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Abstract 

Background The innovations of the “Omics Era” have ushered in significant advancements in genetic improvement 
of agriculturally important animal species through transforming genetics, genomics and breeding strategies. These 
advancements were often coordinated, in part, by support provided over 30 years through the 1993–2023 National 
Research Support Project 8 (NRSP8, National Animal Genome Research Program, NAGRP) and affiliate projects 
focused on enabling genomic discoveries in livestock, poultry, and aquaculture species. These significant and parallel 
advances demand strategic planning of future research priorities. This paper, as an output from the May 2023 Aqua‑
culture Genomics, Genetics, and Breeding Workshop, provides an updated status of genomic resources for United 
States aquaculture species, highlighting major achievements and emerging priorities.

Main text Finfish and shellfish genome and omics resources enhance our understanding of genetic architecture 
and heritability of performance and production traits. The 2023 Workshop identified present aims for aquaculture 
genomics/omics research to build on this progress: (1) advancing reference genome assembly quality; (2) integrating 
multi‑omics data to enhance analysis of production and performance traits; (3) developing resources for the collec‑
tion and integration of phenomics data; (4) creating pathways for applying and integrating genomics information 
across animal industries; and (5) providing training, extension, and outreach to support the application of genome 
to phenome. Research focuses should emphasize phenomics data collection, artificial intelligence, identifying 
causative relationships between genotypes and phenotypes, establishing pathways to apply genomic information 
and tools across aquaculture industries, and an expansion of training programs for the next‑generation workforce 
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to facilitate integration of genomic sciences into aquaculture operations to enhance productivity, competitiveness, 
and sustainability.

Conclusion This collective vision of applying genomics to aquaculture breeding with focus on the highlighted 
priorities is intended to facilitate the continued advancement of the United States aquaculture genomics, genet‑
ics and breeding research community and industries. Critical challenges ahead include the practical application 
of genomic tools and analytical frameworks beyond academic and research communities that require collaborative 
partnerships between academia, government, and industry. The scope of this review encompasses the use of omics 
tools and applications in the study of aquatic animals cultivated for human consumption in aquaculture settings 
throughout their life‑cycle.

Keywords Aquaculture, Genomics, Genetics, Breeding, Genome‑to‑phenome, Multi‑omics data, Phenomics, 
Interdisciplinary integration, Gene‑editing, Education and workforce training

Background
The “Omics Era” has facilitated the development of 
genome-enabled breeding strategies by allowing scien-
tists to routinely generate individual sequence data and 
assess the relationships between genetic, genomic, and 
phenotypic variations across production systems of agri-
culturally important species. Aquaculture is agriculture 
and one food production sector that has and continues 
to benefit greatly from the omics revolution in multiple 
ways, ranging from direct impacts on the propagated 
organisms, and indirectly through understanding the 
pests, pathogens, and aquatic environment that influ-
ence production efficiencies [1]. Recent advancements in 
aquaculture genomics have been driven by technologi-
cal and methodological innovations. In the United States 
(U.S.) these research contributions have largely been 
facilitated via the National Research Support Project 8 
(NRSP8) National Animal Genome Research Program 
(NAGRP)1 for U.S. agricultural animal species (1993–
2023) and complementary research projects supported 
by United States Department of Agriculture (USDA) 
Agricultural Research Service (ARS) and USDA National 
Institute of Food and Agriculture (NIFA), among other 
organizations. The aquaculture component of the NRSP8 
program began in 2003 and focused on species that had 
established industries (i.e., existing producers and mar-
kets) during the funding period. The NRSP8 provided a 
forum for aquaculture scientists to network, form col-
laborations, facilitate and implement large-scale projects, 
offer feedback to funding agencies on national research 
priorities, provide students with an opportunity to pre-
sent research, engage with international crop and animal 
scientists, and seek future employment opportunities 
in aquaculture genomics and related areas of study (i.e., 
omics).

Since the last comprehensive assessment of the U.S. 
aquaculture genomics, genetics and breeding sector [2], 
there has been considerable advancement within a ‘Sci-
ence to Practice’ framework [3]. Specifically, a focus was 
placed on developing “infrastructure,” including genom-
ics and bioinformatics tools, databases, and genetic 
resources, to enable genomics-oriented discovery science 
that informs on-the-ground breeding and production of 
aquaculture animals. Figure  1 presents the current sta-
tus of omics resources that have been generated for U.S. 
aquaculture species, with a focus on species with estab-
lished industries (“Established”) in addition to species 
with emergent industries (“Newly Cultured”) and those 
cultured as a means of protecting wild populations (“Pro-
tected”). The aquaculture genomics community achieved 
this infrastructure goal across a broad range of vertebrate 
and invertebrate species propagated in freshwater and 
marine environments through the generation of new or 
vastly improved reference genome assemblies, genotyp-
ing arrays, and, for some species in particular, an expan-
sive suite of high-throughput omics tools (Fig. 1; citations 
associated with each species and category are provided in 
File S1).

Interrogation and use of whole genome data as an 
anchor for a multitude of applications (e.g., genomic 
selection, GS; marker-assisted selection, MAS; genetic 
engineering, population structure analysis, demographic 
monitoring) has occurred in several finfish and shell-
fish species [4–9]. Finfish species with large econo-
mies of scale (e.g., salmonids) have experienced rapid 
advancements that have directly impacted commercial 
industry due to improved genetic infrastructure. These 
advancements include applying genome and omics data 
to improve growth [10–12], develop disease resistant 
lines [13–16], achieve monosex and sterilization [17, 
18], evaluate environmental pollution burdens [19], and 
enhance seafood traceability [20, 21]. Impactful advance-
ments have also been made within smaller scale and 
newly cultured species, such that improved germplasm 1 NRSP8 NAGRP Bioinformatics web page: https:// www. anima lgeno me. 

org/ bioin fo/ commu nity/ missi on

https://www.animalgenome.org/bioinfo/community/mission
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created using novel, and continually developing, omics-
based tools are available to commercial industries as 
they expand [22]. Beyond the aquaculture species, omics 
applications to studying pests and pathogens have ena-
bled vaccine development [23], and studies of microbiota 
that inhabit the host and the aquatic environment have 
led to improvements in animal production and produc-
tion system operation [24–27]. In all, the rapid genome 
infrastructure advancements made to date have enabled 
the exploration of the genetic architecture associated 
with production traits, allowing for the more precise 
evaluation of key quantitative genetic parameters and 
assessment of artificial selection potential.

While it is clear the aquaculture genetics, genomics, 
and breeding community has made significant strides 
since the last comprehensive review [2], new priorities 
and needs have emerged. Genetic resource develop-
ment remains a continuous need within aquaculture due 
to the high diversity of cultured species [28]. There has 
been a growing focus on data integration strategies that 
facilitate trait dissection (e.g., genotype-to-phenotype, 
G2P, associations) within programs and among species, 
although this has been especially challenging as the num-
ber and dimensionality of data have grown exponentially 
with the rapid and continuous development of advanced 
technologies. The aquaculture genomics community has 
been highly successful in continuing to expand libraries 
of knowledge (data and analyses), but integration of these 
data and adoption of new tools (e.g., artificial intelligence, 
AI, and machine learning, ML) are hurdles that require 
technological cost reduction, improved accessibility of 
data and methodologies, and teaching and training of 
practitioners at multiple levels. Indeed, convergence of 
AI/ML and genomics will be a major component of the 

future of agriculture, including aquaculture [29]. Moreo-
ver, the practical application of these data and analytical 
frameworks to industry programs outside of the aca-
demic research community is contingent on teaching and 
training the next-generation workforce. Doing so is criti-
cal as we enter a “post-genomics era” in which these tools 
have been developed, are readily available, and require 
educated and trained personnel to apply these advance-
ments towards industry priorities.

Here we update the current state of genomic 
resources for established and newly cultured aquacul-
ture species in the U.S. and outline future directions 
and priorities for the aquaculture omics research com-
munity. The update is organized by the  present aims 
of the aquaculture omics community, with examples 
of achievements that have been made within each 
aim and descriptions of components that have yet 
to be realized. These aims are: (1) advancing refer-
ence genome assembly quality; (2) integrating multi-
omics data to enhance analysis of production and 
performance traits; (3) developing resources for the 
collection and integration of phenomics data; (4) cre-
ating pathways for applying and integrating genomics 
information across animal industries; and (5) provid-
ing training, extension, and outreach to support the 
application of genome to phenome. The scope of this 
review is primarily on aquaculture species produced 
commercially in the U.S. for human consumption. 
Although the focus is primarily on U.S.-based aqua-
culture research pertaining to food production, refer-
ences to research conducted for fisheries management 
and conservation and the international community are 
included in cases where this research represents a tool, 
technique, or method that is utilized by U.S.-based 

Fig. 1 Current status of omics resources for species cultivated in United States aquaculture. The current status is indicated with various colors: Dark 
green: good status; light green, outstanding progress has been made, but additional work still needed; dark yellow: significant progress has been 
made, but significant amount of additional work still needed; light yellow, some progress has been made
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aquaculture researchers, or the work represents the 
leading-edge of research globally.

