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Abstract
Background  Prolonged natural selection and artificial breeding have contributed to increased uniformity within the 
Tibetan sheep population, resulting in a reduction in genetic diversity and the establishment of selective signatures 
in the genome. This process has led to a loss of heterozygosity in specific genomic regions and the formation of Runs 
of Homozygosity (ROH). Current research on ROH predominantly focuses on inbreeding and the signals of selection; 
however, there is a paucity of investigation into the genetic load and selective pressures associated with ROH, both 
within these regions and beyond. On one hand, genes located situated ROH hotspot regions exhibit a degree of 
conservation in their genomic segments; on the other hand, these regions may also serve as critical loci for identifying 
signals of selection.

Results  High-throughput re-sequencing technology was utilized to investigate the ROH hotspot regions across 11 
Tibetan sheep populations, resulting in the identification of ten conserved genes (ARHGEF16, Tom1l2, PRDM16, PEMT, 
SREBF1, Rasd1, Nt5m, MED9, FLCN, RAI1) that are associated with lipid metabolism, lactation, and development. These 
genes exhibited highly conserved within the ROH hotspot regions across all Tibetan sheep populations. Employing 
the integrated haplotype score (iHS) method, we screened for selective sites within frequently observed ROH 
hotspot regions to elucidate genomic differences among Tibetan sheep populations. A comprehensive analysis was 
conducted, involving Rnhom, dN/dS ratios, missense/synonymous ratios, and loss-of-function (LOF)/synonymous 
ratios, to investigate the accumulation of deleterious genes and the associated genetic load both within and outside 
ROH hotspot regions. The results revealed a higher accumulation of deleterious genes and a reduced genetic load 
within the ROH regions.

Conclusions  This study provides a comprehensive and precise genomic analysis and interpretation of Tibetan sheep, 
offering theoretical basis for genetic breeding and evolution in Tibetan sheep.

Keywords  Tibetan sheep, ROH, ROH hotspot regions, Genetic load, Accumulation of deleterious genes

The accumulation of harmful genes within 
the ROH hotspot regions of the Tibetan sheep 
genome does not lead to genetic load
Lixia Sun1,2, Chao Yuan1,2, Tingting Guo1,2, Yaqin Bai3, Zengkui Lu1,2* and Jianbin Liu1,2*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-025-11207-7&domain=pdf&date_stamp=2025-1-22


Page 2 of 13Sun et al. BMC Genomics           (2025) 26:60 

Introduction
Current research on the germplasm characteristics of 
Tibetan sheep has evolved from the analysis of phe-
notypic traits and physiological and biochemical indi-
ces to a genomic level, specifically emphasizing ROH. 
ROH are defined as long homozygous segments within 
the genome. The lengths of ROH segments in different 
individuals are correlated with the genetic background 
of their common ancestor; as the genetic relationship 
becomes more distant, the length of the ROH segments 
decreases [1]. ROH are influenced by various factors, 
including inbreeding, population bottlenecks, genomic 
characteristics, and artificial selection, all of which leaves 
distinct imprints on the genome [2, 3]. Throughout the 
sheep breeding process, selective breeding has targeted 
various traits, such as body shape, fur quality, meat qual-
ity, and milk production, leading to the emergence of 
numerous specialized sheep breeds. This selective pres-
sure also affects the distribution pattern of ROH frag-
ments within the sheep genome [4–7]. The substantial 
genetic information encapsulated within ROH offers a 
novel approach for investigating sheep genomic data. 
With the advancement in high-throughput re-sequenc-
ing technology, researchers have increasingly leveraged 
ROH to assess inbreeding, following the pioneering work 
of Ferencakovic et al. first employed this approach. This 
methodology is now frequently employed by scientists to 
evaluate the extent of inbreeding, infer population struc-
ture, and screen for functional genes associated with sig-
nificant economic traits [8–13].

