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Abstract
Background Telomere length is an important indicator of biological age and a complex multi-factor trait. To date, 
the telomere interactome for comprehending the high-dimensional biological aspects linked to telomere regulation 
during childhood remains unexplored. Here we describe the multi-omics signatures associated with childhood 
telomere length.

Methods This study included 1001 children aged 6 to 11 years from the Human Early-life Exposome (HELIX) 
project. Telomere length was quantified via qPCR in peripheral blood of the children. Blood DNA methylation, 
gene expression, miRNA expression, plasma proteins and serum and urinary metabolites were measured through 
microarrays or (semi-) targeted assays. The association between each individual omics feature and telomere length 
was assessed in omics-wide association analyses. In addition, a literature-guided, sparse supervised integration 
method was applied to multiple omics, and latent components were extracted as predictors of child telomere length. 
The association of these latent components with early-life aging risk factors (child lifestyle, body mass index (BMI), 
exposure to smoking, etc.), were interrogated.

Results After multiple-testing correction, only two CpGs (cg23686403 and cg16238918 at PARD6G gene) out of all 
the omics features were significantly associated with child telomere length. The supervised multi-omics integration 
approach revealed robust associations between latent components and child BMI, with metabolites and proteins 
emerging as the primary contributing features. In these latent components, the contributing molecular features were 
known as involved in metabolism and immune regulation-related pathways.

Conclusions Findings of this multi-omics study suggested an intricate interplay between telomere length, 
metabolism and immune responses, providing valuable insights into the molecular underpinnings of the early-life 
biological aging.
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Introduction
Telomeres are protective nucleoprotein caps at the ends 
of chromosomes which is crucial for chromosomal sta-
bility [1], and their shortening with chronological age is 
an important contributor to biological aging [2]. There-
fore, telomere length is recognized as a marker of bio-
logical age and aging-related diseases [3]. Several studies 
have evaluated the molecular basis of telomere length in 
genomics [4], epigenomics [5], transcriptomics [6], and 
metabolomics [7]. In addition, omics-based aging clocks 
have been associated with telomere length in early life [8, 
9]. Currently, studies have not incorporated an integra-
tive approach across multiple omics for telomere length. 
With the advances in high-throughput omics methods, 
combining information from multi-omics has become 
feasible and would contribute to unraveling the complex-
ities of telomere biology by capturing a more compre-
hensive and, especially, integrative view of the biological 
processes underlying telomere interactome.

Most studies evaluated biological aging in adulthood, 
however in early life such as childhood, differences in 
aging and developmental trajectories involving distinct 
biological processes are described and this may set the 
stage for vulnerability differences to diseases [10]. There-
fore, children living free of diseases may have underlying 
biological aging differences that might persist and cumu-
late overtime. Considering the evidence that telomere 
length tracks over the lifespan [11, 12], studying telo-
mere biology in early-life allows us to gain more insights 
into the underlying mechanism of biological aging and 
enhance the perception of extending a healthy lifespan.

Biological aging in children, as a multi-faceted process, 
has been reported to be accelerated by risk factors such 
as exposure to passive smoking [13], adiposity [14, 15], 
unhealthy lifestyle [9, 16], and lower socio-economic sta-
tus [17]. Specifically for telomere shortening, the poten-
tial underlying mechanism of the effect of these risk 
factors could be increased cellular and genomic damage, 
elevated psychological stress [18] and insufficient intake 
of antioxidants from diet [19], which leads to chronic 
inflammation [20] and higher oxidative stresses [21].

In this study, we investigated the multi-omics sig-
nature of telomere length in children aged 6–11 years 
from the Human Early Life Exposome (HELIX) project. 
Our hypothesis posits that the multi-omics signatures of 
childhood telomere length differ depending on risk fac-
tors of early-life aging. Leveraging molecular measure-
ments from various omics assays, we first assessed the 
association of individual omics features with telomere 
length. Subsequently, we conduct an integrative analysis 
of molecular features from multiple omics (DNA methy-
lome, transcriptome, metabolome, and proteome), using 
a multi-block sparse partial least squares (sPLS) regres-
sion, to identify the multi-omics signatures of childhood 

telomere length. Finally, we evaluated the association of 
the multi-omics signatures to a priori selected early-life 
aging risk factors, including lifestyle factors, exposure 
to tobacco smoke, socioeconomic status, and body mass 
index (BMI).

Results
The study population
Within the HELIX project, a collaborative project of six 
established longitudinal birth cohorts in Europe (Spain, 
UK, France, Lithuania, Norway, and Greece) (Maitre et 
al., 2018; Vrijheid et al., 2014), multi-omics molecular 
profiles were assessed in a subcohort of children, aged 
between 6 and 11 years, including the average relative 
telomere length (quantitative real-time PCR (qPCR)), 
genome-wide genotyping (Infinium Global Screening 
Array, Illumina), blood DNA methylation (450  K, Illu-
mina), blood gene expression (HTAv2.0,Affymetrix), 
blood miRNA expression (SurePrint Human miRNA 
rel 21, Agilent), plasma proteins (3 Luminex multiplex 
assays), serum metabolites (targeted LC-MS/MS metab-
olomic assay, Biocrates AbsoluteIDQ p180 kit), and uri-
nary metabolites (1H nuclear magnetic resonance (NMR) 
spectroscopy) (Supplementary Figure S1). The number of 
molecular probes and sample size in each omics platform 
are summarized in Supplementary Table S1. Lists of bio-
markers in plasma protein, serum and urinary metabo-
lites assays are available in Supplementary Data S1 – S3, 
respectively. The current study was based on 1001 chil-
dren, who were of European ancestry defined based on 
the genome-wide genotype data, and had complete data 
on relative telomere length measurements and blood cell 
proportions estimated based on DNA methylation pro-
files available (Fig. 1).

The general characteristics of the HELIX children 
involved in the current study (N = 1001) are shown 
in Table  1. As a comparison, the characteristics of all 
HELIX subcohort children (N = 1301), which have been 
described previously [9, 22], and are listed in parallel in 
Supplementary Table S2. The children had a mean age of 
7.9 years (range 5.4–12.0 years) and 45.2% were girls. The 
six cohorts comprised 9.2–19.8% of the total sample size 
of the current study. Compared with all the HELIX sub-
cohort children, this study included less children from 
BiB and EDEN who were not of European ancestry. There 
was no difference observed in the other characteristics. 
All children in the study population had the genome-
wide genetic data available. Around 74% of the children 
had data available in all the other six omics layers and 
99% had data available in at least 4 omics (Supplementary 
Table S3).