Aim 1: Advancing reference genome assembly quality
Genome sequencing has progressed rapidly since the 
advent of next-generation sequencing, with current 
technology allowing for high-quality genome assemblies 
to be produced relatively quickly and inexpensively. A 
current challenge is understanding the structures and 
functions of genomes and how they impact phenotypes, 
which has guided research efforts since the publication 
of the 2018–2027 Genome to Phenome Blueprint [3]. 
The aquaculture genomics community must continue 
its efforts to generate high-quality genome assemblies 
as they facilitate research on functional variants, spatial 
and epigenomic regulation of performance traits, and 
genome-enabled breeding (i.e., GS), which have direct 
and indirect applications to U.S. commercial aquaculture. 
A high-quality genome assembly is defined by having 
(1) high completeness, (2) high accuracy, (3) high conti-
guity, (4) sequences anchored to chromosomes, (5) sex 
chromosome sequences (if present), and (6) haplotypes 
resolved. These criteria were presented as priority goals 
in the prior review [2] and largely encompass the ethos of 
telomere-to-telomere (T2T) initiatives to routinely pro-
duce phased, complete, and gapless diploid genomes. In 
advanced research domains, a T2T genome can be pro-
duced in hours with complete variant discovery for all 
chromosomes [30]. For example, there are now instances 
in which the initial genome assembly meets these “high-
quality” criteria (e.g., Sablefish, Anoplopoma fimbria 
[31]) and we expect this to become more prevalent. How-
ever, attaining these criteria remains among the highest 
needs for most aquaculture species.

References for the most recent genome assemblies for 
established and newly cultured aquaculture species are 
provided in Table 1. This list includes genome assemblies 
accessible through National Center for Biotechnology 
Information (NCBI) GenBank® and indicates if presently 
included in AquaMine (v1.2; https:// aquam ine. elsik lab. 
misso uri. edu/, Elsik Lab, University of Missouri), a data 
mining system that facilitates integration and compari-
son of genomic data across species. There are too many 
genome assemblies to comprehensively cover within 
the text, however, examples of recent advancements 
toward improving genome assemblies and meeting the 
“high-quality” criteria include: anchoring sequences to 
chromosomes in Pacific oyster (Magallana gigas) [32, 
33], eastern oyster (Crassostrea virginica) [34], Atlan-
tic salmon (Salmo salar) [35], Nile tilapia (Oreochromis 
niloticus) GIFT strain [36], and Pacific white shrimp 
(Litopenaeus vannamei) [37]; improving genome assem-
bly contiguity and sequencing the sex determination gene 

on the Y chromosome of rainbow trout (Oncorhynchus 
mykiss) [38]; and reducing gaps in chromosomes and 
scaffold assemblies in blue (Ictalurus furcatus) and chan-
nel catfish (Ictalurus punctatus) [39–41].

Genome-enabled breeding going forward will likely 
utilize multiple types of genomic variation, including 
single nucleotide polymorphisms (SNPs) and structural 
variants (SVs), alongside gene annotation data to under-
stand the heritable basis of production traits and to iden-
tify causative genome variants. Further, in the future this 
will be greatly facilitated by rapid and accurate AI/ML 
approaches. With the rapid and significant cost reduc-
tion of next-generation sequencing, low-coverage whole-
genome sequencing followed by genotype imputation is 
becoming a cost-effective alternative to SNP array geno-
typing [79]. However, the production and use of SNP gen-
otyping arrays will continue, and development of other 
cost-effective genotyping technologies is still necessary 
to comprehensively dissect genetic differences between 
lines, breeds, and populations of aquaculture species. An 
example of such advancements can be found in rainbow 
trout aquaculture, where new lines have been sequenced 
[38, 80], SVs have been identified in breeding popula-
tions [81], and the sex-determining gene was included in 
the Y chromosome sequence [38]. Maintaining SVs may 
also have important impacts withing breeding programs, 
for example, depletion of SVs has been identified among 
inbred lines of eastern oyster when compared to wild-
type, suggesting that selective breeding can influence 
SVs [82]. This extensive library of data is foundational 
for breeding programs given the tremendous diversity of 
genetic architecture within and between populations of 
aquaculture species. Collectively these data enhance G2P 
assessments and increase precision of individual perfor-
mance prediction within a breeding population.

One avenue for breeding is the identification of func-
tional variants for specific selection of targets and traits. 
Genome-wide association studies (GWAS) are now 
commonplace [6, 83–93] and genome editing technolo-
gies, like CRISPR, can be used to validate gene function 
through genetic engineering [94–103]. These approaches 
have been used to produce distinct phenotypes [97, 104, 
105], such as improved growth [99, 102, 106–108], dis-
ease resistance [99, 109], and sterility [97, 110, 111]. The 
emerging use of CRISPR genome editing technology in 
aquaculture will expand capabilities to identify functional 
variants helping to improve aquaculture production traits 
[112]. Evolving regulatory frameworks are facilitating the 
use of gene editing technologies in food animals in many 
countries, including the U.S. [113, 114]. The acceptance, 
implementation, and regulation of gene editing tech-
nologies in food production varies widely [115–117] and 

https://aquamine.elsiklab.missouri.edu/
https://aquamine.elsiklab.missouri.edu/
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will likely continue to evolve as data accumulates on the 
health and safety of end products.

A different breeding approach is required for traits with 
polygenic structure, as no singular gene contributes a sig-
nificant amount to variation of the trait. In such cases, 
pangenomic analyses that incorporate additional forms 
of genomic variation may identify networks that explain 
phenotypic variance or increase accuracy in estimating 
genetic relatedness, which drive increased effectiveness 
of GS. A pangenome is the set of core and dispensable 
genes within a species, and pangenomic variation is often 
structural, which has not yet become widely utilized in 
GWAS analyses [118]. High-quality genomes will ben-
efit pangenomic analyses broadly through SV identifica-
tion and give researchers the ability to interrogate SVs for 
phenotypic associations [119–122], species hybridization 
[40], and also give breeders the ability to discover, pre-
serve, and utilize all genomic diversity within a species 
or line [82]. Approaches incorporating AI/ML techniques 
will also greatly enhance analysis and incorporation of 
pangenome data.

There is considerable variation in the spectrum of 
genome resources currently available for U.S. aqua-
culture species. While a number of established species 
have high-quality genome assemblies that have enabled 
advanced GS and genome-enabled breeding approaches 
to be utilized, other newly cultured species may be earlier 
in their development and at the initial stages of generat-
ing a reference genome (Table 1). High-quality genomes 
are better suited for functional annotation which further 
increases their applicability. Ongoing efforts are currently 
in place to create functional annotations for aquacul-
ture species. In Europe, the AQUA-FAANG (Functional 
Annotation of ANimal Genomes)2 project aims to pro-
vide functional annotation information (e.g., quantify 
chromatin accessibility via assay for transposase-acces-
sible chromatin with sequencing, or ATAC-seq) for 
the six aquaculture species with major industries in the 
European Union [123] including rainbow trout, Atlan-
tic salmon, and common carp (Cyprinus carpio). In the 
U.S., the FAANG project has included aquaculture spe-
cies, and at present the primary focus is on rainbow trout 
[124]. It is important to note that genomic resources and 
tools are not confined to specific geographic regions and 
therefore advancements in this area, such as those made 
through international FAANG projects, can benefit aqua-
culture globally and should be shared and leveraged to 
best achieve sweeping progress in aquaculture.

The broad variation among species highlights the num-
ber of diverse species cultured in the U.S. aquaculture 
industry, and new species are added to the aquaculture 

portfolio every year [125–129]. Thus, while high-quality 
genome assembly is a current leading edge of aquaculture 
genomics, it must be acknowledged and embraced that 
the process of developing and implementing genomic 
resources in U.S. aquaculture will be a long road that will 
continue to include reference genome and genotyping 
tool production, with many species needing to start at 
the simplest of genome resource development. Informa-
tion on the established broodstocks for U.S. aquaculture 
species maintained by public institutions (i.e., not for 
profit) can be found in Table 2 in addition to information 
for some broodstocks maintained by organizations sup-
ported by private or public–private partnerships.