The genetic basis of inbreeding depression is rooted 
in the elevated levels of homozygosity observed in the 
genomes of inbred individuals, primarily arising from 
two mechanisms: recessive mutational influence and the 
loss of over-dominant contributions [14]. This phenome-
non can diminish traits related to population adaptability 
[14, 15]. Specifically, Inbreeding negatively impacts not 
only adaptive traits such as survival [16], fecundity [17], 
and disease susceptibility [18], but also production traits, 
including milk yield and meat quality [19, 20]. Further-
more, a reduction in inbreeding can lead to alterations in 
serum ion concentrations and hormone levels, as well as 
changes in ATPase activity and various physiological and 
biochemical indicators [21, 22]. Inbreeding depression 
varies in terms of its timing, characteristics, and effects 
across different sexes, and its impact on species can dif-
fer significantly [14, 23, 24]. Notably, an intriguing study 
revealed that inbreeding,, when coupled with environ-
mental interactions, increases the sensitivity of inbred 
individuals to oxidative stress and other environmen-
tal stressors, thereby heightening their risk of decline or 
mortality [25].

Genetic variation stemming from mutation, recombi-
nation, and gene flow enables organisms to consistently 

develop adaptive traits that enhance the fitness of their 
species [26, 27]. However, during this process, organisms 
may also fix deleterious mutations, leading to a reduc-
tion in species fitness. The decline in fitness in this con-
text corresponds to the generation of genetic load [28]. 
The decline in fitness associated with inbreeding is partly 
due to genetic load, specifically inbreeding load, which is 
expressed exclusively in homozygous individuals; the hid-
den load arises from homozygosity, leading to increased 
exposure to deleterious alleles [29]. This inbreeding load 
is influenced by evolutionary factors such as purifying 
selection and genetic drift. Moreover, beneficial muta-
tions can be introduced from outside the population 
through purifying selection and genetic rescue, which 
may alleviate the overall reduction in inbreeding load 
and enhance fitness [15]. Deleterious mutations include 
both missense mutations and loss-of-function (LOF) 
genetic variants, both of which are predicted to disrupt 
gene function and significantly impair an individual’s sur-
vival capacity. Consequently, accurate quantification of 
genomic missense mutations and LOF genetic variants is 
crucial for enhance our understanding of the impact of 
mutation load on species viability. In this study, we ana-
lyzed the genomic data of 11 Tibetan sheep populations 
to identify genes associated with economically signifi-
cant traits. Our objective was to explore the differences 
in selection signals and inheritance patterns that arise 
from varying selection pressures during population for-
mation. Additionally, we sought to understand the effects 
of genetic load on Tibetan sheep, providing a theoretical 
foundation for their genetic breeding.

Materials and methods
Sample collection, DNA extraction, and sequencing
A total of 220 blood samples were collected from 11 
populations of Tibetan sheep across Gansu, Qinghai, 
and the Tibet Autonomous Region (Fig.  1A, Table S6). 
From each population, 20 adult Tibetan sheep were 
randomly selected, and 5 mL of blood was obtained for 
DNA extraction. The DNA concentration was mea-
sured, and the integrity of the DNA was evaluated using 
agarose gel electrophoresis. Genomic DNA was ran-
domly fragmented into short segments using restriction 
enzymes, followed by end repair, the addition of dA tails, 
and ligation of sequencing adapters. The resulting DNA 
fragments were purified using AMPure XP beads, and 
segments ranging from 300 to 400  bp were selected for 
PCR amplification. Finally, the constructed library was 
purified and subjected to quality control before sequenc-
ing on the Hiseq X10 platform using a PE150 protocol, 
achieving a sequencing depth of approximately 5X.
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Data filtering and genome alignment
The raw image data obtained from sequencing were 
transformed into sequence data, referred to as raw reads, 
through a process known as base calling, with the results 
stored in FASTQ file format. To ensure data quality, the 
raw reads underwent a quality control process, followed 
by rigorous filtering to obtain high-quality clean reads for 
subsequent analysis. Quality trimming was performed 
on short sequences, which primarily involved removing 
reads that contained adapters, reads with more than 10% 
N bases in single-end sequences, and low-quality reads in 
which over 50% of the bases had a quality score of Q ≤ 20.

