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Abstract 

The interaction relationship between miRNAs and genes is important as miRNAs play a crucial role in regulating 
gene expression. In the literature, several databases have been constructed to curate known miRNA target genes, 
which are valuable resources but likely only represent a small fraction of all miRNA-gene interactions. In this study, 
we constructed machine learning models to predict miRNA target genes that have not been previously reported. 
Using the miRNA and gene expression data from TCGA, we performed a correlation analysis between all miRNAs 
and all genes across multiple cancer types. The correlations served as features to describe each miRNA-gene pair. 
Using the existing databases of curated miRNA targets, we labeled the miRNA-gene pairs, and trained machine learn-
ing models to predict novel miRNA-gene interactions. For the miRNA-gene pairs that were consistently predicted 
across the models, we called them significant miRNA-gene pairs. Using held-out miRNA target databases and a litera-
ture survey, we validated 5.5% of the predicted significant miRNA-gene pairs. The remaining predicted miRNA-gene 
pairs could serve as hypotheses for experimental validation. Additionally, we explored several additional datasets 
that provided gene expression data before and after a specific miRNA perturbation and observed consistency 
between the correlation direction of predicted miRNA-gene pairs and their regulatory patterns. Together, this analysis 
revealed a novel framework for uncovering previously unidentified miRNA-gene relationships, enhancing the collec-
tive comprehension of miRNA-mediated gene regulation.
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Introduction
MicroRNAs (miRNAs) are small, non-coding RNAs that 
play a crucial role in the post-transcriptional regulation 
of gene expression [1–3]. Typically, miRNAs silence tar-
get genes by binding to complementary sequences in the 
3’ untranslated region of mRNAs, leading to their deg-
radation and inhibiting their translation [4]. However, 
recent in vitro studies have suggested that miRNAs can 
also activate gene expression in certain circumstances 

through various mechanisms [5, 6]. Overall, miRNAs are 
versatile regulators of gene expression with complex roles 
in numerous biological processes, which has inspired 
many studies to explore the intricate relationship 
between miRNAs and their target genes [7, 8]. In recent 
years, extensive reviews have highlighted the pivotal role 
of miRNAs in human diseases. For example, miRNAs 
have been shown to regulate gene expression and are 
associated with a wide range of diseases, with compu-
tational models increasingly predicting miRNA-disease 
associations and integrating experimental data to better 
understand disease mechanisms [9]. Advances in bioin-
formatics tools and databases have further refined our 
knowledge of miRNA functions and their implications in 
human diseases. Systematic evaluations of these compu-
tational models have also demonstrated their potential to 
accurately predict miRNA-disease associations, enabling 
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more comprehensive evaluations of miRNA functions in 
disease pathways [10]. Additionally, miRNAs are particu-
larly studied for their regulatory roles in diseases such as 
cancer, where they significantly influence gene regulation 
and disease mechanisms [11]. Moreover, miRNAs mod-
ulate important signaling pathways involved in human 
diseases, such as PI3K-Akt and MAPK, making them 
attractive therapeutic targets [12]. Our study builds upon 
this foundation by predicting novel miRNA-gene inter-
actions in cancer, contributing to the understanding of 
miRNA-mediated regulation in disease.

In the literature, researchers have determined many 
miRNA-gene relationships through experiments using 
high-throughput techniques on a transcriptome-wide 
scale, leading to a great number of publications and 
repositories of experimentally validated miRNA target 
genes [13–15]. For example, miRBase [16], DIANA-Tar-
Base [17], and miRTarBase [18] are databases that pro-
vide comprehensive information about miRNAs and their 
targets. These databases include information on experi-
mental methods and supporting literature to ensure the 
accuracy and reliability of the miRNA-gene interactions 
cataloged. In parallel to the experimental efforts, several 
computational approaches have been developed to pre-
dict miRNA-gene relationships [19–23]. TargetScan is 
one of the widely used methods that predict miRNA tar-
get sites conserved among orthologous 3’ UTRs of verte-
brates based on the degree of sequence complementarity 
between the miRNA and its target mRNA [24]. While 
the recent developments in miRNA-gene databases have 
facilitated the exploration of miRNAs and provided new 
insights into their relationship with genes, these data-
bases are not without limitations. Given the critical role 
of miRNA-gene regulation, the existing databases likely 
only represent a sparse coverage of miRNA-gene rela-
tionships, which provides an opportunity and motiva-
tion for this study, aiming to identify the yet unraveled 
miRNA-gene relationships.