Aim 2: Integrating multi‑omics data to enhance analysis 
of production and performance traits
While genetic information is encoded in the genome 
sequences, the realization of performance and produc-
tion traits are regulated at multiple levels between the 
genotype, observed phenotype, and the environment. 
Regarding these levels as separate scientific disciplines, 
the primary omics areas used to decipher molecular com-
ponents and cellular processes in aquaculture organisms 
are genomics, epigenomics, transcriptomics, proteom-
ics, microbiomics, and metagenomics. A single omics 
layer provides a massively parallel set of data for a given 
component. As examples: Genomics is the study of the 
complete set of DNA sequences within an organism, tis-
sue, or cell that enables investigations of genetic variation 
and heredity. Epigenomics is the study of non-mutational 
modifications to DNA and RNA that provide information 
on gene regulation, chromatin structure, chemical modi-
fications, and epigenetic inheritance. Transcriptomics is 
the study of RNA transcripts that allows for quantifica-
tion of gene expression patterns, alternative splicing, and 
regulatory mechanisms, including that of non-coding 
RNA expression. Proteomics is the study of the entire set 
of proteins that explores protein structure, function, and 
interactions. Metabolomics is the study of the metabo-
lites or chemical signatures that provide information on 
cellular processes, pathways, and metabolic regulation. 
Microbiomics is the study of the composition and func-
tion of microbial communities associated with the host 
and/or their environment; and metagenomics is the 
study of all genetic material collected from a sample that 
can include DNA from any organism present in the envi-
ronment beyond the host organism (Fig. 2). The incorpo-
ration of two or more of these layers in an analysis is a 
“multi-omics” approach (also referred to as poly-omics, 
pan-omics, trans-omics, integrative omics, vertical 
omics, and systems omics) [29].

Many transcriptome analyses of aquaculture species 
have demonstrated both the complexity and power of 2 AQUA-FAANG website: https:// www. aqua- faang. eu/ about- us. html

https://www.aqua-faang.eu/about-us.html
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transcriptomics for decoding phenotypes. For instance, 
transcriptome analyses led to the identification of genes 
related to low oxygen response in channel catfish [130, 
131] and patterns of gene expression related to Flavo-
bacterium columnare susceptibility and resistance in 
white bass (Morone chrysops) and hybrid striped bass 
(M. chrysops x M. saxatilis) [132]. Disease challenges can 
induce expression of a large numbers of genes, and fur-
ther comparisons of resistant and susceptible lines (e.g., 
distinct populations) provide insights into important 
genes underlying resistance (e.g., catfish [133, 134] and 
eastern oyster [135–137]). Studies of post-transcriptional 
processing, such as RNA splicing and poly-adenylation 
have also led to powerful discoveries, especially in the 
context of the environmental impact on genetic regula-
tion (i.e., gene-by-environment, GxE interaction), pre-
sumably through induction of environment-sensitive 
promoters and enhancers, and through epigenetic regula-
tion. For instance, bacterial infection [138, 139] and heat 
stress [140] drastically increased the level of alternative 
splicing, and alternative polyadenylation [141] in channel 
catfish. Similarly, an Iso-Seq (isoform sequencing) study 
used to improve the rainbow trout genome annotation 
identified alternative splicing associated with economi-
cally important phenotypes, including resistance to bac-
terial cold-water disease and stress tolerance [14, 142]. 
Analysis of transcriptomic, proteomic, and/or metabo-
lomic data that incorporate AI/ML algorithms have been 
applied to determine omic signatures of growth and body 
size (e.g., hybrid striped bass [143]), predict egg quality 
(e.g., striped bass, Morone saxatilis, [144, 145]), iden-
tify responses to chemical exposure or developmental 
state (e.g., striped bass [146] and white perch, Morone 
americana [147]), predict disease resistance (e.g., com-
mon carp [148]), and detect seafood traceability signa-
tures (e.g., wild and aquacultured shrimp [149]). Further, 
advanced sequencing technologies now allow for tran-
scriptomic resolution at the single-cell and spatial levels, 
the findings of which are anticipated to be of similarly 
high value and impact to aquaculture [150–154]. Contin-
ued investment in high-resolution functional annotations 
of reference genomes is crucial for maximizing the utility 
of transcriptomics and other omics-based tools.

In the last decade, huge progress has been made in 
understanding the impact of epigenomic regulation on 
phenotypes and related research strongly supports the 
contribution of epigenetic modifications to additional 
layers of variation that can be targeted to improve pro-
duction-relevant traits related to reproduction, health, 
growth, and nutrition of agricultural animals [155–158]. 
Although such studies are still at the infancy stage with 
aquaculture species, several have demonstrated the epi-
genetic regulation of important production traits. For 

instance, an epigenetically marked locus was identified 
to be associated with sex determination in channel cat-
fish [159] and allelic expression of hydin-1, the candi-
date master sex determination gene of channel catfish, 
was found to be regulated by DNA methylation [160]. 
Gong et  al. (2023) [161] found that spatial regulation is 
crucial for the expression of the yellow catfish (Pelteoba-
grus fulvidraco) master sex determination gene, pfpdz1. 
Differentially methylated regions have been identified 
on the promoter regions of cell signaling and embryonic 
development genes in Atlantic salmon fed diets of differ-
ing micronutrient concentrations [162], and associated 
with high- and sub-fertility in male striped bass [163], 
polyploidy and muscle atrophy in rainbow trout [164], 
and the immune response of eastern oyster following 
infection with the protistan parasite Perkinsus marinus 
[165]. In addition to the identification of core biomark-
ers that are opportunities for epigenetic selection, lev-
eraging of environmental manipulation and epigenetic 
memory to improve phenotype can be directly employed 
to enhance aquaculture [157]. In some cases, improved 
performance has been realized in the absence of charac-
terizing the precise epigenetic mechanism (e.g., Olym-
pia oyster, Ostrea lurida [166]; Pacific geoduck, Panopea 
generosa [167]), whereas in other studies the functional 
role of DNA methylation in contributing carryover 
effects have been described (e.g., Pacific geoduck [168]). 
There has also been valuable work regarding the degree 
and genomic mechanism by which genetic and epigenetic 
variation are associated, providing insight into ecotoxi-
cological pollution burdens [169] and how selection and 
manipulation can be used in the future to improve phe-
notypes (e.g., Olympia oyster [170]). The overall roles and 
the diversity of epigenetic mechanisms across major taxa 
and insights into their potential applications in the cul-
ture of aquatic animals are vast and have been recently 
reviewed [155–158].

Microbiomics and metagenomics studies in aquacul-
ture have largely focused on two areas: (1) gut/intestinal 
microbiota with the aim of examining fish health, welfare, 
digestion, and immune response, and (2) environmental 
samples, with the aim of improving fish health and pro-
duction efficiency by targeting environment-associated 
problems in aquaculture systems. The gut microbiome 
is crucial in maintaining good health, homeostasis, and 
metabolism by acting as a barrier against harmful bacte-
ria and the production of vital vitamins and metabolites. 
Composition of the gut microbiome is considered an 
"intermediate phenotype" that results from host genet-
ics and environmental influences [171], and is considered 
part of the whole genome, or "hologenome.” As the host’s 
genetics significantly shape the gut microbiome [172], 
the term "microbiability" has been introduced to describe 
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Table 1 Current reference genome assemblies of important U.S. aquaculture species published through NCBI GenBank®. An asterisk 
(*) indicates the assembly is presently included in the data mining system AquaMine (v1.2; https:// aquam ine. elsik lab. misso uri. edu/; 
Elsik Lab, University of Missouri) or planned for the next release (**)

* Genome is included in current AquaMine v1.2
** Genome planned for next AquaMine release

Species Common name Assembly Genbank Reference

Anoplopoma fimbria** Sablefish Afim_UVic_2022 GCA_027596085.2 Flores et al., 2023 [31]

Clupea harengus* Atlantic herring Ch_v2.0.2 GCA_900700415.2 Pettersson et al., 2019 [42]

Coregonus clupeaformis* Lake whitefish ASM2061545v1 GCA_020615455.1 Mérot et a. 2023 [43]