To assist the learning of multi-omics signatures of 
telomere length, we calculated additional estimators of 
telomere length, namely, the DNA methylation-based 
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telomere length estimator (DNAmTL) [5] based on the 
DNA methylation data, and two polygenic scores (PRS) 
of telomere length, hereafter referred to as Li’s PRS [23] 
and Codd’s PRS [24], based on the whole-genome genetic 
data. The measured telomere length showed a correlation 

with DNAmTL (r = 0.25; p < 0.001) and two polygenic 
scores (r = 0.21, p < 0.001 and r = 0.23, p < 0.001, respec-
tively) (Supplementary Figure S2). No correlation was 
detected between DNAmTL and the two PRSs (r = 0.052; 
p = 0.10 and r = 0.047; p = 0.13, respectively), while 

Fig. 1 Flowchart of the participant inclusion. Sample sizes and inclusion/exclusion criteria of the Human Early Life Exposome (HELIX) project and the 
study populations of the current study
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the latter were moderately correlated with each other 
(r = 0.56; p < 0.001). Child age was slightly correlated 
with the measured telomere length (r=-0.07; p = 0.04) 
and showed a stronger correlation with DNAmTL (r=-
0.37; p < 0.001), but was not found to correlate with the 
two PRSs (r = 0.003; p = 0.92 and r=-0.04; p = 0.16, respec-
tively). Compared to girls, boys had shorter telomere 
lengths and shorter DNAmTL (both with p < 0.001), while 
no difference in the two PRSs was observed between girls 
and boys (p = 0.79 and p = 0.37, respectively). Children’s 
BMI z-scores (zBMI) showed a weak but significant cor-
relation with the measured telomere length (r=-0.10, 
p = 0.002) and DNAmTL (r=-0.07, p = 0.03).

Omics-wide association analysis showed diverse relevance 
to childhood telomere length
We first conducted omics-wide association analyses, 
where the association between the child’s relative telo-
mere length and each single molecular feature was evalu-
ated using multiple linear regression models (Fig.  2A, 
Approach I). All models were adjusted for child age, sex, 
the blood cell compositions estimated from the DNA 
methylation data, and the first four principal compo-
nents (PCs) of the whole-genome genetic data which cor-
rected the population heterogeneity due to cohort and 
ethnicity. Nominal p-values (-log10-transformed) from 
the omics-wide association analyses are plotted in Fig. 3 
and summarized in Supplementary Figure S3. Manhattan 
plots with additional information on the omics features’ 
genomic locations and metabolite compound classes can 
be found in Supplementary Figure S4 and S5, respec-
tively. After omics-specific Bonferroni correction for 
multiple testing, the only two significant hits in all omics 
were from DNA methylation. In general, more signals, 
suggested by the p-values, were observed in the genetic 
variants, DNA methylation and gene expression than in 
other omics layers.

For each omics layer, the top 20 molecular features with 
the lowest p-values are listed in Supplementary Data S4 – 
S10, respectively. The top SNPs (with p-value < 10− 6) were 
annotated to gene loci AC139768.1, DAZAP2/SMAGP, 
and RP11-351O2.1. In DNA methylation, two out of 
386,518 CpGs were significant after Bonferroni correc-
tion and showed a positive association with telomere 
length, both with genomic location near the PRD6G 
gene (cg23686043 in the promoter and cg16238918 in 
gene body). The top transcript from the gene expres-
sion profile belonged to the DEXI homolog gene cluster 
(inversely associated with telomere length, p = 1.28x10-6), 
and the top miRNA was MIR6752 (positively associated 
with telomere length, p = 0.003). The associations of 
metabolites and plasma proteins to telomere length were 
relatively weak. The top plasma protein was IL-1beta 
(p = 0.013), inversely associated with telomere length. 

Table 1 Characteristics of the study population (N = 1001)
Characteristics n (%) or 

mean ± SD
Cohort BiB 92 (9.2%)

EDEN 137 (13.7%)
INMA 199 (19.8%)
KANC 193 (19.3%)
MoBa 194 (19.4%)
RHEA 186 (18.6%)

Sex Male 549 (54.8%)
Female 452 (45.2%)

Birth weight < 2500 g 28 (2.8%)
[2500 g, 3500 g) 537 (53.6%)
[3500 g, 4500 g) 313 (31.3%)
≥ 4500 g 99 (9.9%)

Child BMIa Underweight 62 (6.2%)
Normal 709 (70.8%)
Overweight 150 (15.0%)
Obese 59 (5.9%)

Maternal education 
level

Primary school 113 (11.3%)
Secondary school 340 (34.0%)
University or higher 510 (50.9%)

Maternal pre-pregnan-
cy BMIb

Underweight 37 (3.7%)
Normal 557 (55.6%)
Overweight 239 (23.9%)
Obese 14 (14.0%)

Maternal smoking 
status

Never smoker 778 (77.8%)
Smoked before pregnancy 0 (0)
Sustained smoker during 
pregnancy

99 (9.9%)

Childhood parental 
smoking

Neither 587 (58.6%)
One 275 (27.5%)
Both 112 (11.2%)

Family affluence scorec Low 89 (8.9%)
Middle 378 (37.8%)
High 513 (51.3%)

Age (years) 7.9 ± 1.6
Gestational age (weeks) 39.6 ± 1.6
Child moderate-to-vigorous physical activity (min/
day)

40.0 ± 25.3

KIDMED index in childrend 2.8 ± 1.7
a. Child body-mass-index (BMI) categories were defined according to the CDC 
growth charts of sex-specific BMI-for-age percentile curves. Children with BMI 
less than the 5th percentile were “underweight”, from the 5th to 85th percentiles 
were “normal”, from the 85th to the 95th were “overweight”, and those greater 
than the 95th percentile were “obese”
b. Maternal pre-pregnancy BMI was grouped according to WHO categories for 
underweight (< 18.5 kg/m2), normal (18.5–24.9 kg/m2), overweight (25–29.9 kg/
m2) and obese (≥ 30 kg/m2)
c. Family affluence score was categorized as “low” for scores 0, 1 and 2, as 
“medium” for scores 3, 4, and 5, and as “high” for scores 6, 7, 8, and 9
d. The Mediterranean Diet Quality Index (KIDMED index) was used to quantify 
the children’s Mediterranean diet patterns. Ranging from − 4 to 11, a higher 
KIDMED index reflects greater adherence to a Mediterranean diet
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Fig. 2 (See legend on next page.)
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The top metabolites were serum acylcarnitine C10:1 
(p = 0.023) which was inversely associated with telomere 
length, and urinary formate (p = 0.033) which was posi-
tively associated with telomere length.