In this study, we employed a machine learning 
approach to predict unknown miRNA-gene relation-
ships by leveraging publicly available multi-omics gene 
expression data and several existing miRNA target data-
bases. Using the miRNA and gene expression data from 
The Cancer Genome Atlas (TCGA) [25], we performed a 
comprehensive correlation analysis of each miRNA and 
each gene across 32 cancer types. We also compiled the 
known miRNA-gene relationships from the existing data-
bases to label the miRNA-gene pairs. The total number of 
known miRNA-gene relationships in those databases is 
197,877. After that, XGBoost was used to build machine 
learning models that predict potential miRNA-gene rela-
tionships that have not been reported in those miRNA 
target databases. In addition, our findings were further 

validated by held-out miRNA target databases and a lit-
erature survey, which showed the ability of the models 
in terms of predicting novel miRNA-gene relationships. 
Furthermore, by exploring independent datasets that 
contain gene expression before and after specific miRNA 
interventions, we found consistent alignment between 
the correlation direction of our predicted miRNA-gene 
pairs and their regulatory patterns shown in these inde-
pendent datasets.

Results
Construction of miRNA‑gene prediction models
To build models for predicting potential miRNA-
gene relationships, we used the correlations between 
miRNA and gene expression data to serve as features for 
describing miRNA-gene pairs. TCGA provided expres-
sion data of a total of 1,881 miRNAs and 20,530 genes, 
for 10,004 patients across 32 cancer types. For each 
miRNA-gene pair, we computed their correlation in 
each of the 32 cancer types separately. Therefore, each 
miRNA-gene pair is described by a vector containing 
32 correlation values. In order to avoid bias resulting 
from small sample sizes, for a miRNA-gene pair, their 
correlation in one cancer type was computed only when 
the number of patients expressing both the miRNA and 
the gene exceeded 10. We excluded miRNA-gene pairs 
whose correlations could not be calculated in more than 
three cancer types due to the limited sample sizes. As a 
result, we obtained the correlation values in the 32 can-
cer types for a total of 22,580,364 miRNA-gene pairs, 
involving 1,277 unique miRNAs and 17,822 unique 
genes.

The primary task of this study was to solve a binary 
classification problem to identify miRNA-gene asso-
ciation relationships. Binary class labels were needed to 
train the machine learning models. We gathered known 
miRNA-gene relationships from five existing data-
bases of miRNA targets, including both experimentally 
validated and computationally predicted miRNA-gene 
interactions. These databases are miR2Disease  [26], 
miRecords  [27], TarBase  [28], miRTarBase [18], and 
TargetScan [24]. We used mir2Disease, miRecords, and 
miRTarBase as training databases. The curated miRNA 
target genes in these training databases were used to 
define positive miRNA-gene pairs. The remaining two 
databases, TarBase and TargetScan served as validation 
databases. The miRNA target genes in the validation 
databases were used to evaluate the performance of our 
prediction. It is noteworthy that in evaluating model per-
formance with the validation databases, we only consid-
ered those known miRNA-gene relationships that were 
only reported in the validation databases and not in the 
training databases.
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For the 22,580,364 miRNA-gene pairs with correlation 
features computed, we labeled them as positives and neg-
atives, depending on whether the miRNA-gene pair was 
reported in the training databases. Out of the 22,580,364 
miRNA-gene pairs, 26,867 (0.12%) were labeled as posi-
tives because they were confirmed relationships in the 
training databases. The remaining 22,580,364 (99.88%) 
pairs were not present in the training databases, and 
thus, were labeled as negatives. Note that, due to the lim-
ited coverage of miRNA-gene interactions in the exist-
ing databases, the negative class included both unrelated 
pairs and true miRNA-gene relationships that were yet to 
be discovered.