After applying the aforementioned filtering criteria, 
the remaining high-quality read data were aligned to the 
Huoerba Tibetan sheep genome, which was accurately 
assembled by the Sheep Resources and Breeding Innova-
tion Team at the Chinese Academy of Agricultural Sci-
ences, using BWA software. The BAM files generated by 
BWA were then processed, with short sequence dupli-
cates being removed using Picard software. To minimize 
mismatches in regions adjacent to InDels, local re-align-
ment was conducted using the Genome Analysis Toolkit 
(GATK) to obtain precise variant information, particu-
larly for InDels. Additionally, GATK was employed to 
re-calibrate base quality, ensuring that the quality values 
of the read bases in the final output BAM files accurately 

reflected the true probabilities of mismatches with the 
reference genome, ultimately yielding high-quality and 
reliable variants. Genome coverage and sequencing 
depth were assessed using Bedtools (v2.27.1).

Mutation detection and annotation
The Unified Genotyper module of GATK (version 3.4–
46) was employed to perform variant detection on the 
processed alignment files across multiple samples. The 
detected variants underwent filtering using the Vari-
ant Filtration tool with the parameters: -Window 4, -fil-
ter “QD < 4.0 || FS > 60.0 || MQ < 40.0”, and -G_filter 
“GQ < 20”. Here, QD denotes Variant Confidence/Qual-
ity by Depth; FS represents the Phred-scaled p-value 
derived from Fisher’s exact test for strand bias detec-
tion; MQ indicates Root Mean Square (RMS) Mapping 
Quality; and GQ refers to Genotype Quality. Finally, the 
functional consequences of the identified variants were 
annotated using ANNOVAR.

Analysis of genomic Ho (observed heterozygosity) and He 
(expected heterozygosity)
For the filtered SNP loci, the PLINK software was used to 
calculate the observed heterozygosity (Ho) and expected 
heterozygosity (He) of the population.

Fig. 1  Sampling and ROH Analysis Results of Tibetan Sheep Populations (A) Map of Tibetan Sheep Sampling Locations (B) Number of Homozygous SNPs 
in Tibetan Sheep Populations (C) Length and Quantity of ROH in Tibetan Sheep Populations (D) FROH Values of Individual Tibetan Sheep
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Detection of ROH
Prior to detecting ROH, indels were filtered from the 
markers using vcftools-0.1.14, and the original marker 
loci were filtered with PLINK. This study leveraged the 
genomic characteristics of different populations to con-
duct ROH detection in PLINK by employing a sliding 
window of specified SNP count across the chromosomes 
with a defined step size. Windows that met the specified 
criteria were then concatenated to complete the ROH 
detection.

The PLINK parameter settings included:

1.	 A minimum length of 500 Kb for detected ROHs;
2.	 A minimum SNP number of 20 for defining ROHs in 

each population;
3.	 A sliding window size of 10 Kb with an overlap ratio 

of 0.05;
4.	 A maximum allowed heterozygote count of 1 within 

the window;
5.	 A minimum SNP density of 1 SNP per 50 Kb within 

the ROH segment;
6.	 If the interval between two consecutive SNPs 

exceeds 50 Kb, they cannot be classified as part of 
the same ROH.

The results of the ROH detection were statistically ana-
lyzed across the different populations, focusing on met-
rics such as the number and length of ROHs, as well as 
FROH.

Formula of FROH:

	
FROH =

∑
LROH

LAUTO

LROH is the length of ROH in the genome; LAUTO is the 
total length of autosomes covered by SNPs.

ROH hotspot region detection
The ROH segments detected in the 11 Tibetan sheep 
populations using PLINK were analyzed at the popula-
tion level to calculate the ROH ratio (the proportion of 
SNPs located within ROHs) utilizing R software. Based 
on the calculated ROH ratios for the SNPs across the 
various populations, the top 1% of ROH ratios was des-
ignated as the threshold for high-frequency SNPs, with 
SNPs exceeding this threshold identified as ROH hotspot 
regions.ion of ROH hotspot regions.

Gene annotation of ROH hotspot regions
The ROH hotspot regions identified in the 11 Tibetan 
sheep populations were subjected to gene annotation 
utilizing the Ensembl database, with the gene annota-
tion results documented in Table S1. Based on this anno-
tated gene list, we conducted a targeted screening for 

genes associated with economic traits in Tibetan sheep, 
employing the Animal QTL Database, NCBI resources, 
and relevant published literature. Furthermore, the 
KOBAS online analysis tool was utilized to perform 
KEGG and GO analyses on the genes related to economic 
traits within the ROH hotspot regions.