Crassostrea virginica* Eastern oyster C_virginica‑3.0 GCA_002022765.4 Gómez‑Chiarri et al., 2015 [44]

Esox lucius* Northern pike Eluc_v4 GCA_004634155.1 Rondeau et al., 2014 [45]

Esox lucius** Northern pike fEsoLuc1.pri GCA_011004845.1 Rhie et al., 2021 [46]

Etheostoma cragini* Arkansas darter CSU_Ecrag_1.0 GCA_013103735.1 Reid et al., 2021 [47]

Gadus morhua* Atlantic cod gadMor3.0 GCA_902167405.1 Tørresen et al., 2017 [48]

Haliotis rufescens* Red abalone xgHalRufe1.0.p GCA_023055435.1 Griffiths et al., 2022 [49]

Hippoglossus hippoglossus* Atlantic halibut fHipHip1.pri GCA_009819705.1 Einfeldt et al., 2021 [50]

Hippoglossus stenolepis* Pacific halibut HSTE1.2 GCA_022539355.2 Jasonowicz et al., 2022 [51]

Homarus americanus* American lobster GMGI_Hamer_2.0 GCA_018991925.1 Polinski et al., 2021 [52]

Ictalurus furcatus** Blue catfish Billie_1.0 GCA_023375685.2 Waldbieser et al., 2023 [40]

Ictalurus punctatus* Channel catfish IpCoco_1.2 GCA_001660625.2 Liu et al., 2016 [39]

Ictalurus punctatus** Channel catfish Coco_2.0 GCA_001660625.3 Waldbieser et al., 2023 [40]

Lampris incognitus** Smalleye Pacific opah fLamInc1.hap2 GCA_029633865.1 Rhie et al., 2021 [46]

Lepisosteus oculatus* Spotted gar LepOcu1 GCA_040954835.1 Braasch et al., 2016 [53]

Magallana gigas* Pacific oyster cgigas_uk_roslin_v1 GCA_902806645.1 Peñaloza et al., 2021 [32]

Magallana gigas** Pacific oyster xbMagGiga1.1 GCA_963853765.1 Mrowicki et al., 2024 [33]

Mercenaria mercenaria* Hard Clam/Northern quahog ASM1480567v1.1 GCA_014805675.2 Song et al., 2021 [54]

Mercenaria mercenaria** Hard Clam/Northern quahog MADL_Memer_1 GCA_021730395.1 Farhat et al. 2022 [55]

Micropterus salmoides* Largemouth bass ASM1485139v1 GCA_014851395.1 Sun et al., 2021 [56]

Misgurnus anguillicaudatus** Pond loach HAU_Mang_1.0 GCA_027580225.1 Sun et al., 2023 [57]

Morone saxatilis* Striped bass NCSU_SB_2.0 GCA_004916995.1 Not published. NCSU, Raleigh, NC

Mugil cephalus* Flathead mullet/Striped mullet CIBA_Mcephalus_1.1 GCA_022458985.1 Shekhar et al., 2022 [58]

Oncorhynchus gorbuscha* Pink salmon OgorEven_v1.0 GCA_021184085.1 Christensen et al., 2021 [59]

Oncorhynchus keta* Chum salmon Oket_V1 GCA_012931545.1 Rondeau et al., 2021 [60]

Oncorhynchus keta** Chum salmon Oket_V2 GCA_023373465.1 Rondeau et al., 2023 [61]

Oncorhynchus kisutch* Coho salmon Okis_V2 GCA_002021735.2 Kim et al., 2016 [62]

Oncorhynchus mykiss* Rainbow trout USDA_OmyKA_1.1 GCA_013265735.3 Gao et al., 2021 [38]

Oncorhynchus nerka* Sockeye salmon Oner_1.0 GCA_006149115.2 Christensen et al., 2020 [63]

Oncorhynchus nerka** Sockeye salmon Oner_Uvic_2.0 GCA_034236695.1 Christensen et al., 2020 [63]

Oncorhynchus tshawytscha* Chinook salmon Otsh_v2.0 GCA_018296145.1 Christensen et al., 2018 [64]

Oreochromis niloticus* Nile tilapia O_niloticus_UMD_NMBU GCA_001858045.3 Conte et al., 2019 [65]

Ostrea edulis** European oyster xbOstEdul1.1 GCA_947568905.1 Gundappa et al., 2022 [66]

Penaeus monodon* Giant tiger prawn NSTDA_Pmon_1 GCA_015228065.1 Van Quyen et al., 2020 [67]

Penaeus vannamei* Pacific white shrimp ASM378908v1 GCA_003789085.1 Zhang et al., 2019 [68]

Perca flavescens* Yellow perch PFLA_1.0 GCA_004354835.1 Feron et al., 2020 [69]

Procambarus clarkii* Red swamp crawfish ASM2042438v2 GCA_020424385.2 Xu et al., 2021 [70]

Ruditapes philippinarum** Manila clam ASM2657151v2 GCA_026571515.2 Xu et al., 2022 [71]

Salmo salar* Atlantic salmon (European) Ssal_v3.1 GCA_905237065.2 Lien et al., 2016 [72]

Salmo salar Atlantic salmon (N. American) USDA_NASsal_1.1 GCA_021399835.1 Gao et al., 2023 [35]

Salvelinus fontinalis** Brook trout ASM2944872v1 GCA_029448725.1 Pasquier et al., 2016 [73]

Seriola dumerili* Greater amberjack Sdu_1.0 GCA_002260705.1 Araki et al., 2018 [74]

Seriola lalandi dorsalis* California yellowtail Sedor1 GCA_002814215.1 Purcell et al., 2018 [75]

Syngnathus scovelli** Gulf pipefish RoL_Ssco_1.1 GCA_024217435.4 Ramesh et al., 2023 [76]

Thunnus albacares** Yellowfin tuna fThuAlb1.1 GCA_914725855.1 Ciezarek et al., 2016 [77]

Trachinotus carolinus Florida pompano FAU_TrCaro_1 GCA_040938265.1 Not published. FAU, Boca Raton, FL

Xiphias gladius* Swordfish ASM1685928v1 GCA_016859285.1 Wu et al., 2021 [78]

https://aquamine.elsiklab.missouri.edu/
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a concept similar to heritability. Awany et  al. (2019) 
[173] reviewed the interaction between the host and the 
microbiome and its impact on the host’s physical charac-
teristics broadly. Since then, studies have demonstrated 

the association between rainbow trout gut microbiome, 
growth, and muscle percentage [174–176], and shellfish 
microbiome differences that influence growth [177] and 
survival against viral disease [178].

Table 2 Broodstocks of U.S. aquaculture species maintained and available through public programs (i.e., universities, government) for 
food production. Information for private programs and/or private–public partnerships that maintain broodfish are indicated with an 
asterisk (*)

Species Broodstock(s)

Established
Channel catfish Delta Select broodstock are produced via genomic selection at the USDA ARS Warmwater Aquaculture Research Unit, Stoneville, 

MS

Blue catfish Delta Elite broodstock are produced via selection at the USDA ARS Warmwater Aquaculture Research Unit, Stoneville, MS

Atlantic salmon 
(North. American)

Broodstock are produced via genomic selection at the USDA ARS National Cold Water Marine Aquaculture Center, Franklin, ME

Rainbow trout Broodstock are produced via genomic selection at the USDA ARS National Center for Cool and Cold Water Aquaculture, Leetown, 
WV and at the USDA ARS Small Grains and Potato Germplasm Research Unit, Aberdeen, ID

Nile tilapia The Genetically Improved Farmed Tilapia (GIFT) strain is available worldwide

Striped bass Domestic broodfish are produced via mass selection at the North Carolina State University Pamlico Aquaculture Field Laboratory 
(NCSU PAFL), Aurora, NC

White bass Broodstock are produced via family‑breeding at the USDA ARS Harry K Dupree Stuttgart National Aquaculture Research Center, 
Stuttgart, AR

Pacific oyster Broodstock are produced via family‑breeding at the USDA ARS Pacific Shellfish Research Unit, Newport, OR

Eastern oyster Region‑specific broodstock are produced via family‑breeding at the USDA ARS National Coldwater Marine Aquaculture Center, 
Kingston, RI (New England); via mass selection, rotational line crossing, and genomic selection at the Rutgers University Haskin 
Shellfish Research Laboratory, Port Norris, NJ (Delaware Bay); via family‑breeding/genomic selection at the Virginia Institute 
of Marine Science Aquaculture, Genetics, and Breeding Technology Center (VIMS ABC), Gloucester Point, VA (Chesapeake Bay); 
and via mass selection at the University of North Carolina Wilmington (UNCW), Wilmington, NC