To address the challenge of this extremely imbalanced 
binary classification task dominated by the negative class, 
we applied XGBoost (Extreme Gradient Boosting) to 
train machine learning models based on downsampled 
versions of the data. XGBoost is a powerful algorithm 
that excels in supervised classification problems [29]. Its 
ability to handle label-imbalanced data has been reported 
in many studies [30, 31], making it well-suited for iden-
tifying miRNA-gene relationships in our study. In addi-
tion, in order to reduce the imbalance, we generated 
many downsampled versions of the negative class to train 
XGBoost models. The size of the downsampled negative 
class ranged from 0.1% to 10% of the original negative 
class, so that the ratio between the positive and negative 
class after downsampling ranged from 1-to-1 to 1-to-100. 
At each downsampling level, we generated 1000 versions 

of downsampled negative class. We combined each of 
the downsampled negative class and the positive class, 
split the data with an 80/20 ratio of training and testing, 
trained a classifier using XGBoost, and evaluated testing 
performance for the positive and negative classes sepa-
rately. Figure  1 shows the performance across the 1000 
models trained based on the 1000 versions of downsam-
pled data. As detailed in Fig. 1, incorporating more nega-
tives into the training data led to a decreased prediction 
accuracy in the positive class (recall), while the prediction 
accuracy of the negative class (1-false positive) increased. 
This result was expected and suggested that a higher 
proportion of negatives might be more appropriate for 
identifying and hypothesizing miRNA-gene relationships 
for validation, because of the reduced false positives ena-
bled by a higher proportion of negatives used in model 
training.

Validation of the identified miRNA‑gene pairs 
in the validation databases and literature
At each specified level of downsampling, we applied 
our suite of 1000 trained predictive models exclusively 
on the miRNA-gene pairs in the negative class. Our 
objective was to identify miRNA-gene pairs that were 
repeated identified as positive by these models, which 
may highlight potential miRNA-gene interactions 
previously undocumented in the literature. To ascer-
tain the reliability of our findings, we concentrated on 
miRNA-gene pairs that were consistently classified 

Fig. 1  Classification accuracies for the prediction models on the testing datasets across 1000 experiments
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as positive in at least 700 out of the 1000 applications 
across each downsampling threshold. We designated 
these frequently predicted pairs as ’significant miRNA-
gene pairs’, thereby implying a higher confidence in 
their potential biological relevance. We evaluated the 
significant miRNA-gene pairs at different frequency 
requirements, including 700, 800, 900, and 950. Table 1 
shows the number of identified miRNA-genes pairs 
at each downsampling level with various frequency 
requirements. As expected, with either increasing fre-
quency requirement or increasing percentage of nega-
tives, the number of significant miRNA-gene pairs 
decreased.

To evaluate the identified miRNA-gene pairs, we 
used two held-out miRNA target databases, which 
are the validation databases not included in the train-
ing and prediction process. The evaluation specifi-
cally focused on known miRNA-gene pairs that were 
reported in these validation databases but not in the 
training databases. For each downsample percent-
age and each frequency requirement, we computed 
the percentage of the identified miRNA-gene pairs 
that were reported in the validation databases but 
not reported in the training databases. As shown 
in Table  1, at downsample percentage of 5% and fre-
quency requirement of 950, 871 miRNA-gene pairs 
were consistently predicted, which achieved the high-
est validation rate of 3.21%. Interestingly, we observed 
a similar validation rate for the 656 miRNA-gene pairs 
identified at downsample percentage of 9% and fre-
quency requirement of 900. After comparing these 
two sets of the identified miRNA-gene pairs, we 
noticed that the 656 miRNA-gene pairs were a subset 
of the 871. Therefore, we decided to focus on the 871 
miRNA-gene pairs in the following analyses.