Select signal detection
Using fastPHASE software, we performed haplotype 
phasing on the SNP data from the 11 populations of 
Tibetan sheep. The resulting output haplotypes were 
organized into the format required by the iHS software, 
utilizing the rehh package in R for the calculation of iHS 
scores. The computed iHS scores were standardized by 
subtracting the genome-wide average iHS from each 
score and then dividing by the standard deviation. Selec-
tion loci were identified by filtering for iHS values in the 
top and bottom 1% of the distribution, resulting in poten-
tial selectively favored loci that were subsequently anno-
tated. Finally, an intersection was established between 
the identified genes and those located within the ROH 
hotspot regions, yielding the final set of selected genes.

Genomic Rnhom and dN/dS analysis
To evaluate the inbreeding depression status of a popu-
lation through the calculation of the ratio of missense 
mutation inside and outside of regions of ROH. Rnhom 
was calculated by dividing the ratio of missense to synon-
ymous counts of homozygous genotypes within ROH by 
the corresponding ratio outside ROH [30]. Additionally, 
the dN/dS ratios for ROH and non-ROH regions were 
computed using the following formula for dN/dS [31, 32]:

	 dN/dS = dN (n( LOF) + n(missense_variant )) ÷ dS (n( synonymous_variant ))

Genetic load analysis
The Snpeff 4.3 software was utilized to annotates SNPs 
from 11 populations in relation to reference genomes, 
identifying three distinct types of mutation in regions 
of ROH and non-ROH: synonymous mutations, mis-
sense mutations, and LOF mutations. The genomic ratios 
of LOF to synonymous mutations and missense to syn-
onymous mutations were calculated and subsequently 
mapped for both ROH and non-ROH regions [31, 33]. 
Furthermore, the genes harboring mutations were sub-
jected to KEGG and GO enrichment analyses for addi-
tional insights.

Results
The total length of individual genomic ROH primar-
ily falls within 1000  Mb, with the number of individual 
ROH totaling fewer than 1600, There is a linear rela-
tionship between the total length and the total quantity 
of ROH (Fig. 1C). The lengths of the ROH across the 11 
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Tibetan sheep populations increase with the number of 
SNPs. The correlation coefficient between the total num-
ber of ROH and the total length of ROH for individual 
Tibetan sheep genomes is high (Fig. 1C). The ROH length 
of the Tibetan sheep genome is mainly concentrated in 
0–1  Mb, and the less ROH length is longer than 3  Mb 
(Table S7). In ROH regions, a higher number of SNPs 
indicates greater genetic variation and thus higher levels 
of genetic diversity. Notably, the ZSJ population exhib-
its a lower number of SNPs in its genomic ROH, while 
the GJ population displays a higher SNP count (Fig. 1B). 
The individual FROH values calculated from the genomic 
ROH can be used to assess the degree of inbreeding 
among individuals. It is evident that there is considerable 
heterogeneity among individuals in the Tibetan sheep 
populations. Based on FROH values, inbreeding levels can 
be categorized into three tiers: low (FROH < 0.1), medium 
(0.1 < FROH < 0.2), and high (FROH > 0.2). Individuals with 
FROH values greater than 0.2, indicating severe inbreed-
ing, were identified in the GJ, OL, and GBB populations 
(Fig. 1D).

ROH hotspot region genes in Tibetan sheep populations
This study investigates the distribution of ROH hotspot 
regions and their associated genes across 11 populations 
of Tibetan sheep, with findings summarized in Table S1. 
The number of identified ROH hotspot regions varies sig-
nificantly among these populations. Specifically, the AW 
population exhibits the fewest ROH hotspots, totaling 
only 25, whereas the GBW population shows the highest 
number with 95 ROH hotspots. These ROH regions span 
multiple chromosomes and encompass a diverse array of 
genes.