California yellowtail *Wild‑caught and F1 domestic Seriola dorsalis broodstock are held and produced by Hubbs‑SeaWorld Research Institute (HSWRI), 
San Diego, CA

Yellow perch Genetically improved broodfish are produced via mark‑assisted selection and distributed to aquaculture industry by the Ohio 
State University Center for Aquaculture Research and Development, Piketon, OH

Newly-Cultured
Sablefish A population consisting of wild‑caught female broodstock, F1 male broodstock, and F1 neomale broodstock (used to generate 

all‑female aquaculture populations) is held by NOAA Fisheries Northwest Fisheries Science Center (NWFSC) Manchester Research 
Station, Port Orchard, WA

Green abalone *Broodstock held by The Cultured Abalone Farm, Goleta, CA

Largemouth bass Broodstock are produced by selective breeding at the Ohio State University Center for Aquaculture Research and Development, 
Piketon, OH

Longfin yellowtail *Wild‑caught Seriola rivoliana broodstock are held by Blue Ocean Mariculture, Kailua‑Kona, HI

Red drum A seedstock development program is beginning at the new USDA ARS National Warm Water Marine Research Unit, Ft. Pierce, FL

Pompano A seedstock development program is beginning at the new USDA ARS National Warm Water Marine Research Unit, Ft. Pierce, FL

Kumamoto oyster A population is propagated by the USDA ARS Pacific Shellfish Research Unit in Newport, OR. No selection occurs on this species 
currently, captive spawns are aimed to maximize the retention of genetic diversity and limit inbreeding accumulation

Protected/Other
White abalone Broodstock held by partners of the White Abalone Captive Breeding Program, including: University of California Davis Bodega 

Marine Laboratory, Bodega, CA; NOAA Fisheries Southwest Fisheries Science Center, La Jolla, CA; Aquarium of the Pacific, Long 
Beach, CA; Santa Barbara Museum of Natural History Sea Center, Santa Barbara, CA; and Cabrillo Marine Aquarium, San Pedro, CA

Black abalone Broodstock held by the NOAA Fisheries Southwest Fisheries Science Center, La Jolla, CA and University of California Davis Bodega 
Marine Laboratory, Bodega Bay, CA

Red abalone Broodstock held by the NOAA Fisheries Southwest Fisheries Science Center, La Jolla, CA
*Broodstock are also held by the Monterey Abalone Company, Monterey, CA and The Cultured Abalone Farm, Goleta, CA

Olympia oyster Broodstock are held at the Kenneth K. Chew Center for Shellfish Research and Restoration conservation hatchery housed 
at the NOAA Fisheries Northwest Fisheries Science Center (NWFSC) Manchester Research Station, Port Orchard, WA and jointly 
supported by the Puget Sound Restoration Fund (PSRF) nonprofit

Pinto abalone A hatchery is housed at the NOAA Fisheries Northwest Fisheries Science Center’s Mukilteo Research Station in Mukilteo, WA
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Investigating the microbial organisms present in aqua-
culture environments provides information on the diver-
sity and composition of both beneficial and harmful 
microorganisms that can serve as indicators of environ-
mental health, inform disease prevention and manage-
ment strategies, influence nutrient cycling and waste 
management, and help optimize feed composition and 
regimes. Shotgun metagenomics and, more commonly, 
amplicon sequencing, have been utilized for microbi-
ome profiling in various aquaculture production systems 
(RAS, or recirculating aquaculture systems; biological 
floc, or biofloc; and ponds) and for conservation pur-
poses in areas with coexisting native fish. These studies 
have focused on identifying optimal sample preparation/
sequencing methods [26, 179], evaluating the effects of 
different environmental parameters/conditions [180], 
and characterizing communities associated with differ-
ent aquaculture systems [181–183]. Environmental DNA 
(eDNA) coupled with amplicon sequencing have been 
used to monitor abundances of fish pathogens [184] and 
invasive fish species [185]. Additionally, metagenomics 
coupled with metaproteomics has been used to describe 
the relative functional role of the microbial community in 
a bivalve hatchery under different conditions [186].

The integrative multi-omics approach of simultane-
ously analyzing multiple omics layers of a system, ranging 
from single cell to whole organism, provides a more com-
prehensive, or holistic, understanding of intricate 
molecular networks that govern biological processes. 
In agriculture, multi-omics approaches can enhance 
breeding by providing greater insight into the genetic 
and molecular basis of desirable traits and subsequently 
improving selection accuracy [187, 188]. Multi-omics 
approaches can similarly improve resource optimization 

by identifying key molecular factors that influence traits 
such as growth, disease resistance, and stress tolerance. 
There are many considerations for the integration of 
multi-omics data and interpretation of results as data 
generation and quantification methods differ between 
omics fields. These considerations include, but are not 
limited to, data standardization, cross-platform compati-
bility, data and metadata handling and completeness (e.g., 
missing, imbalanced, etc.), analysis (i.e., reduction) meth-
ods, data reporting, and biological validation approaches. 
Cross-platform compatibility is a significant challenge 
with ML analyses of multi-omics data, principally due to 
differences in data reporting and standardization which, 
if unaccounted for, can lead to biased statistical out-
puts [189–191]. Workflows and applications to integrate 
multi-omics data for analysis and/or visualization are 
continuously being developed as the number of technol-
ogies that facilitate the collection of these data and the 
accessibility thereof increase. Examples include: MOMIC 
[192], OmicsSuite [193], Bioconductor MultiAssayEx-
periment [194], IDARE2 (Integrated DAtanodes of REgu-
lation) and Cytoscape [195, 196], multi-omics [197], and 
those listed in Chakraborty et al. (2022) [187]. Addition-
ally, analytical pipelines based in AI/ML are continuously 
being developed to integrate these data types and address 
cross-platform issues as the models employed are not 
restricted in the same manner as traditional statisti-
cal approaches [198]. The suitability of these and other 
multi-omics integration tools must be evaluated case-
by-case, as many have been developed using data gener-
ated from plant or model animal species and therefore 
may not sufficiently account for nuances of some aqua-
culture species (e.g., whole genome duplication). Further, 
the aquatic environment and effects thereof present an 

Fig. 2 Major omics areas of focus from the phenome to genome and an example of how they can integrate to answer research questions
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opportunity to incorporate additional data that is dif-
ferent from plants and terrestrial organisms. As such, 
developing tools specifically suited to aquaculture data 
and expanding our knowledge of them is a much-needed 
critical step forward.

The integration of multi-omics approaches in agricul-
tural sciences is a paradigm shift, offering unprecedented 
insights into the complexity of biological systems. The 
holistic perspective of distilling these complex interac-
tions into quantifiable factors associated with phenotypic 
variation advances basic science and holds tremendous 
promise for practical applications, such as breeding, 
genome editing, and improved selection accuracy using 
genome-enabled selection [199]. Establishing standards 
for data integration and the development of comprehen-
sive workflows will greatly contribute to the robustness 
and reliability of multi-omics studies, further positioning 
them as indispensable tools in the pursuit of sustainable 
and efficient food production.

Aim 3: Developing resources for the collection 
and integration of phenomics data
Phenomics is the study of observable traits that contrib-
ute to the expression of a phenotype [200]. Phenotypic 
variation is equally, if not more, important to genetic 
selection programs than genetic and genomic data [199]. 
Recent advances in sequencing technologies have allowed 
the application of multiple genome-enabled selection 
strategies to be at the fingertips and keyboards of aqua-
culture scientists. While cost and technical laboratory 
challenges of genetic data production remain hurdles, 
they no longer represent the major barrier for advancing 
animal breeding. The most significant barrier is currently 
high-throughput phenotyping and the creation of multi-
trait phenomes that can be quantitatively assessed [201].

Zebrafish (Danio rerio) lead all finfish in phenomics 
data resources (reviewed in Fuentes et  al., 2018 [202]), 
and this species represents the exception within aquatic 
species rather than the rule. Zebrafish are a model spe-
cies for biomedical researchers due to the ease of hus-
bandry, short generation time, and fewer genome 
duplication events than other fishes. Understanding indi-
vidual gene action to phenome expression is laborious, 
expensive, and development rates are dependent on the 
generation time of the animal (i.e., age to sexual matura-
tion) and ease of gene manipulation. Some aquaculture 
species lend themselves to this model (e.g., tilapia, Oreo-
chromis spp.), while others have longer generation times 
(e.g., salmonids, catfish) or are challenging to introduce 
gene modifications (e.g., shellfish). Thus, the develop-
ment of phenomics datasets via gene knockout or gene 
modification is not likely to be widely applied within 
aquaculture species at scale until the discipline matures 

and technologies are available that can reliably and effi-
ciently modify organisms at various life cycle stages (e.g., 
eggs/zygote).