Literature-based preselection of molecular features for 
multi-omics integration analysis
Prior to the integrative analysis of multiple omics, we 
pre-selected CpGs and gene transcripts, where the data 
dimension was relatively higher, based on literature and 
publicly accessible databases (Fig.  2A, Approach II). 
The purposes of this pre-selection were to denoise the 
omics data, to improve between-omics intercorrelation 
in the two omics layers of the highest dimensions, and 
to reduce model overfitting to the data. The workflow of 
the literature-based feature pre-selection is illustrated in 
Fig. 2B and a detailed description can be found in Supple-
mentary Methods. As a result of the pre-selection, 1848 
out of 386,518 CpGs and 384 out of 20,315 gene expres-
sion transcript clusters remained. For the other omics 
(miRNA expression, plasma proteins, serum metabolites 
and urine metabolites), all available features were used for 
the integrative analysis. We show a comparison between 
the associations in the reference studies and the associa-
tions estimated in the HELIX children for the same omics 
features. The SNPs and CpGs that were selected from 
published genome-wide association studies (GWAS) and 
epigenome-wide association studies (EWAS) are listed in 
Supplementary Data S11 and S12, respectively, with the 
feature annotation and model estimates from HELIX and 
the reference studies. All the selected SNPs and CpGs 
were genome-wide significant in the corresponding refer-
ence study, among which there were only two SNPs with 
a p-value < 10− 5 in the HELIX children (both related to 
TERC gene) and one CpG with a p-value < 10− 4 (in the 
gene body of CHL1). The direction of the estimated asso-
ciations, on the other hand, showed consistency between 
the reference studies and HELIX children. Similarly, 
among the 384 selected gene transcripts, only four tran-
scripts had a p-value < 0.01 (Supplementary Data S13). 
We did not detect an overrepresentation of the selected 

CpGs and gene transcripts in the top signals from EWAS 
and TWAS, respectively (Supplementary Table S4).

Latent components from multi-omics were associated with 
child BMI
Features across six omics (DNA methylation, gene 
expression, miRNA expression, plasma proteins, serum 
metabolites and urine metabolites) were analyzed to 
identify the multi-omics signature of childhood telomere 
length (Fig. 2A, Approach II), using a multi-block sparse 
partial least squares (multi-block sPLS) method imple-
mented in the mixOmics package (Rohart et al., 2017). 
In addition to the relative telomere length, we included 
Li’s PRS and Codd’s PRS, and DNAmTL in the outcome 
block (Y-block) as well, to increase the variation in the 
phenotype, assisting the supervised learning from the 
high-dimension omics blocks.

The numbers of latent components, which maximized 
the covariance between multiple omics blocks and the 
Y-block, are listed in Supplementary Table S5. A six-
component model was selected across all omics layers 
that balanced the proportion of covariance explained 
and model simplicity (Supplementary Figure S6). This 
model defined a data space spanned by six axes. The fea-
tures from each omics layer were projected onto these 
axes, generating one omics-specific component for each 
axis. Within each omics block, the proportions of vari-
ance explained by the corresponding six components are 
depicted in Fig. 4. Comparing between omics layers, the 
higher the data dimension, the lower the proportion of 
variance explained by the components. In addition, there 
was a clear decreasing trend of variance explained from 
component 1 to component 6 in the lower-dimension 
omics that could not be observed in DNA methylation. 
Based on the specification of keeping six components, 
the number of omics features to keep was tuned by sparse 
PLS within each omics block with a five-fold cross valida-
tion, from which the number of features was obtained as 
shown in Supplementary Table S6. The component load-
ings of the selected omics features are listed in Supple-
mentary Data S14.

(See figure on previous page.)
Fig. 2 Data analysis procedures of the current study. (A) The statistical analyses using two approaches. In Approach I (grey color in the left half ), omics-
wide association analyses were conducted within each omics to assess the association between each individual feature and telomere length. In Ap-
proach II (green color in the right half ), multiple (pre-selected) omics were analyzed via a supervised method, multi-block sparse Partial Least Squares 
(sPLS), against four telomere length measures. (B) The literature-based omics feature pre-selection in genome-wide CpG methylation and gene expres-
sion. All green boxes represent procedures based on literature or databases, while the blue box stands for a data-driven filtering of gene transcripts where 
the transcript with the highest variance within the same gene was selected. Stage ①: significant SNPs from published genome-wide association studies 
(GWAS’s) of telomere length (TL) were used to extract DNA methylation quantitative trait loci (mQTL) and gene expression quantitative trait loci (eQTL) 
from publicly accessible databases, which were in turn used to select a first set of CpGs in the DNA methylation data and a first set of transcripts in the 
gene expression data. Stage ②: genes involved in telomere regulation and two cellular aging-related signaling pathways, mTOR and AMPK pathways, 
were used to select a second set of gene transcripts, and to extract gene expression quantitative trait methylation (eQTM) from a published study which 
were then used to select a second set of CpGs. Stage ③: an epigenome-wide association study (EWAS) of TL was used to select a third set of CpGs. All 
selected CpGs were further filtered considering the probe reliability in the Illumina 450 K array
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A correlation heatmap between components of the six 
omics blocks and the four telomere length measures is 
shown in Supplementary Figure S7. For each component, 
the most correlated components in other omics were 
along the same axis in the component space. Relatively 
stronger inter-correlations were found between serum 
metabolite components, urine metabolite components 
and plasma protein components, between DNA meth-
ylation and gene expression, and between gene expres-
sion and serum metabolites. The four telomere length 
measures showed only weak correlations with the omics 
components, among which five had an absolute correla-
tion higher than 0.10: r = 0.122 (p < 0.001) between DNA 
methylation component 3 and Li’s polygenic score, r=-
0.104 (p < 0.001) between miRNA component 4 and Li’s 

polygenic score, r = 0.102 (p = 0.001) between DNA meth-
ylation component 2 and DNAmTL, r=-0.101 (p = 0.001) 
between miRNA component 4 and measured telomere 
length, and r = 0.100 (p = 0.001) between gene expres-
sion component 2 and DNAmTL. For the Y block com-
ponents, DNA methylation components 2 and 3, gene 
expression components 2 and 5, and miRNA component 
4 showed absolute correlations higher than 0.10 (all with 
p < 0.05).

Pathway enrichment analyses were performed on 
genes suggested by the components that were most cor-
related with telomere length measures or Y components 
described above (DNA methylation component 2 and 
component 3, gene expression component 2 and compo-
nent 5, and miRNA component 4), where omics features 

Fig. 4 The proportion of variance explained by the six-component multi-block sPLS model. The model derived six components in each omics block. 
Displayed are the proportion of variance of each omics explained by each of the components

 

Fig. 3 Summary of significance of the omics-wide association analyses with telomere length in HELIX children. All omics features are shown as points by 
-log10-transformed nominal p-value versus the omics and the type of model. Omics-wide significant features under Bonferroni correction are colored red. 
The top molecular features were labeled with the corresponding gene/metabolite names. Models were adjusted for key covariates: child age, sex, the first 
four genetic PCs and the estimated blood cell compositions
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(CpGs, gene transcripts, and miRNAs) with an absolute 
loading > 0.10 on the corresponding components were 
used. In total, a list of nine, three, five, six, and nine 
unique genes were annotated for each of the four com-
ponents, respectively, which formed a list of 31 unique 
query genes. The miRNAs also suggested 57 unique tar-
get genes. Figure  5 shows the pathways enriched in the 
annotated genes and target genes, including the regula-
tion of general cellular activities (NOTCH signaling and 
cell membrane traffic), autophagy and immune responses 
including SARS-CoV infection-related pathways.

