seven approaches 
being used to calculate biological kinship: NGSRemix 
using default parameters, NGSRelate at informative 
1240k SNP sites, lcMLkin at informative 1240k SNP sites 
using default parameters, TKGWV2 using a SNP panel 
containing 22mill polymorphic sites and at informative 
1240k SNP sites, READ using default parameters and 
the Kennett method at informative 1240k SNPs.  Datas-
ets were treated separately during computational analysis 
before data from the three ancient datasets were com-
bined for the final statistical analysis and visualisation. To 
allow for direct comparison between software packages, 
a threshold for biological relatedness was set at the 2nd 
degree biological relationship, and a binary kinship dis-
tinction used to allow for comparison between packages: 
two individuals were either related (1st or 2nd degree) or 
unrelated.

Statistical analysis
Statistical analysis was carried out to determine the effect 
of pairwise site coverage on the determination of pair-
wise relatedness. A relative kinship score was calculated 
(see supplemental information) for every pairwise com-
parison, and pairwise mantel tests performed in R ver-
sion 4.1.1 [42] for every software package and input data 
iteration, with relative kinship score modelled against 
pairwise site coverage. The three ancient WGS datasets 
were combined for the final analysis and visualisation.

To identify how consistent each package was across 
coverage levels, measures to determine the accuracy and 
consistency of each packages were calculated across all 
datasets (Fig. 3, Table S1.10-14):

Accuracy = # relationships identified at [x] cover-
age level that are consistent with those identified at 
maximum coverage level / total # of relationships 
identified at [x] coverage level.
Consistency = # relationships identified at [x] cov-
erage level that are consistent with those identified 
at maximum coverage level / total # of relationships 
identified at maximum coverage level.
False positives were defined as the number of spe-
cific relationships at [x] coverage not identified at 
maximum coverage in the modern dataset. False 
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negatives were defined as the number of specific 
relationships at maximum coverage not identified at 
[x] coverage.

All analyses were carried out on the high-performance 
cluster at the Natural History Museum (124 CPU’s, 
2.256  TB RAM) with data visualisation performed in 
R version 4.1.1 [42]. All associated code for computa-
tional analysis is documented in the supplementary 
information.
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The online version contains supplementary material available at https://doi.
org/10.1186/s12864-023-09198-4.
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