An area where phenomics has the potential to sig-
nificantly influence aquaculture is via automated, high-
throughput data capture. Advances in this area are 
occurring through the combination of imaging and/or 
sensor technologies with AI/ML models being able to 
identify diseased individuals in intensive aquaculture set-
tings [203], count individuals within an enclosure [204], 
produce real-time body size data [205], estimate biomass 
changes [206], signal an alert system based on detected 
mortality events [207], classify shape of an organism 
(e.g., oysters, [208]), determine feed conversion efficiency 
[209], predict readiness to spawn [210], identify shellfish 
gonads (e.g., Pacific oyster, [211]), monitor interactions 
between marine aquaculture animals and wild popula-
tions [177], and estimate moisture, glycogen, and ploidy 
in shellfish (e.g., eastern oyster, [212]), among numerous 
other applications [213]. These advances set the stage for 
production-level questions to be answered for entire lots 
of animals with potentially lower labor costs and fewer 
data collection errors (e.g., reduced subjectivity). Addi-
tionally, post-harvest traits of quality, such as seafood 
product freshness, may be assessed via e-systems (e.g., 
e-eye, e-nose, e-tongue) that quantitatively assess qual-
ity and represent a leap forward in data automation for 
product processing from farm to market [214, 215].

Multiple challenges exist for integrating phenomics 
data into aquaculture programs. Aquaculture occurs in 
environments harsh on equipment, and development of 
sensors and cameras that are able to withstand aquatic 
environments and extreme weather events is needed. 
Efforts to install infrastructure and implement strategies 
to obtain phenomics data from these sensors and cam-
eras (e.g., via internet connection, collection of memory 
cards) will also have to be emphasized, as this is similarly 
challenging in aquatic environments. Moreover, accessi-
ble software capable of processing raw data into tangible 
datasets that can be used for phenomics trait produc-
tion must also be developed. The scales and methods of 
aquaculture operations vary widely, with large programs 
(e.g., salmon and trout) being more likely to adopt and 
afford these high-throughput systems. Accessibility and 
democratization across program scale and affordability 
for smaller scale programs (e.g., shellfish, newly cultured 
finfish species, etc.) will be necessary for aquaculture 
as a discipline to reap the benefits of phenomics. Initial 
efforts in generating genomic and omics resources for 
newly cultured species, and others at similar stages of 
industry development, should focus on developing high-
quality reference assemblies that will anchor the layers of 
omics and phenomics data.
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While production may benefit from population or 
group level measurements, breeding efforts require inte-
gration of individual phenotypic variation with genomic 
data. This is especially challenging in aquaculture envi-
ronments where animal tagging is difficult and/or expen-
sive to conduct and maintain. PIT (passive integrated 
transponder) tags can be implanted, yet to date there 
are limited records of combining tag readers with non-
lethal automated data collection [216–218]. Developing 
technology that can simultaneously identify individuals 
and collect phenotypic data is a frontier for advancing 
aquaculture phenomics (e.g., Babu et al., 2022 [204]). The 
rapid advancements that are occurring in genomics and 
multi-omics cannot be fully exploited without similar 
advancement in and integration with phenomics.

Aim 4: Creating pathways for applying and integrating 
genomics information across animal industries
The integration and application of genomics data across 
animal agriculture sectors plays a pivotal role in driving 
impactful changes and improvements in these industries. 
Specifically, sharing omics resources and strategies used 
in diverse animal industries facilitates the increased lev-
eraging of these data and tools to benefit myriad groups, 
including academic and industry researchers, Extension 
specialists, producers, and other stakeholders. For exam-
ple, resources for genome data mining and visualization 
such as AquaMine (http:// aquam ine. org; Elsik Lab, Uni-
versity of Missouri) and AgAnimalGenomes [219] enable 
the exploration of genomic and omics data within and 
between animal production sectors without requiring 
advanced training. These and similar data exploration 
tools lend themselves to powerful comparisons, which, 
among many other potential findings, can help identify 
conserved pathways between species that can be exploited 
to enhance production-relevant traits. The field of aqua-
culture is inherently and uniquely positioned to collabo-
rate with neighboring fields like fisheries management, 
molecular ecology, and conservation genomics given the 
overlap of study species and experimental approaches 
used to answer fundamental questions. This interdisci-
plinary nature of aquaculture research can and should be 
expanded to other agriculture sectors as we collectively 
work towards supporting global food security.

The application and integration of data-based tools and 
resources within and across animal industries relies on 
the generation, maintenance, and provision of high-qual-
ity omics data and detailed metadata that meets agreed-
upon standards of interpretability and availability. Several 
initiatives have developed such standards for genomic 
data and analysis, including the MIxS (Minimum Infor-
mation about any (x) Sequence) checklist for metadata 
produced by the Genomics Standards Consortium (GSC) 

[220]; recommendations for analysis standards from the 
Earth BioGenome Project [221]; and published guide-
lines for protocols and data standards for multiple omics 
project types published by the ENCODE Consortium 
(Encyclopedia of DNA Elements) [222, 223]. Broader 
guidelines for scientific data reporting, such as FAIR 
Principles (Findable, Accessible, Interoperable, Reusable) 
[224], and tools that improve FAIRness of resources, such 
the Bioschemas effort to embed distinct markup into 
published data (e.g., genes, chemicals, proteins), work-
flows, and training programs [225–228], have also been 
developed and should be considered and incorporated 
into the determined set of data and metadata standards. 
The current aims of the latest iteration of the NRSP8,3 
Building Applied Genomic Capacity for Animal Indus-
tries, echo these sentiments.

Further, consensus on joint  investment and participa-
tion of researchers, Extension specialists, agency person-
nel, and other stakeholders is necessary to best facilitate 
the sharing of feedback, ideas, and innovations. Fund-
ing organizations, institutions, and individuals with an 
interest in animal and plant production should prior-
itize hosting and/or participating in forums for feedback, 
discussion panels, workshops, etc., such that persons 
and groups invested in U.S. agriculture can collaborate. 
As examples, USDA NIFA accepts investigator-initiated 
proposals for conferences and workshops year round, 
and the Aquaculture Information Exchange,4 an online 
forum to facilitate discussion between members of the 
public and private sectors with interests in U.S. aquacul-
ture, was launched in 2023 by Virginia Sea Grant, with 
support from the National Oceanic and Atmospheric 
Administration (NOAA) National Sea Grant Office, 
NOAA Fisheries Office of Aquaculture, USDA Agricul-
tural Research Service (ARS), and USDA NIFA. The Plant 
and Animal Genome Conference (PAG) held annually in 
San Diego, California served as a meeting place for those 
involved in or affiliated with the initial NRSP8 NAGRP, 
where interaction between agriculture sectors was nur-
tured and facilitated. Consistency to this end (i.e., loca-
tion) provided an ease of knowing at least one avenue for 
involvement of academic and government researchers, 
students, industry professionals, and other contributors 
(Fig.  3). However, a single annual meeting is not suffi-
cient for establishing long-term, productive relationships 
within and among animal sectors, especially when the 
strengths come from the diversity of species groups, ana-
lytical approaches, and stakeholders from private sector 

3 2023-2028 NRSP8 project website: https:// nimss. org/ proje cts/ view/ 18969
4 Aquaculture Information Exchange registration page: https:// aquai nfoex 
change. org/ regis ter/

http://aquamine.org
https://nimss.org/projects/view/18969
https://aquainfoexchange.org/register/
https://aquainfoexchange.org/register/
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(industry), government, and academia. These interactions 
are invaluable for integrating new insights, technologies, 
and analysis types into agricultural practices that have 
real-world impacts. As such, support and energy behind 
collaborative efforts must continue, if not increase, with 
the ever-advancing omics- and data-intensive tech-
nologies to optimally and most efficiently leverage these 
tools toward the improvement and strengthening of U.S. 
agriculture.