From the final six-component multi-block sPLS model, 
component scores were calculated for each component 
in each omics block. Multiple linear regression models 
were fitted to assess the association between the com-
ponents in each omics block and early-life aging risk 
factors: gestational age, birth weight, maternal pre-preg-
nancy BMI, maternal smoking status, maternal educa-
tion level, parental smoking in the children’s household, 

family affluence score, child BMI, child physical activity 
level and child Mediterranean diet score. The associa-
tion estimates of all risk factors to components scores are 
listed in Supplementary Tables S7 – S12. Child zBMI was 
found to be the only significant risk factor under Bonfer-
roni correction, consistent across multiple omics layers 
and multiple components. Specifically, child zBMI was 
inversely associated with plasma protein component 2, 
serum metabolite component 2 and component 5, and 
urinary metabolite component 2 and component 3. The 
multi-omics features and their contributions to these 
components (if having an absolute loading > 0.10), as well 
as the association between the components and child 
zBMI, are visualized in Fig.  6. None of the components 
from DNA methylation, gene expression and miRNA 
showed an association with child zBMI.

Fig. 5 Pathways enriched in the genes suggested by the components mostly related to telomere length. Genes annotated to features from DNA meth-
ylation component 2 and component 3, gene expression component 2 and component 5 and miRNA component 4 (upper panels) and target genes 
of miRNAs in miRNA component 4 (lower panels) were analyzed separately. Enriched pathways shown are with at least 3 genes from the pathways in 
the query list, and adjusted p-value < 0.10. Databases used for pathway enrichment analyses were gene ontology (GO) of biological process (BP), cellular 
component (CC) and molecular function (MF), the Reactome pathway database and KEGG. A database is not shown in the figure if no pathways from 
the database were identified
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Discussion
Telomere length is an important molecular indicator of 
disease susceptibility, lifespan and a complex multi-fac-
tor trait. Here we present a multi-omics study of child 
telomere length to investigate the molecular signatures 
associated with telomere biology in early-life includ-
ing genomics, DNA methylation, transcriptomics, pro-
teomics and metabolomics. Genes annotated to the 
selected omics features from DNA methylation, gene 
expression, and miRNA components showed enrich-
ment in pathways of immune signaling. Child BMI was 
strongly associated with plasma protein component 2, 
serum metabolite components 2 and 5, as well as urinary 
metabolite components 2 and 3. Although the association 
analyses within single omics layers and the integrative 
multi-omics analyses did not identify strong signatures of 
childhood telomere length, our findings may suggest the 
involvement of immune signaling and metabolic regula-
tion in telomere biology at early stages of life.

The individual omics feature association analysis 
identified more signals or potential associations in the 
genome, DNA methylome, and gene transcriptome, but 
not as likely with the serum and urine metabolites or 
plasma proteins. The former three omics were profiled 
using genome-wide assays where a large number of fea-
tures were measured, while the latter three were quanti-
fied in targeted assays that could be missing metabolites 
and proteins relevant to telomere length. Indeed, the 
analytical methods of the metabolites guaranteed reli-
able quantification of omnipresent metabolites, perform-
ing well in sensitivity and specificity as well as an explicit 
metabolite identification, but resulted in only partial 

coverage of the serum and urine metabolome [25]. Simi-
larly, the candidate plasma proteins were selected a priori 
based on the literature and on the Luminex kits that were 
commercially available. In addition, the fact that telomere 
length, genetic variants and DNA methylation were pro-
filed in the same blood sample extracts might also have 
increased the interconnections among these traits. On 
the other hand, our findings might indicate that higher-
level biological regulations (i.e. genome and epigenome) 
are more involved than the lower-level regulations (i.e. 
gene expression, proteome, and metabolome) of telomere 
biology.

The relatively stronger signals identified in the omics-
wide association analyses showed limited consistency 
with previous studies of telomere length. However, some 
of the top omics features have been reported in associa-
tion with other anthropometric traits or biological pro-
cesses potentially relevant to early-life aging. One of the 
top SNP, rs1049467 (DAZAP2/SMAGP), has been identi-
fied in a large-scale GWAS of height in UK Biobank [26]. 
For DNA methylation, the two epigenome-wide signifi-
cant CpGs are located in the upstream of transcriptional 
starting site and within the gene body of PARD6G gene, 
respectivley. This gene encodes a cell polarity regula-
tor involved in cell proliferation activity [27] and cen-
trosomal protein composition [28]. This gene has been 
found to exhibit an increased expression level associated 
with higher chronological age in dogs [29]. The top sig-
nal from gene expression, the DEXI homolog gene, has 
been shown to function as a potential aetiological gene 
for type 1 diabetes and to be involved in the activation of 

Fig. 6 A summary of the relationships of features, components, and aging-related risk factors. Features shown in the left column are those with absolute 
loadings higher than 0.1 on the corresponding component. Components are in the middle and the early-life aging risk factors are in the right column. 
Links between the features and components stand for the loadings. Links between the components and risk factors stand for the standardized associa-
tions which were identified as significant under Bonferroni correction. The association with the only risk factor, child body mass index (BMI) z-score (zBMI), 
was estimated in a multiple regression model adjusted for all the other risk factors (gestational age, birth weight, maternal pre-pregnancy BMI, maternal 
smoking status, maternal education level, parental smoking in the children’s household, family affluence score, child physical activity level and child 
Mediterranean diet score). MetS: serum metabolites. MetU: urinary metabolites. Prot: plasma proteins
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local antiviral immune response in pancreatic beta cells 
[30, 31].

By comparing the estimated associations with the ref-
erence studies that were used for the omics feature pre-
selection, there was a large inconsistency where the top 
signals in HELIX children were mostly not reported in 
the reference studies. All of the features selected from 
the reference studies were significant in the correspond-
ing study population with a control for family-wise 
error rate, but not as significant in the HELIX children. 
Still, two SNPs near the TERC gene showed the same 
direction of association as in the reference GWAS’s, 
with a p-value < 10− 5, and a CpG in the CHL1 gene 
showed the same direction as the reference EWAS with 
a p-value = 1.27X10− 5. The RNA transcript of TERC is 
one of the components of telomerase, a crucial telomere 
regulator. SNPs in TERC have been identified in GWAS’s 
of telomere length also other populations [32, 33]. CHL1 
encodes cell adhesion molecules that are known essen-
tial for neural development and to play a role in carci-
nogenesis [34]. The sample size of the study population 
could contribute to the difference, as the sample sizes 
of the reference studies were tens to hundreds of times 
larger than that of HELIX. This highlights the need of 
larger-scale molecular studies of telomere length in early 
life. The inconsistency might also suggest novel findings 
in children which pointed to a distinction in the biology 
between early-life aging in children and the aging in adult 
populations. Indeed, children undergo rapid growth and 
development, and their biological processes may differ 
significantly from those of adults.