Beyond the 28 (3.21% out of the 871) miRNA-gene 
pairs confirmed by the validation databases, there may 
exist more miRNA-gene pairs that have been discovered 
in the previous studies but were not included in the vali-
dation databases. Hence, we performed a literature sur-
vey for each of the remaining 843 miRNA-gene pairs. The 
PubMed database was used to search for previous publi-
cations that implicated the identified miRNA-gene pairs, 
and we found supportive literature for 20 miRNA-gene 
pairs, which were related to 5 miRNAs, including let-7b, 
mir-192, mir-26b, mir-335, and mir-93. For example, our 
predictions suggested a potential relationship between 
let-7b and EZH2, which aligns with a previous study 
demonstrating that the loss of let-7b leads to the upregu-
lation of EZH2 expression, consequently promoting ovar-
ian cancer growth both in vitro and in vivo [32]. Another 
example is miR-335 and TXNIP. A previous study has 
found that miR-335 targets several differential expressed 
genes, including TXNIP, and their interaction was asso-
ciated with oral mucosal wound healing [33]. This previ-
ous study supported our prediction of the relationship 
between miR-335 and TXNIP. As a third example, mir-
93 has been reported to control growth and proliferation 
through FOXO1, which served as a central regulator of 
endothelial activity [34]. Our analysis also indicates the 
potential association between mir-93 and FOXO1.

Validation of the identified miRNA‑gene pairs 
in independent datasets
To more rigorously confirm the link between the pre-
dicted miRNA-gene pairs, we conducted a thorough 
search for independent datasets regarding each of the 
miRNAs associated with the predicted miRNA-gene 
pairs that have not been previously documented in the 
miRNA targets databases. We searched for datasets that 
provided gene expression data both before and after per-
turbation of a specific miRNA, either overexpression or 
knockdown. As a result, we retrieved 9 GEO datasets, 
each designed to investigate the consequences after over-
expressing a particular miRNA.

A total of 88 miRNA-gene pairs in different cancer 
contexts were validated in the independent datasets, 
which involved five miRNAs: mir-335, mir-192, mir-
26b, mir-193b, and mir-21. Utilizing the gene expres-
sion data before and after a specific miRNA perturbation 
in each independent dataset, we performed differential 
expression analyses to identify the differential expressed 
genes (DEGs) that showed significant changes due to 
the miRNA perturbation. These genes may potentially 
be target genes for the miRNA. Each column of Table 2 
corresponded to one independent dataset that inves-
tigated a particular miRNA. In each column of Table 2, 
we cataloged the number of identified DEGs from one 

Table 1  Number of miRNA-gene pairs consistently identified 
as positives by predictive models with different frequency 
thresholds, and the proportion of these pairs reported in the 
validation database

Downsample

Percent 700 times 800 times 900 times 950 times

0.1% 5036798/0.94% 4397542/0.97% 3457560/1.02% 2653818/1.08%

0.4% 1049382/1.29% 736636/1.34% 408392/1.41% 227812/1.49%

0.7% 338755/1.46% 214150/1.53% 104061/1.64% 53939/1.70%

1.0% 143100/1.62% 86201/1.66% 40217/1.77% 20554/1.82%

3.0% 8431/2.19% 5115/2.25% 2680/2.46% 1719/2.39%

5.0% 2857/2.52% 1948/2.72% 1220/2.79% 871/3.21%

7.0% 1683/2.91% 1217/2.96% 829/3.02% 630/3.02%

9.0% 1212/3.14% 913/3.07% 656/3.20% 496/3.02%

10.0% 1062/3.11% 816/2.82% 581/2.75% 434/2.76%
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independent dataset, the number of predicted miRNA-
gene pairs we predicted for the miRNA, and the num-
ber of known target of the miRNA as documented in the 
five miRNA target databases. Additionally, we listed the 
intersection between the predicted targets and DEGs, 
along with the intersection between the known targets 
and DEGs. For example, in the existing literature, mir-
335 has been associated with 3,411 target genes. Of these, 
130 (4%) were detected as DEGs in the GSE68742 data-
set. Among our predicted 569 target genes for mir-335, 
31 (5%) were identified as DEGs. While a vast number of 
genes have been previously reported in the literature as 
targets of mir-335, only 4% of them manifested as differ-
entially expressed genes (DEGs) in the GSE68742 data-
set. Interestingly, our analysis, which predicted a smaller 
number of target genes, showed a slightly higher overlap 
of 5% with the DEGs. This observation was not an iso-
lated occurrence. Upon extending this analysis for all 9 
independent miRNA overexpression datasets, we found 
that our predicted miRNA target genes consistently dem-
onstrated similar level of overlap with DEGs compared 
to the known target genes in the five miRNA target data-
bases. This close alignment of overlap proportions indi-
cated that our predictive method is potentially as robust 
as the broader literature in identifying miRNA targets.