Aim 5: Providing training, extension, and outreach 
to support the application of genome to phenome
“Genome to phenome” broadly refers to the linkage 
between the genetic blueprint (genome) and the observ-
able traits of an organism (phenotypes, or phenome [3, 
229, 230]. Research with this focus is designed to further 
our understanding of how molecular components and 
environmental factors influence complex phenotypes and 
is highly relevant to agriculture. Applying G2P research 
across agriculture sectors is critical to addressing food 
security challenges that continue to escalate with the grow-
ing global population, unpredictable and more frequent 

environmental impacts (e.g., hurricanes, floods, droughts, 
etc.), and biological events (e.g., emergent animal disease 
outbreaks, COVID-19 pandemic). Consortiums such as 
the Agricultural Genome to Phenome Initiative (AG2PI; 
https:// www. ag2pi. org/) have been developed to address 
challenges and advance G2P research across agriculture 
sectors, including data sharing and integration, and the 
development of tools to evaluate and measure phenotypes 
[229, 230].

The establishment and continued support of programs 
that train early-career professionals with the requisite 
skills to navigate the complexities of genomics in agri-
culture and facilitate their integration into the workforce 
is paramount to achieving the ultimate goals of G2P 
research and delivering nutritious aquatic animal prod-
ucts to a growing global population. Specifically, this 
workforce must be efficacious in conducting and report-
ing scientific research, developing and commercializing 
tools, and communicating outcomes to farmers, con-
sumers, legislators, and future generations. Educational 
programs that provide a foundational understanding of 
genomics, phenomics, and their integration into animal 

Fig. 3 Input from multiple groups impacts the success of aquaculture production from lab to farm to plate

https://www.ag2pi.org/
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breeding and management practices must be developed 
and made broadly available at general and advanced lev-
els to support the range of workforce personnel needs. 
An example is the interdisciplinary Genomics, Phenom-
ics, and Bioinformatics (GPB) graduate (PhD and MS) 
program at North Dakota State University, which is 
described5 as:

“The program is designed to provide students the 
necessary skills and intellectual background to work 
cooperatively with others in a research area that 
take a systems-wide approach to the study of the 
organization of life and expression and regulation 
of genes in an organism. Students in the program 
will perform advanced study, training and research 
in areas that focus on functional genomics, high-
throughput phenotyping, and computation analysis 
of genomic and phenomics data. Students will learn 
and master the multi-omics approaches for research 
in many frontiers. Exposure to modern techniques, 
instrumentation, computational and statistical 
methods will prepare the student for success in both 
industrial and academic careers."

Another example of this effort is the recently-funded 
(2024) USDA NIFA project “Graduate Education in Live-
stock Phenomics and Quantitative Genomics” awarded 
to Texas A&M University (Research, Education, and 
Economics Information System, REEIS, accession no. 
1031671) that aims to “(1) recruit, (2) develop, and (3) 
produce outstanding graduates in the animal production 
targeted expertise shortage area who will become the 
next generation of leaders in animal breeding equipped 
with expertise in phenomics and associated quantitative 
genomics methods.”

Internships, work-study, and similar programs should 
be designed by or in collaboration with industry to 
ensure that early-career professionals are gaining rel-
evant hands-on experience and, if possible, direct train-
ing for future positions. This can include partnerships 
with industry, or other relevant groups, such that suc-
cessful participants who wish to pursue a career in the 
field can be placed efficiently into the workforce. There 
are several examples of these programs for plant crops, 
such as the USDA NIFA Research and Extension Experi-
ence for Undergraduates (REEU) program for Phenomics 
Big Data Management at Washington State University.6 
Similar programs should be established for animal/aqua-
culture production and include the spectrum of involved 

parties. For example, Extension personnel affiliated with 
U.S. Land-grant Colleges and Universities (1862, 1890, 
and 1994) and NOAA Sea Grant Programs are often the 
first line of communication with aquaculture producers 
who would like to apply genomics in their production 
systems. Therefore, inclusion of Extension personnel 
in research partnerships and training programs greatly 
expands opportunities for technology transfer to industry 
stakeholders as well as workforce development and pro-
fessional relationship building.

Further, supporting the attendance and participation 
of early-career professionals at conferences, stakeholder 
meetings, workshops, etc. should also be emphasized as 
these opportunities allow for advanced and continued 
learning, sharing of ideas, and the development of pro-
fessional relationships within and outside of each specific 
area or field of work/research.

The establishment and support of comprehensive 
training, Extension, and outreach programs are pivotal 
to achieving the goals of G2P research and to efficiently 
and effectively transfer developed technologies to the 
commercial aquaculture industry. By preparing a well-
equipped workforce, fostering industry collaboration, 
and promoting continued professional development, 
we can enhance the productivity, sustainability, and 
resilience of agriculture to benefit both producers and 
consumers.

Future research priorities & directions
One thrust of the 2023 Workshop for Aquaculture 
Genomics, Genetics, and Breeding was to identify pri-
orities for the next decade and beyond based upon what 
is anticipated to become the cutting edge of aquaculture 
omics research in the U.S. and projections of what will be 
needed to utilize such research to help meet the needs 
of the global population. Here we outline these ideas as 
a suggested guide to where U.S. aquaculture genetics, 
genomics and breeding research resources should be 
directed in the years ahead. It must also be acknowledged 
that global research advancement and international col-
laboration will only benefit aquaculture omics research 
and is one of the most efficacious ways to produce formi-
dable advancement.

Genome-enabled selection models and applications
The identification of functional genes has the poten-
tial to rapidly advance U.S. aquaculture and this will be 
greatly facilitated by the inclusion of AI/ML approaches 
in analysis pipelines [123, 148, 213]. Genes underlying 
reproductive sterility, growth, stress, and disease resist-
ance provide commercial breeders with essential data to 
produce animal populations better adapted to produc-
tion environments and systems [4, 231]. Creating sterile 

5 North Dakota State University GPB program: https:// catal og. ndsu. edu/ 
progr ams- study/ gradu ate/ genom ics- bioin forma tics/
6 USDA NIFA REEU for Phenomics Big Data Management: https:// labs. 
wsu. edu/ sanka ran- pheno mics/ under grad- resea rch- exp/

https://catalog.ndsu.edu/programs-study/graduate/genomics-bioinformatics/
https://catalog.ndsu.edu/programs-study/graduate/genomics-bioinformatics/
https://labs.wsu.edu/sankaran-phenomics/undergrad-research-exp/
https://labs.wsu.edu/sankaran-phenomics/undergrad-research-exp/
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populations could significantly enhance the social license 
of aquaculture to operate by significantly reducing, if not 
functionally eliminating, the potential for introgression 
between captive and wild/natural populations. While 
identifying traits underlain by simple genetic architec-
tures and individual genes (or small subsets of genes) 
will advance the aquaculture breeding field, relatively few 
traits will be classified as such. The phenotypes targeted 
through selection (i.e., breeding) programs are often 
quantitative, complex traits that are influenced by a large 
number of loci with small effect sizes [4].

For traits with polygenic architecture, the continued 
development of GS workflows (from genotyping to sta-
tistical analysis) is vital [11, 232–235]. These traits are 
best suited for classical quantitative genetic analysis, 
using genome-wide measures of relationship between 
individuals, rather than focusing on shared genetic vari-
ation from a subset of chromosomal segments. Genome-
enabled selection programs will become more common 
throughout aquaculture as genotyping costs decrease, 
sample throughput increases, and the potential benefits 
of improved selection accuracy are realized into tangi-
ble production outcomes (i.e., more rapid genetic gain) 
[236]. How quickly U.S. aquaculture breeding programs 
adopt GS is predicated on the availability of trained staff, 
funding, and reliable, affordable tools to genotype and 
phenotype animals.

Cost reduction is especially important in aquaculture 
programs [237], as there are high numbers of breeding 
candidates in a given population and the market value 
of each individual is low relative to other livestock ani-
mal industries. Continued development of inexpensive, 
high-throughput tools for genomic/omics data gen-
eration is needed. Our understanding of how large (i.e., 
total number of loci assayed) a genotyping panel must 
be to maximize GS accuracy is changing as studies have 
found that only hundreds to thousands of loci are needed 
to achieve highest accuracy [83, 90, 238, 239]. Panel size 
reduction may be possible using imputation-based meth-
ods [11] and can be combined with pedigree information 
[232] and microhaplotype variation [233, 240] to further 
reduce panel sizes via increased statistical power. It is 
likely that geneticists will soon be able to routinely pro-
duce the genome-level data required to maximize  the 
accuracy of GS models. However, the advancement of GS 
application will be constrained by the cost of genotyping 
and a lack of efficient, scalable, and cost-effective pheno-
typing methods for aquaculture species.