The gene count within these ROH hotspot regions also 
differs among the populations, with the GBB having the 

highest number of associated genes, while the WT has 
the lowest (Fig. 2). Notably, the number of ROH hotspot 
regions within different chromosomes varies across the 
Tibetan sheep populations. Moreover, the gene counts 
within these ROH hotspots regions differ across the 
populations, with GBB having the highest number of 
associated genes, while WT has the lowest, as illus-
trated in Fig. 2. The distribution of ROH hotspot regions 
across different chromosomes also varies among the 
Tibetan sheep populations. The genes identified within 
these ROH hotspot regions are linked to various bio-
logical functions, including immune responses, lactation, 
reproduction, body weight regulation, and lipid metabo-
lism. Notably, certain genes found in the ROH hotspots 
regions of Tibetan sheep populations adapted to higher 
altitudes—specifically the WT, ZSJ, GBW, and HB popu-
lations—are associated with mitochondrial function and 
adaptation mechanisms to high-altitude hypoxia.

Among these, several genes such as ARHGEF16, 
Tom1l2, PRDM16, PEMT, SREBF1, Rasd1, Nt5m, MED9, 
FLCN, and RAI1 are highly conserved within the ROH 
hotspot regions across Tibetan sheep populations. These 
genes are primarily involved in lipid metabolism, lacta-
tion, and developmental processes, underscoring their 
potential significance in the adaptive characteristics of 
these populations.

Enrichment analysis results of ROH hotspot regions in 11 
Tibetan sheep populations
We performed GO and KEGG enrichment analyses on 
the genes identified within the ROH hotspot regions of 
the 11 Tibetan sheep populations. The analyses were con-
ducted with strict filtering criteria, including a minimum 
of two genes per enriched term and P-values of less than 
0.05 for both KEGG and GO enrichment assessments. 
The results of the enrichment analyses reveal that the 
identified signaling pathways are predominantly asso-
ciated with metabolic processes, molecular functions, 
disease pathways, and immune response mechanisms. 
Notably, the variation in the number of enriched gene 
entries across the different Tibetan sheep populations 
aligns with the varying gene counts detected within the 
respective ROH hotspot regions, as detailed in Table S2.

ROH related results of Tibetan sheep population
To assess the impact of inbreeding events on the accu-
mulation of deleterious mutations, we calculated the 
Rnhom values, which represent the ratio of missense to 
synonymous mutations within ROH hotspot regions 
compared to the corresponding ratio outside of these 
ROH hotspot regions in the genomes of Tibetan sheep. 
The analysis revealed that the mean Rnhom values are 
significantly higher in the GJ, TS, and ZSJ populations, 
while the KC population exhibits the lowest mean value. Fig. 2  Number of genes in ROH hotspot region of Tibetan sheep
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Furthermore, the Rnhom values within these populations 
demonstrated considerable variability, particularly high-
lighted by the differences observed between the GJ and 
TS populations, as illustrated in Fig.  3A. These findings 
suggest that inbreeding events contribute to the accumu-
lation of deleterious mutations in the genome. To quan-
tify the selection pressure status of the Tibetan sheep 
population at the genomic level using non-synonymous 
mutation rate (dN) and synonymous mutation rate (dS), 

the dN/dS ratio can mitigate the effects of varying muta-
tion rates across different genomic regions. In our study 
of 11 Tibetan sheep populations, the dN/dS ratios across 
all individuals were observed to be consistently less than 
one, indicating that these populations are under purifying 
selection. This suggests that the majority of non-synon-
ymous mutations present in these populations are likely 
deleterious, with only a limited number being beneficial. 
Notably, the dN/dS ratios within ROH hotspot regions 

Fig. 3  Accumulation of Deleterious Mutations Load in the Tibetan Sheep Genome (A) Rnhom Values in the Tibetan Sheep Genome (B) Genomic dN/dS 
values of Tibetan sheep population (C) dN/dS values of ROH hotspot region in Tibetan sheep population
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were found to be lower than those in non-ROH hotspot 
regions, implying that non-synonymous mutations 
occurring within ROH hotspot regions tend to be more 
detrimental than those outside these regions. Among the 
populations studied, both GJ and TS exhibited higher 
dN/dS ratios within ROH hotspot regions, indicating a 
relatively lower intensity of purifying selection compared 
to other populations, as depicted in Fig. 3B and C.