We also compared our model’s predictive perfor-
mance against 5 established tools: PicTar [35], RNA22 
[36], miRanda [37], TargetMiner [38], and PITA [39] 
using the 9 independent GEO datasets. For PicTar 
and RNA22, we assessed their performance using 
the precomputed predictions from the software plat-
forms, while for miRanda, TargetMiner, and PITA, we 
computed scores for each miRNA-gene pair based on 
miRNA and 3’ UTR sequencing data from Ensembl [40] 
and evaluated their performance. Since our model’s 

predicted miRNA target genes consistently exhib-
ited a similar overlap with DEGs as known targets, we 
extended this analysis to include predictions from other 
existing tools to evaluate whether their predicted tar-
gets also showed enrichment in DEGs within the GEO 
datasets. Specifically, for each of the five miRNAs in the 
independent datasets, we selected the top predicted 
targets from each tool, ensuring the number of selected 
targets matched the number of predictions generated 
by our model. We then calculated the overlap between 
these top predictions and the DEGs in each dataset. 
After that, we compared these overlaps among different 
methods across all the independent datasets. As shown 
in the last section of Table 2, all six methods achieved 
comparable levels of DEG enrichment across the 9 
GEO datasets, aligning closely with the known targets. 
To examine whether the differences of the predictive 
performance among the methods are statistically sig-
nificant, we performed paired t-tests on the overlap 
percentages (last section of Table 2) between each pair 
of methods. The p-values from these comparisons are 
shown in the Table  3. None of the p-values showed 
significance, suggesting that none of these methods 
outperformed the others. This is consistent with the 
observation that all methods achieve similar levels of 
DEG enrichment across all the independent datasets. 
In addition, we compared the predicted targets among 
different methods and found that each method identi-
fied distinct sets of targets, with only partial overlap. 
For the 5 miRNAs listed in Table 2, the shared targets 
between any two methods accounted for an average 
of 3.8% to 13.4% of the total predicted targets for each 
method. This pattern of low overlap underscores the 
variability in prediction outcomes across methods, and 
suggests that our approach complements existing tools 

Table 2  Comparison of predicted miRNA targets of different methods and known miRNA targets based on differentially expressed 
genes in independent datasets

miRNAs mir-335 mir-335 mir-192 mir-192 mir-26b mir-193b mir-193b mir-193b mir-21
Dataset GSE68742 GSE9586 GSE62951 GSE69990 GSE12091 GSE83690 GSE25215 GSE18510 GSE136665

DEGs 1162 1384 1377 1558 968 2108 1162 432 4677

Predicted targets 569 569 50 50 49 42 42 42 12

Known targets 3411 3411 1417 1417 1967 854 854 854 856

Overlap with DEGs:

  Our prediction 31 (5%) 26 (5%) 6 (12%) 4 (8%) 1 (2%) 7 (18%) 8 (20%) 2 (5%) 3 (25%)

  PicTar 15 (11%) 17 (13%) 5 (10%) 4 (8%) 2 (4%) 9 (21%) 3 (7%) 0 (0%) 0 (0%)

  RNA22 7 (6%) 6 (5%) 3.23 (6%) 3.23 (6%) 2.89 (6%) 4.25 (10%) 2.60 (6%) 0.89 (2%) 3.24 (27%)

  miRanda 10 (2%) 2 (0%) 5 (10%) 3 (6%) 4 (8%) 0 (0%) 1 (2%) 0 (0%) 2 (17%)

  TargetMiner 40 (7%) 32 (6%) 8 (16%) 2 (4%) 2 (4%) 5 (12%) 4 (10%) 1 (2%) 1 (8%)

  PITA 37 (7%) 50 (9%) 6 (12%) 1 (2%) 5 (10%) 10 (24%) 5 (12%) 2 (5%) 3 (25%)

  Known targets 130 (4%) 375 (11%) 87 (6%) 186 (13%) 154 (8%) 149 (17%) 98 (11%) 96 (11%) 259 (30%)
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by providing additional insights that may not be cap-
tured by sequence-based prediction methods alone.