Pangenomics
The substantial diversity within and among cultured spe-
cies and production methods sets aquaculture uniquely 
apart from other major animal production industries. 

This is a challenge in the limited portability of tools 
across aquaculture species, but an opportunity is also 
present as the genetic variation within aquaculture 
species is primarily untapped. In this vein, the contin-
ued advancement of pangenomics in aquatic species is 
important to discover, utilize, and preserve the genetic 
diversity available to breeding programs. Pangenomics 
also stands to introduce new types of genetic variation 
into GWAS analyses (e.g., SVs, gene deletions) that may 
influence trait expression. Pangenomic studies in cat-
tle revealed that deletions were associated with breeds 
and subspecies delineations [241]; in plants, pangenomic 
studies have identified disease tolerance and yield asso-
ciated genes [242]. Livestock and poultry have been at 
the forefront of the domestic animal pangenomics field, 
yet despite being in their early stages, multiple stud-
ies have already identified genetic variants associated 
with production traits that could not be quantified using 
singular genomic resources [243]. For pangenomics to 
impact aquaculture breeding, it is likely that bespoke 
pangenomes will be necessary for individual operations, 
given the decentralized model of hatchery production 
and limited direct link between programs compared to 
livestock and plants. The degree to which this is neces-
sary will depend on many factors, but largely be driven 
by evolutionary relationships among broodstocks used 
by independent hatchery suppliers. Ultimately, quantify-
ing pangenome variation allows for more comprehensive 
assessment of trait variation and increases the potential 
to identify functional regions and/or genes [244]. The 
opportunity of pangenomic research in aquaculture is 
enticing and necessary, as variation among ecotypes 
within species and across the multitude of closely related 
species will provide substantial fodder for trait and phe-
notypic dissection.

Phenomes (traits) of the future
Defining and identifying phenomes of interest for aqua-
culture is needed, as the ability to produce and integrate 
phenotype data on a production scale, rather than the 
production of omics data, is presently limiting aqua-
culture advancement [3]. Aquaculture has historically 
focused on growth, reproduction/sexual dimorphism, 
and feed conversion as selection traits. Rapidly changing 
environments, dietary (feed) components, and pests and 
pathogens in production environments are shifting selec-
tion targets toward resiliency phenotypes [245, 246]. In 
rainbow trout and Nile tilapia, resilience was estimated 
via a body weight phenotype across multiple temporal 
and spatial scales (production environments) with resil-
iency found to be heritable [247] with significant variance 
among lines [248]. These studies empirically demon-
strate resilience can be applied in selective breeding to 
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increase uniformity in the face of disturbance. In east-
ern oyster, production in lower salinity coastal environ-
ments is influenced by intensifying seasonal precipitation 
and freshwater diversions from major rivers for coastline 
stability, thus resilience defined by tolerance to low salin-
ity stress is emerging as a breeding target with progress 
made on utilizing GS to advance this trait [84, 249, 250]. 
Disease resistance against viral [251–256], bacterial [257, 
258], and parasitic pathogens [135, 252, 259] constitutes 
a core theme of resiliency phenotypes as well [5, 260].

To this end, defining resilience for each species and 
production environment is crucial. For example, shellfish 
reared in an intertidal environment may have a unique set 
of resilience traits that differ from resilience-conferring 
traits in a finfish program sited in the same waterbody. 
Within a single species, it is possible that suites of traits 
that define resilience phenomes vary based upon location 
(environmental characteristics) and/or production envi-
ronment/system (e.g., open water net pen vs. recirculating 
aquaculture system). A common resilience trait among 
aquaculture species is the ability to survive and efficiently 
grow in dynamic conditions with the potential ability to 
respond to different stressors over time. Interestingly, 
resilient phenomes of multiple livestock and aquaculture 
species reared in varied agricultural systems have been 
found to share stress-associated pathways that contribute 
significantly to the phenotypes [261]. Therefore, resilience 
phenomes among species may be more similar than we 
currently hypothesize. Overall, identifying and developing 
the phenomes of the future will require significant effort. 
Effective methods are likely to be those which identify 
animals with high growth rate, high feed conversion effi-
ciency, and enhanced resistance to disease and environ-
mental stress in variable conditions.

While there is great promise of integrating multiple 
data streams into a composite phenome, advancements 
on specific traits can be made and should be prioritized. 
For example, producing value-added, healthier human 
food through targeting specific fatty acids in salmonids. 
Omega-3 long-chain polyunsaturated fatty acids (LC-
PUFA) are essential for the health of both humans and 
fish, particularly for heart and brain function. However, 
aquaculture-produced salmon must consume approxi-
mately 2% of their diet from unsustainable sources of 
wild fish oil to maintain sufficient levels of LC-PUFA 
[171]. In this case, an individual trait such as LC-PUFA 
synthesis may benefit from phenomics approaches and 
reveal unexpected relationships that can be targeted to 
yield genetic gain.

Education, training, and program participation
Investment in education, training, and retention ini-
tiatives is imperative to the continued operation, future 

success, and fortification of U.S. agriculture, including 
aquaculture. Programs, such as those described above, 
will create a well-equipped workforce capable of advanc-
ing genomic/omics research and its applications, subse-
quently leading to improved agricultural productivity, 
sustainability, and food security. This includes establish-
ing and maintaining programs to recruit students and 
interns for training as future educators, researchers, 
Extension personnel, and industry leaders. Strength-
ening collaborative ties between research, Extension, 
industry, and other stakeholders through the creation 
and utilization of centralized communication networks 
and information forums is vital to moving the aquacul-
ture industry forward. Participation at any level is neces-
sary and strongly encouraged, whether through securing 
or providing funding, establishing training-to-workforce 
pipelines, organizing or leading workshops and meet-
ings, or contributing in other ways (e.g., Extension, out-
reach, public education). Collectively, these efforts ensure 
ongoing commitment and “buy-in” from all stakehold-
ers, maximizing impact and promoting the continuous 
advancement of aquaculture and agriculture.

Conclusion
The aquaculture genetics, genomics, and breeding com-
munity has made significant advancements over a short 
period, yet new and exciting challenges lie ahead. The 
next frontier in U.S. aquaculture production is to har-
ness high-quality genome assemblies and integrate them 
with multi-omics and pangenomic approaches to distill 
the genetic variance associated with phenomes. However, 
it should not be overlooked that the expansion of U.S. 
aquaculture production via continual introduction of 
new species will require generation of novel genetic tools 
and the creation of robust phenotyping technologies. 
Unpredictable global events, such as those highlighted by 
the COVID-19 pandemic, have brought the importance 
of food security and food chain stability across the world 
into focus. The opportunity afforded by the U.S. aquacul-
ture sector to help address food security is vast, and with 
continued development of genome-enabled breeding and 
genome editing strategies, omics integration, phenomics 
curation, and robust training, the future looks bright for 
the continued expansion of finfish, crustacean, and mol-
lusk aquaculture in the United States.

Based on  the present status of aquaculture genetics, 
genomics, and breeding research, and industry needs, the 
following areas should be prioritized to continue devel-
oping and strengthening the U.S. aquaculture sector:

1. Improvement of reference genome assemblies: Pro-
duce genome sequences of newly cultured aqua-
culture species and continue advancing the assem-
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bly and functional annotation of existing reference 
genomes including epigenome annotation, Geno-
type-Tissue Expression (GTEx), eQTL and epi-QTL 
(expression and epigenetic quantitative trait locus, 
respectively) analyses.

2. Advancement of pangenomics: Quantify and uti-
lize all forms of genetic variation within and among 
species to advance G2P understanding and enhance 
breeding programs.

3.   Expansion of genome-enabled workflows: Develop 
cost-effective, scalable methods of selecting and uti-
lizing genomic/omics data to increase selection accu-
racy and improve genome editing technologies to 
facilitate a greater functional understanding of G2P 
in aquaculture species. AI/ML will play a vital role in 
such workflows.

4. Defining resilient phenomes: Use genomic/omics 
data to identify and integrate both production-rele-
vant traits (e.g., growth, disease resistance) and traits 
associated with environmental stress tolerance across 
varied culture environments and production systems.

5. Data integration and utilization: Adopt data and 
metadata standards to improve the accessibility and 
integration of multiple data types within and between 
species and to enhance applicable use of these data 
(e.g., comparative omics).

6. Education and training programs: Invest in initiatives 
to train a skilled workforce capable of advancing and 
applying genomic technologies in the aquaculture 
sector.
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