Inbreeding can increase the genetic load of a popu-
lation’s genome to some extent, and genetic load can 
impair gene function, thereby reducing the population’s 
adaptability [34]. In the genomes of these Tibetan sheep, 
the genetic load within ROH hotspot regions was found 
to be lower than that in non-ROH hotspot regions, with 
missense/synonymous ratios being higher than LOF/syn-
onymous ratios. This indicates that inbreeding in these 
Tibetan sheep populations does not necessarily lead to an 
increase in the genetic load of the genome, with a greater 
proportion of genetic load arising from missense muta-
tions (Fig. 4A-B).

iHS analysis results for ROH hotspot regions in Tibetan 
sheep populations
To gain deeper insights into the selective pressures act-
ing on loci within high-frequency ROH hotspot regions 
across various breeds of Tibetan sheep, we applied a 
haplotype-based iHS method to detect selection signals 
within these regions in 11 Tibetan sheep populations. 
The annotation results of the iHS analysis for the ROH 
hotspot regions are presented in Table S3, while Table 
S4 details the KEGG and GO analysis outcomes for 
the genes associated with the iHS signals within these 
regions.

We defined selection loci as the top 1% of SNP loci 
based on their iHS values from the Tibetan sheep popula-
tions, identifying candidate genes for the Tibetan sheep 
populations as those SNP loci shared by four or more 
groups, as summarized in Table 1 and illustrated in Fig. 5. 
The findings indicate that seven high-frequency ROH 
hotspot regions harbor SNPs under strong selective pres-
sure, from which we identified nine candidate genes.

Table 1  Candidate genes of tibetan sheep population
Population Chromosome Start(Kb) End(Kb) Gene name
GBW、OL、QK、TS Chromosome1 18,252,087 28,461,837 NDC1
HB、OL、QK、TS Chromosome1 PTPRF
GBW、OL、QK、TS Chromosome1 YIPF1
AW、GBB、GBW、HB、WT Chromosome3 3,588,578 3,599,131 KCNT1
AW、GBB、GJ、KC、ZSJ Chromosome8 16,509,015 16,565,457 RNF217
AW、GBB、KC、WT Chromosome13 54,640,897 54,653,512 EBF4
GBB、GJ、WT、ZSJ Chromosome15 29,094,715 29,131,123 CEP164
AW、GJ、HB、ZSJ Chromosome18 37,522,313 37,536,942 COMMD4
GBW、GJ、HB、WT Chromosome25 4,097,046 4,129,228 TRIM67

Fig. 4  Genomic genetic load of Tibetan sheep population. (A) The genome of Tibetan sheep is LOF/synonymous (B) The genome of Tibetan sheep is 
missense/synonymous
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Fig. 5  iHS analysis of loci within high-frequency ROH hotspot regions of the Tibetan sheep population
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ROH gene mutations within the genome
The mutation load of genes associated with ROH in the 
Tibetan sheep genome was found to be enriched. The 
mutations across 11 Tibetan sheep populations were 
linked to various biological processes, encompassing 
metabolism, genetic information processing, cellular 
processes, organismal systems, and diseases pathways 
(Figure S1). A noteworthy observation from this study is 
that mutations predominantly affected organismal sys-
tems and diseases phenotypes, with a higher prevalence 
in genes implicated in cellular regulation. Specifically, 
the mutations in the COL20A1, MYO15B, METRN, and 
EHD1 genes were identified in over half of the Tibetan 
sheep populations (Table  2). These genes play crucial 
roles in the development, immune response mechanisms, 
and signal transduction in Tibetan sheep. COL20A1 
is primarily found in bone and cartilage. It is an essen-
tial component for maintaining the structure and func-
tion of bone and cartilage [35]. METRN is predominantly 
expressed in the central nervous system (CNS) and is 
believed to play a significant role in immune-related 
regulation. EHD1 is a member of highly conserved 
gene family that encodes proteins containing the EPS15 
homology (EH) domain. EHD1 is essential for the endo-
cytosis of insulin-like growth factor 1 (IGF1) receptors 
and participates in various signal transduction pathways.