To increase the statistical power in a study context with 
high data dimension and limited sample size, we were 
motivated to avoid a purely data-driven analysis by bring-
ing in prior information from literature for the multi-
omics integration approach. Although the SNPs were not 
used in the integrative analysis with the other six omics 
due to their distinct data type, the feature pre-selection 
starting from QTL mapping was a strategy to incorporate 
the intercorrelation between genetic data and the other 
omics layers. In addition to the findings from molecular 
epidemiology studies, well-established biological knowl-
edge was taken into account regarding the biological 
regulation of telomere length and two key pathways in 
cellular aging. AMPK (adenosine monophosphate-acti-
vated protein kinase) pathway controls cellular metabo-
lism and coordinates cell growth and autophagy [35], 
and the mTOR (mechanistic target of rapamycin) path-
way senses nutrient availability and energy status and is 
a key regulator of cell cycle and proliferation [36], which 
are all interconnected with cellular senescence and aging 
and are therefore relevant for telomere biology. Using the 
literature-based pre-selection, we filtered out CpGs and 
gene transcripts that were less likely to be relevant for 

telomere length. This increased the overall intercorrela-
tion between the remaining CpGs and gene transcripts. 
Although the intercorrelations between these two pre-
selected omics layers and other omics layers, as well as 
the intercorrelations among the other layers themselves, 
did not increase directly, the improvement was indirectly 
transferred to the other omics layers through supervised 
learning, using the telomere length measures as the out-
come variables.

The current study is the first to conduct an analysis of 
telomere length by integrating multiple omics profiled 
in children. The biological complexity and the variety of 
data types in multi-omics data can hold rich informa-
tion as well as noise. To identify signals relevant to the 
trait of interest from the high-volume multi-omics data, 
commonly used algorithms focused on data reduction, 
which is usually achieved by projecting the original data 
to a lower-dimension space or by statistical feature selec-
tion. In the current study, we were able to combine both 
methods using the multi-block sPLS. Since the model 
was supervised, the latent components obtained from 
the integration maximized the covariance between the 
telomere length measures and each omics layer, and 
thus potentially represented the multi-omics signature 
of telomere length. In addition to the measured telomere 
length, we added two PRS’s and DNAmTL to increase 
the variability in the Y-block. As a demonstration of the 
rationale for including additional telomere length mea-
sures, we found that in a model using only the mea-
sured telomere length as the outcome variable, it was 
less clear how many components should be extracted 
across the different omics blocks (Supplementary Figure 
S8). While using multiple telomere length measures, we 
assumed that these estimators of telomere length also 
contained different information about biological aging. 
As observed in the data, child age was not correlated with 
the PRS’s but showed clearly a medium inverse correla-
tion with DNAmTL. This might suggest that it was the 
baseline telomere length, rather than telomere attrition, 
that was reflected by the PRS’s. As noted from this super-
vised learning, however, the weak correlations between 
these components and telomere length suggested that 
no strong multi-omics signatures of telomere length 
could be found. This result is consistent with that of the 
Approach I analysis where the number of signals was in 
general low across all omics layers. Especially, the pre-
selection has filtered out the CpGs and gene transcripts 
which showed the strongest associations with telomere 
length. It was also notable that the correlations between 
the measured telomere length and the DNAmTL or the 
PRSs were not high, although they were within the range 
of correlations previously reported [5, 37, 38]. Telo-
mere length measures predicted based on other omics 
profiles may capture aspects of telomere maintenance 
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mechanisms and not necessarily telomere length itself 
[37, 39]. Therefore, by adding the PRSs and DNAmTL in 
the Y block, it was possible that the selected omics fea-
tures were not directly related to the qPCR-based telo-
mere length measurements.

The components in metabolites and plasma pro-
teins were consistently strongly associated with child 
zBMI with estimated association ranging from − 0.11 to 
-0.76. Since the components were projections that were 
obtained by maximizing the covariance with the telomere 
length measures, this result confirmed findings in numer-
ous external studies in adults [40–44] as well as previous 
studies in the HELIX children [9, 14], where BMI, obesity 
or BMI genetic risk score has been reported to show an 
inverse association with telomere length. Besides, stud-
ies on diet intervention revealed effects of obesity treat-
ment outcome suggested by longer telomere length in the 
treatment group compared with the control [45]. Added 
by the current study, the telomere length-BMI relation-
ship identified indirectly in a multi-omics view has 
validated our multi-omics analysis approach and exhib-
ited consistency in the molecular measurements in the 
HELIX project.

From an alternative perspective, the extracted compo-
nents might not be the signature of telomere length, but 
the signatures of other facets of biological aging. Given 
that the measured telomere length and DNAmTL were 
correlated with child zBMI, and child BMI covaried more 
strongly with part of the omics [25], the identification of 
multi-omics signatures of telomere length might have 
been conveyed to the identification of multi-omics signa-
tures of child BMI. In addition, metabolites and plasma 
proteins are downstream biological features that result 
from cumulative regulation at other levels. As a result, 
these layers may contribute more to explaining the cova-
riance between omics.

It should be noted that the findings in the current study 
should be interpreted with caution in terms of potential 
causality. Telomere length was considered as a phenotype 
and the outcome variable in statistical models, while epi-
genetic and transcriptional alterations might also regu-
late the maintenance of telomere [46, 47]. Similarly, the 
variation in child BMI could reflect long-term cumula-
tive changes in the metabolome and proteome, although 
shifts in the latter could also be due to BMI change [48]. 
Reverse causation is thus likely given that all the omics 
and telomere length were quantified as a snapshot at the 
same time point for each child. Future longitudinal obser-
vational studies or research on biological mechanisms 
could help elucidate the underlying causal relationship.

Although aging is a multifactorial process, healthy 
aging is in general believed to be associated with longer 
telomeres and lower inflammation profiles in adults [49]. 
From our study, child BMI was connected with telomere 

length via two plasma protein components where inter-
leukins were identified. Interleukins are a group of cyto-
kines with immunomodulatory functions, some of which 
also have major roles in the etiology of metabolic dis-
eases. From the plasma proteins component 2, IL-1beta 
induces insulin resistance [50] which can contribute to 
obesity [51] and for which obesity can be a triggering fac-
tor [52]. Notably, IL-1beta was also the top plasma pro-
tein signal from Approach I, despite that the association 
did not reach Bonferroni significance and the effect size 
was small. A previous study [53] also reported an asso-
ciation between shorter telomere length and elevated 
plasma IL-1beta levels in Alzheimer’s disease patients. 
Adipose tissues are the source of IL-6 which is an inflam-
mation stimulus [54] and has been reported to inversely 
associated with telomere length in chronic obstructive 
pulmonary disease patients [55]. Taken together, all these 
findings added to the existing bulk of evidence that a 
complex inter-relationship exists between cellular aging, 
metabolic regulation and inflammation. Still, the causal 
relationship between these role players requires further 
investigation in subsequent studies.

As for the identified metabolites, serum PC aa C32:2 in 
component 2 has been reported to be positively associ-
ated with obesity in adults [56] and PC aa C34:4 showed 
reduced expression in the late-onset Alzheimer’s disease 
patients [57], and low levels of both metabolites have 
been identified as plasma biomarkers of poor muscle 
quality in an older population [58]. The serum PC ae 
C34:3 in component 5 has been shown to decrease with 
childhood obesity [59], consistent with its positive load-
ing on serum metabolite component 5 and the latter’s 
inverse association with child zBMI.

In the urinary metabolites component 2, the highly 
negatively loaded compound, 4-deoxythronic and 
4-deoxyerythronic acid, has been reported as a potential 
biomarker for type 1 diabetes [60]. The positive asso-
ciations of valine, alanine and tyrosine to BMI have also 
been reported in an adult population [61]. Also consis-
tent with our finding, acetone has been shown to display 
a higher level in people with lower BMI, which might 
be due to higher metabolic rates and higher fat burn-
ing capabilities [62]. 3-hydrooxyisobutyrate, reported to 
reduced blood glucose level in type 2 diabetes in a clini-
cal trial [63]. To sum up, the urine metabolite component 
2 could represent a higher metabolic rate in the children 
and thus showed an inverse association with child BMI. 
2-hydroxyisobutyrate (urine metabolite component 3) 
has been reported to be elevated in autoimmune dis-
eases [64] and decreased during sleep deprivation [65]. 
Urinary urea is an established marker of dietary protein 
intake [66]. Substantial evidence indicated an higher 
dietary protein intake as a strategy to prevent or treat 
obesity [67], whereas the effect of dietary protein intake 
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on telomere length depends on the specific source of pro-
tein [19].

Our study has multiple strengths. First, we based the 
analysis on a large cohort consisting of children from six 
European countries which increased the generalizability 
of findings to the population. Second, the multi-omics 
covered measurements from genome to metabolome, 
providing an all-round view of the molecular basis. Third, 
we conducted multiple types of analyses, incorporated 
knowledge from literature, and applied stringent control 
for statistical significance. Fourth, our results showed 
consistencies with other studies regarding the suggested 
mechanism of the relationship between cellular aging 
and BMI in children, which proved the effectiveness of 
the multi-omics method used in the current study.

We also acknowledge the limitations of this work. First, 
the omics platforms were not completely comparable in 
their coverage. This has introduced a bias in the type and 
number of assessed features, and can further bias the bio-
logical interpretations. Second, heterogeneity was pres-
ent in the data due to omics array compatibility, study 
center difference, technical noises and measurement 
error. We have conducted a number of normalization 
and denoising strategies to reduce these variations, which 
leads to the question regarding signal loss in the pro-
cessed data. In order to reduce the biological noise in the 
data, the population of this study was restricted to chil-
dren with European ancestry, which limited the poten-
tial generalizability of the findings to other populations. 
Third, because of the inconsistency with literature in the 
association analysis with individual features, we have 
restricted the multi-omics analysis to the known features. 
This method has increased the signal-to-noise ratio and 
reduced overfitting, but might also have limited the like-
lihood of novel findings. Fourth, given the high dimen-
sion of the multi-omics data, the sample size of the study 
population and the lack of external validation might have 
limited the statistical power. Finally, as discussed above, 
causal relationships cannot be inferred from this study.

To conclude, this is the first study of multi-omics signa-
tures of childhood telomere length. We identified multi-
omics signatures that showed differentiation with respect 
to child BMI. These findings contribute to advancing our 
understanding of, and equip us with a multi-omics tool-
box to understand, the intricate relationships between 
genetic, epigenetic, metabolomic and environmental fac-
tors in shaping telomere length during childhood.

Methods
Study population and sample collection
The HELIX study is a collaborative project of six estab-
lished longitudinal birth cohorts in Europe [68, 69] 
with singleton deliveries during 2003–2008: the Born 
in Bradford (BiB) study in the UK [70], the Étude des 

Déterminants pré et postnatals du développement et de la 
santé de l’Enfant (EDEN) study in France [71], the INfan-
cia y Medio Ambiente (INMA) cohort in Spain [72], the 
Kaunus cohort (KANC) in Lithuania [73], the Norwegian 
Mother, Father and Child Cohort Study (MoBa) [74], and 
the RHEA Mother Child Cohort study in Crete, Greece 
[75]. Within all HELIX children, a subset of 1,623 chil-
dren participated in the follow-up clinical examination 
in their respective study centers between December 2013 
and February 2016 [69]. During the follow-up examina-
tions, mothers were interviewed with questionnaires and 
children (aged between 6 and 11 years) were examined by 
trained nurses according to standardized operating pro-
cedures. Peripheral blood and urine samples of the chil-
dren were collected. The children included in the current 
study were those of European ancestry defined based on 
the genome-wide genetic data, and with telomere length 
measurements and DNA methylation profiles available 
(N = 1001). A flowchart of sample inclusion in HELIX 
and the current study is available in Fig. 1. The biologi-
cal sample collection procedure is described in detail in 
Supplementary Method S1.

The HELIX study complies with the Declaration of 
Helsinki. Each of the six cohorts has received ethical 
approvals from the corresponding national ethical com-
mittees. Informed consent was signed by all participants 
at recruitment and at the follow-up visit for clinical 
examinations and biospecimen collection.

Measurements
Telomere lengths
Telomere length measurement in the HELIX children 
has been described previously [76]. Samples of buffy 
coat from the child peripheral blood were used for telo-
mere length measurements. DNA extraction and sample 
quality control are described in detail in Supplementary 
Method S2. To ensure a uniform DNA input of 5 ng for 
each qPCR reaction, samples were diluted and checked 
using the Quant-iT™ PicoGreen® dsDNA Assay Kit (Life 
Technologies, Europe). Average relative telomere length 
was measured in the laboratory at the Centre for Envi-
ronmental Sciences, Hasselt University, Belgium, using 
a modified quantitative real-time PCR (qPCR) protocol 
[77]. Telomere and single copy-gene reaction mixture 
and PCR cycles have been described previously [78] and 
can be found in Supplementary Method S3. All mea-
surements were performed in triplicate on a 7900HT 
Fast Real-Time PCR System (Applied Biosystems) in a 
384-well format. On each run, a 6-point serial dilution 
of pooled DNA was run to assess PCR efficiency, which 
ranged from 90 to 102%; as well as eight inter-run calibra-
tors to account for the inter-run variability. The curves of 
qPCR for each sample were visually inspected and when 
technical problems were detected or triplicates showed 
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too high variability, samples were removed for further 
analysis. Relative telomere lengths were calculated using 
qBase software (Biogazelle, Zwijnaarde, Belgium). They 
were expressed as the ratio of telomere copy number to 
single-copy gene number (T/S). The coefficients of varia-
tion (CV) within triplicates of the telomere runs, single-
copy gene runs, and T/S ratios were 0.84%, 0.43%, and 
6.4%, respectively. Batch effects were regressed out and 
alogarithm with base 10 was taken (log10)for the T/S 
ratios.