Discussion
The Tibetan sheep population generally exhibits 
inbreeding and low individual diversity
This study elucidated the current status of genomic 
inbreeding, genetic load, and selection pressure within 
Tibetan sheep populations, with the aim of providing 
valuable insights for future genetic breeding and conser-
vation of biodiversity. The findings indicated a significant 
prevalence of inbreeding among Tibetan sheep, charac-
terized by a high dispersion of FROH. Notably, popula-
tions such as GJ, OL, and GBB exhibited FROH values 
exceeding 0.2. A high inbreeding coefficient poses a risk 
of extinction and can lead to inbreeding depression [41, 
42]. The inbreeding coefficient among certain individu-
als of Tibetan sheep is significantly higher than previ-
ously reported. Liu calculated the mean FROH for this 
population to be 0.0206, suggesting that the inbreeding 

status of Tibetan sheep has not improved and, in fact, has 
deteriorated over time [43]. Numerous studies have dem-
onstrated that excessively high FROH values can have det-
rimental consequences, including an increased incidence 
of recessive diseases and a decline in population adapt-
ability. For instance, in Holstein cows, elevated FROH 
values are correlated with reduced sperm concentra-
tion (SC) and sperm motility (SM), thereby significantly 
impairing reproductive performance [44]. Furthermore, 
in Arctic foxes, a 0.1 increase in FROH is linked to a 76% 
reduction in survival rates [45], while in wild Soay sheep, 
a similar increase in FROH corresponds to a 60% decrease 
in survival rates [46].

The reduction of heterozygosity caused by inbreeding will 
impact growth and reproduction
It is noteworthy that the genes identified in the ROH 
hotspot regions population of 11 Tibetan sheep are 
predominantly associated with body weight, lactation, 
reproduction, immunity, and metabolism. The majority 
of the enriched gene pathways are related to individual 
growth and development, as well as disease susceptibil-
ity and immune responses [47, 48]. A total of ten highly 
conserved shared genes were identified in these Tibetan 
sheep populations, namely Arhgef16, TOM1L2, PRDM16, 
PEMT, SREBF1, RASD1, NT5M, Med9, FLCN, and RAI1. 
These genes are implicated in a variety of biological pro-
cesses, including cell morphology, transport, metabolism, 
transcription, milk production, and ontogeny [49, 50]. By 
collaborating with iHS to analyze the selection signals of 
the ROH hotspot regions locus, seven regions of Tibetan 
sheep were identified in which SNPs exhibited strong 
selection during the process of interrupted rearrange-
ment. Nine genes (COMMD4, KCNT1, RNF217, YIPF1, 
TRIM67, NDC1, EBF4, CEP164, PTPRF) were detected 
in at least four populations. Notably, TRIM67, CEP164, 
KCNT1, and NDC1 are primarily associated with ontog-
eny. Research indicates that TRIM67 is involved in brain 
development, cytoskeleton regulation, and neuron mor-
phogenesis, while CEP164 plays a role in embryonic 
development. KCNT1 is essential for regulating neuronal 
membrane excitability, and NDC1, a component of the 
nuclear pore complex, is significant in spermatogenesis 
[51–56]. PTPRF is integral to breast development, and its 
disruption has been associated with syndromic amastia 
[57]. The genes selected in this study are predominantly 
linked to ontogeny, genome stabilization, and the regula-
tion of cellular metabolism. This information contributes 
significantly to our understanding the evolutionary tra-
jectories of various Tibetan sheep populations.

Table 2  LOF and missense mutations in the ROH hotspot region 
of Tibetan sheep
Mutated genes Function
COL20A1 collagen synthesis [35]
MYO15B Muscle development (MYO15B 

myosin XVB [Homo sapiens 
(human)] - Gene - NCBI)