Multi-omics profiles
Biological samples used for multi-omics measurements 
were shown in Supplementary Figure S1. Measurements 
of the different omics were performed using blood-
derived specimens (buffy coat, whole blood or plasma) 
and urine samples. Details of the blood and urine sample 
processing can be found in Supplementary Method S1, 
and DNA and RNA extraction can be found in Supple-
mentary Method S2. Genome-wide genetic variants 
(Infinium Global Screening Array, Illumina), blood DNA 
methylation (450  K, Illumina), blood gene expression 
(HTA v2.0, Affymetrix) and blood miRNA expression 
(SurePrint Human miRNA rel 21, Agilent) were assessed 
using micro-array chip-based technologies. Plasma pro-
teins were measured using bead-based sandwich ELISA 
procedures (Luminex multiplex assays). Serum metabo-
lites were measured using mass spectrometry (targeted 
LC-MS/MS metabolomic assays, Biocrates Absolu-
teIDQ p180 kit), and urinary metabolites were measured 
using 1H nuclear magnetic resonance (NMR) spectros-
copy [25]. The omics assays and data pre-processing are 
described in detail in Supplementary Methods S4 – S10. 
The number of probes and sample size in each omics 
platform are summarized in Supplementary Table S1. 
Lists of biomarkers in plasma protein, serum and uri-
nary metabolites assays are available in Supplementary 
Data S1 – S3, respectively. Beyond the general data pre-
processing, we made further corrections for batch and 
sample quality as listed in Supplementary Table S13. Par-
ticularly, all blood-cell-based omics measurements were 
residualized on surrogate variables that captured the 
variations due to batch and cell type composition.

Using the processed DNA methylation data, we cal-
culated the DNA methylation-based telomere length 
estimator (DNAmTL) [5], which is an epigenetic aging 
clock built on the DNA methylation level at 140 CpGs. 
In addition, based on the whole-genome genetic data, 
we estimated two polygenic scores (PRS) for telomere 
length, hereafter referred to as Li’s PRS and Codd’s PRS, 
via allelic scoring in PLINK (version 2.0) [79] with the 
“--score” method [80]. The weights given to the SNPs 
were the associations estimated by Li et al. [23] (52 SNPs, 
43 out of which were available in HELIX data) for the Li’s 

PRS, and that reported by Codd et al. [24] (197 SNPs, 
124 out of which were available in HELIX data), for the 
Codd’s PRS. SNPs that were not available in the pro-
cessed HELIX whole-genome genetic data were weighted 
with zero. More details of the calculation can be found in 
Supplementary Method 11.

Key covariates and early-life aging risk factors
Information on child sex, age, and cohort study centers 
was collected in the HELIX examinations. The cohort- 
and ancestry-variation was captured by the first four 
principal components (PCs) of the genome-wide genetic 
data [81] (Supplementary Table S14). Blood cell type 
compositions were considered as key covariates, since 
telomere length was assessed as averaged measurements 
from multiple blood cell types in the sample. Blood cell 
proportions were estimated based on the raw methyla-
tion data using Houseman algorithm [82] and the Reinius 
reference panel [83] (Supplementary Method S5). In the 
current study, the key covariates used for model adjust-
ments were child age, sex, the first four genetic PCs and 
the estimated blood cell compositions.

We considered the following aspects as potential risk 
factors for early-life aging in the HELIX children: gesta-
tional age, birth weight, maternal pre-pregnancy body-
mass-index (BMI), maternal smoking status, maternal 
education level, parental smoking in the children’s house-
hold, family affluence score, child BMI, child physical 
activity level and child Mediterranean Diet Quality Index 
(KIDMED) score.

Information on birth weight (kg), gestational age 
(weeks), child height and weight, maternal pre-preg-
nancy BMI, self-reported maternal smoking status and 
parental smoking in the household of the children, and 
self-reported maternal education level was collected dur-
ing pregnancy or the follow-up examination in child-
hood. BMI was calculated by dividing weight (in kilos) 
by the squared height (in meters). For descriptive analy-
sis, child BMI was categorized according to the CDC 
growth charts of sex-specific BMI-for-age percentile 
curves (https:/ /www.cd c.gov/g rowt hcharts/). Children 
with BMI less than the 5th percentile were “underweight”, 
from the 5th to 85th percentiles were “normal”, from the 
85th to the 95th were “overweight”, and those greater 
than the 95th percentile were “obese”. For statistical mod-
eling, child BMI was converted to age- and sex-adjusted 
z-scores (zBMI) using the international World Health 
Organization (WHO) reference curves [84]. Maternal 
pre-pregnancy BMI was grouped according to WHO 
categories for underweight (< 18.5 kg/m2), normal (18.5–
24.9  kg/m2), overweight (25–29.9  kg/m2) and obese 
(≥ 30 kg/m2). The maternal smoking status during preg-
nancy was categorized into “never smoker” if a mother 
never smoked during pregnancy, “non-sustained smoker” 

https://www.cdc.gov/growthcharts/
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if a mother smoked only at the beginning of pregnancy, 
or “sustained smoker during pregnancy”. The children’s 
exposure to parental smoking in the household was clas-
sified as “neither”, “one” or “both”. The educational level 
of the mothers was defined as having the highest educa-
tion level of primary school, secondary school or having a 
university degree or higher.

In addition, the physical activity of the children was 
measured by moderate-to-vigorous physical activity 
(MVPA) level, based on the physical activity question-
naire developed by the HELIX research group, defined 
as the amount of time spent by the children in physical 
activities with intensity above three metabolic equivalent 
tasks and is expressed in units of min/day.

Family affluence score [85] was defined as a composite 
score calculated based on the responses to the next four 
items: [1] Does your family own a car, van, or truck [2]? 
Do you have your own bedroom for yourself [3]? During 
the past 12 months, how many times did you travel away 
on holiday with your family [4]? How many comput-
ers does your family own? A score of 0–2 indicates low 
affluence, a score of 3–5 indicates middle affluence, and a 
score of 6–9 indicates high affluence.

During the follow-up examination, a semi-quantitative 
food-frequency questionnaire (FFQ) covering the child’s 
habitual diet was filled in by the parent to collect infor-
mation on the children’s habitual diet in the past years. 
The FFQ was developed by the HELIX research group, 
and was translated and applied to all cohorts. The KID-
MED index score [86] was calculated as a measure of the 
adequacy of Mediterranean dietary patterns in children, 
with higher scores reflecting greater adherence to a Med-
iterranean diet.

Statistical analyses
The overall statistical workflow is presented in Fig. 2 and 
was based on two approaches. Approach I was the omics-
wide association analyses, where each individual feature 
within each omics layer was assessed for its association 
with telomere length through multiple linear regression. 
In Approach II, an integrative multi-omics analysis was 
performed with a sparse supervised method against telo-
mere length measures. The two approaches are described 
in detail below.

Approach I: omics-wide association analyses of individual 
omics features
All available omics features were first analyzed against 
the measured telomere length in an association analysis 
(Fig.  2A, Approach I), where the child telomere length 
was regressed on each individual omics feature. For 
genome-wide genetic data, the association analysis was 
performed in PLINK2 [79, 87] with the “--glm” method, 
excluding variants with minor allele frequency (MAF) 

lower than 0.01 and minor allele count (MAC) lower than 
5. For the other omics, R version 4.2.2 [88] was used to fit 
robust linear regression in R with telomere length as the 
dependent variable. Multiple testing was corrected using 
Bonferroni method within each omics based on the spe-
cific number of hypothesis tests in the omics. All regres-
sion models were adjusted for key covariates as described 
above (child age, sex, the first four genetic PCs, and the 
estimated blood cell compositions).

Approach II: multi-omics analysis
Multi-omics integrative analysis Features across six 
omics (DNA methylation, gene expression, miRNA 
expression, plasma proteins, serum metabolites, and urine 
metabolites) were analyzed using a supervised multi-block 
integration method to identify the multi-omics signature 
of childhood telomere length (Fig. 2A, Approach II). Con-
sidering the purpose of feature selection from a high-
dimensional collinear feature space within a multi-omics 
context, a multi-block sparse partial least squares (multi-
block sPLS) method implemented in the mixOmics pack-
age [89] was applied. The parameters estimation utilizes 
the Non-linear Iterative PArtial Least Squares (NIPALS) 
which performs singular value decomposition (SVD) with 
missing data, without the need to exclude or impute the 
missing values. A least absolute shrinkage and selection 
operator (LASSO) penalty was applied simultaneously on 
the parameters to improve the feature selection for better 
interpretability [90].

As the input for the predictor blocks in the multi-block 
sPLS regression, features from each omics were used. 
A prior pre-selection of the CpGs and gene transcripts, 
where the data dimension was relatively higher, was con-
ducted based on literature and publicly accessible data-
bases (Fig.  2B). The purposes of this pre-selection were 
to denoise the omics data, to improve between-omics 
intercorrelation and to reduce the model’s overfitting to 
the data. A detailed description of the literature-based 
feature pre-selection can be found in Supplementary 
Method S12. This literature-based pre-selection resulted 
in 1,848 selected out of 386,518 CpGs and 384 out of 
20,315 gene expression transcript clusters. For the other 
omics (miRNA expression, plasma proteins, serum 
metabolites, and urine metabolites), all available features 
were used as inputs.

On the other side of the model, the measured telo-
mere length, the two polygenic scores estimated based 
on genetic data, Li’s PRS and Codd’s PRS, and DNAmTL 
estimated based on DNA methylation data, as described 
above, were used to form a four-variable phenotype block 
(Y block). The aim of adding the estimated scores to the 
measured telomere length was to increase the variation 
in the phenotype, assisting the supervised learning from 
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the high-dimension omics blocks. It was not a concern to 
have DNA methylation-based information on both sides 
of the model, since only thirteen out of the 140 CpGs 
used to estimate DNAmTL were in common with the 
1,848 pre-selected CpGs.

As the HELIX project was conducted across six differ-
ent European countries, between-population differences 
resulted in data heterogeneity in molecular measure-
ments. In order to minimize the variance or covariance 
in the omics data that is due to the population charac-
teristics, the omics features were denoised by the most 
general population characteristics before running the 
multi-omics analysis, where each of the features in the 
input of the predictor blocks, as well as the four telomere 
length measures in the outcome block, were residualized 
for child sex, age and the first four genetic PCs (repre-
senting both cohorts and ethnicity effects). The telomere 
length measures were additionally residualized for the 
estimated blood cell compositions (Supplementary Table 
S13).

The following sequential steps were undertaken for the 
multi-omics integration. In step 1, we selected the num-
ber of components in a multi-omics context without the 
LASSO penalty that maximized the covariance between 
the components from the omics blocks and the compo-
nents from the response (telomere) block. Two measures 
of covariance were used: the maximum of the squared 
entries in the covariance matrices (MSC), and the square 
root of the mean of the squared entries in the covariance 
matrices (RMSC). In step 2, based on the selected num-
ber of components, the number of features was selected 
within each omics block using the tuning function for 
sPLS, where a 5-fold cross-validation and 50 repeats of 
sampling were used for the tuning process, and correla-
tion between the predicted and the actual components 
was used as the measure of accuracy. In step 3, the final 
multiblock sPLS model was fitted based on the selected 
number of components and number of features from the 
previous two steps. A “regression” mode was specified so 
that an asymmetric deflation of the response matrix was 
used. In both steps 1 and 3, the between-block covariance 
structure was defined using a design matrix. This matrix 
was constructed as follows: first, for each pair of omics 
blocks, canonical correlation analysis was performed; 
second, the first component from each omics block was 
extracted, and the covariance between these components 
was calculated; third, this covariance value was then used 
as the off-diagonal entry in the design matrix for the 
multi-omics model. As the output of the final model, we 
obtained the component scores, representing the projec-
tion of the original omics features in the latent compo-
nent space, as well as the corresponding loadings, which 
measure the correlation between the components and 
the features.

Downstream analysis of the latent components as 
multi-omics signatures of telomere length Based on 
the final multi-block sPLS model, we evaluated the corre-
lations of the latent component scores to telomere length 
measures to further confirm which components could 
be used to better interpret the multi-omics signatures of 
childhood telomere length. From the most correlated com-
ponents, omics features with an absolute loading > 0.10 
were used for the interpretation of the signatures, via 
pathway enrichment analyses as depicted in Supplemen-
tary Figure S9. Briefly, CpGs, transcripts (including gene 
expression and miRNAs) and proteins were annotated to 
gene symbols and EntrezIDs. In the meantime, we used 
the miRWalk (version 3) [91] online database to search for 
gene targets of the miRNA molecules, while filters were 
applied to select the targets predicted in all of TargetScan 
and miRDB with a score no less than 0.95 and validated 
in miRTarBase. The genes annotated to CpGs, transcripts, 
and proteins, as well as the target genes, were analyzed 
through a pathway enrichment analysis, respectively, with 
reference databases of Reactome, Gene Ontology (GO, 
including biological process and molecular function) and 
KEGG, using the R package clusterProfiler [92]. The serum 
and urinary metabolites were converted into ChEBI IDs, 
KEGG IDs, and PubChem CIDs, which were used in a 
metabolite enrichment analysis with reference databases 
of KEGG, SMPDB, disease signatures in blood and urine, 
using the MetaboAnalyst 5.0 [93] webtool. Multiple test-
ing of the pathways was controlled with the Benjamini-
Hochberg FDR. A pathway was considered significant if 
the number of query genes or metabolites involved was 
at least three, and its ratio to the total number of genes or 
metabolites in the pathway was at least 0.10.

The latent component scores were in parallel used 
to test the hypothesis that early-life aging risk factors 
could differentiate the multi-omics signatures of telo-
mere length. This was done by evaluating the associa-
tion between the component scores and the ten potential 
risk factors defined above (gestational age, birth weight, 
maternal pre-pregnancy BMI, maternal smoking sta-
tus, maternal education level, parental smoking in the 
children’s household, family affluence score, child zBMI, 
child physical activity level and child Mediterranean diet 
score). For each component score in each omics block, a 
multiple regression model was fitted on all ten risk fac-
tors, such that the association estimate for each risk 
factor was conditional on all the others. The global signif-
icance level was controlled using Bonferroni correction, 
where the number of tests was calculated as the number 
of all combinations of six predictor blocks, K compo-
nents in each block, and ten risk factors (6 x K x 10 tests 
in total).
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