METRN Immune-related [36]
EHD1 signal transduction [37–40]
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Inbreeding maintains the conservation of adaptive genes 
to some extent
The ROH hotspot regions of Tibetan sheep has been spe-
cifically annotated with genes associated with immune 
system response and functional regulation (IRF2, NOD2, 
IL2, TLR9, CCL19, PIGR, ICAM2, CD19) [58–65], 
mitochondrial function (SLC25A11, MFN2, MTERF4, 
MIGA2, NDUFV1, TUFM) [66–70], and altitude hypoxia 
adaptation (COX4I2, EGLN1) [71, 72]. The conserva-
tion of these genes among Tibetan sheep can be attrib-
uted to inbreeding practices, coupled with the functional 
advantages conferred by these genes in high-altitude, 
low-oxygen environments. Individuals possessing these 
advantages genes are likely to experience enhanced sur-
vival and reproductive success, which can be under-
stood as a consequence of natural selection. From an 
ecological and evolutionary standpoint, the preserva-
tion of these genes highlights the adaptive evolutionary 
processes of Tibetan sheep within high-altitude ecosys-
tems. The selective pressure exerted on specific genes 
at elevated altitudes promotes their retention, thereby 
equipping populations to effectively address survival 
challenges. While inbreeding facilitates the maintenance 
of particular adaptive genes, it may concurrently result 
in diminished genetic diversity [14]. Low genetic diver-
sity diminishes the adaptability of Tibetan sheep popula-
tions to environmental changes and may elevate the risk 
of recessive genetic disorder [73]. Therefore, breeding 
strategies for Tibetan sheep should be carefully evaluated 
to establish a balance between genetic health and overall 
fitness.

There was a higher accumulation of deleterious genes and 
a lower genetic load in the ROH hotspot region
This study revealed that the accumulation of deleterious 
mutations within regions of ROH was more pronounced 
compared to non-ROH hotspot regions of the genome. 
This finding suggests that inbreeding events contribute 
to the buildup of harmful mutations within the genome. 
In the Tibetan sheep genomes analyzed, the genetic load 
in ROH hotspot regions was found to be lower than that 
in non-ROH hotspot regions. Furthermore, the ratio 
of missense to synonymous mutations was higher than 
that of LOF to synonymous mutations. These results 
indicate that genomic inbreeding in Tibetan sheep does 
not necessarily lead to a rapid increase in overall genetic 
load, which appears to be primarily driven by missense 
mutations rather than LOF mutations. Relatedly, Kuang 
reported a similar genetic load phenomenon in Tibetan 
sheep while conducting research on endangered snub-
nosed monkeys [74]. This perspective challenges the 
prevailing belief that increased inbreeding invariably 
results in negative genetic consequences, a notion that 
can be scientifically elucidated. The prompt removal 

of deleterious alleles during population bottlenecks in 
small populations can effectively mitigate mutation load 
[75, 76]. Van estimated the average deleterious nature 
of derived alleles across various mammalian species 
and found that those with historically small population 
sizes and low genetic diversity generally exhibited lower 
genetic loads compared to species with larger popula-
tion sizes. Additionally, they observed that the process 
of genetic clearance evolves at a slower pace and that the 
accumulation of inbreeding mutation load occurs more 
gradually [74, 77]. These studies also support the notion 
that mutation load accumulates over a longer period than 
inbreeding [78].

Mutation load mainly affects organism immunity and 
organismal systems
Tibetan sheep predominantly inhabit high-altitude 
regions, where environmental stressors significantly 
enhance their immune adaptability. Research has demon-
strated that variations in immune defense and stress lev-
els exist among populations residing at differing altitudes, 
with those at higher elevations exhibiting a pronounced 
enhancement in innate immunity [79]. Animals with 
diminished immune function are unable to adapt to the 
harsh conditions of the Tibetan Plateau. Consequently, 
mutations or LOF in immune-related genes within the 
Tibetan sheep genome can directly affect their viability. 
The METRN mutation has been identified in more than 
half of the Tibetan sheep population. METRN is primar-
ily expressed in the central nervous system and functions 
as a neuroprotective factor [80]. In addition, METRN is 
involved in the regulation of immune-related pathways, 
such as signaling through the B-cell receptor (BCR) and 
immunoregulation between lymphocytes [36]. Muta-
tions in domestic animals residing at high altitudes can 
predispose them to altitude-related diseases. Recently, 
mutations associated with high-altitude pulmonary 
hypertension have been identified in beef cattle [81]. Fur-
thermore, specific gene mutations have been detected in 
patients with β-thalassemia [82]. High altitude-related 
diseases can impact various systems, including the car-
diovascular system, central nervous system, and repro-
ductive systems [83–85]. These findings suggest that 
the decline in the Tibetan sheep population, attributed 
to inbreeding, primarily arises from the disruption of 
individual development and the functional integrity 
of immune-related genes, ultimately reducing their 
adaptability.
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