Moreover, the GSE68742 dataset explored the influence 
of mir-355 overexpression on gene expression within 
gastrointestinal stromal tumors (GISTs) [41], which are 
neoplasms closely related to SARC as delineated in the 
TCGA. As listed in the first column of Table 2, the over-
lap between the DEGs in GSE68742 and our potential 
mir-355 targets from TCGA is 31 genes. Among these 
31 genes, 14 were up-regulated and 17 were down-regu-
lated in the GSE68742 dataset. Since this dataset focused 
on overexpression of mir-355, the up-regulated genes 
are expected to have positive correlations with mir-355, 
while the down-regulated genes should exhibit negative 
correlations, especially within the context of SARC. We 

examined the observed correlation direction between the 
miRNA and these target genes in our TCGA analysis. Of 
the the 14 up-regulated DEGs, 6 exhibited the expected 
positive correlations with mir-355. Of the 17 down-regu-
lated DEGs, 7 showed the expected negative correlations, 
as listed in the first section in Table 4. Such analysis of dif-
ferential expression and correlation directions was con-
ducted for each of the independent validation datasets. 
Overall, among the total of 88 miRNA-gene pairs (first 
overlap row in Table 2 and last column in Table 4) that 
showed differential expression in the validation datasets, 
we observed 40 whose directions of differential expres-
sion in the validation datasets agreed with their direc-
tions of miRNA-gene correlation in our TCGA analysis. 
These numbers translated to 45% of alignment between 

Table 3  P-values from paired t-tests comparing DEG overlap percentages across predictive methods

Our Prediction PicTar RNA22 miRanda TargetMiner PITA Known Targets

Our Prediction - 0.84 0.68 0.15 0.13 0.54 0.68

PicTar 0.84 - 0.80 0.14 0.11 0.63 0.51

RNA22 0.68 0.80 - 0.29 0.26 0.92 0.41

miRanda 0.15 0.14 0.29 - 0.87 0.15 0.06

TargetMiner 0.13 0.11 0.26 0.87 - 0.02 0.05

PITA 0.54 0.63 0.92 0.15 0.02 - 0.25

Known Targets 0.68 0.51 0.41 0.06 0.05 0.25 -

Table 4  Examination of the relationship between the correlation direction of the predicted miRNA-gene pairs and their regulatory 
direction

miRNA Datasets Cancer context Regulatory 
direction

Sign of correlation Gene

mir-335 GSE68742 SARC​ down negative CFLAR, FIGN, MSRB3, SOD3, RGS2, SGK1, PMP22

down positive CCDC3, LDB2, DZIP1, KLF2, CXCL12, NTRK3, PABPC5, RBMS3, RCBTB2, 
RUNX1T1

up negative A2M, ACTA2, DUSP3, TNFSF10, SGCB, SPARCL1, SSFA2, FAS

up positive EGR2, JDP2, PRICKLE1, LOC728392, MATN2, LMO2

mir-335 GSE9586 LUAD down negative CD247, DPYD, F3, LHFP, PTX3, MNDA, MT1E, MYL9, SCD5, SLFN11

down positive OSR2

up negative ADAM23, CALD1, CALHM2, CTTNBP2NL, DIXDC1, DUSP3, FBXL7, GCC2, 
GLI3, HVCN1, JAK1, MCTP1, SGCB, RHOJ, PCDHGA9

mir-192 GSE62951 LIHC down negative E2F7, KIF2C, MTBP, NCS1, RAD54L

up positive KIF4A

mir-192 GSE69990 OV down negative SERTAD2

down positive BIRC5, EZH2, PLK1

mir-26b GSE12091 CESC down positive C1S

mir-193b GSE83690 SARC​ down positive C9orf140, CCNB2, CENPA, KIF23, KIF2C, NUSAP1, TROAP

mir-193b GSE25215 PAAD up positive CCNB2, CDC25C, CENPO, KIF23, KIF2C, PTTG1, TROAP, TTK

mir-193b GSE18510 SKCM up positive BIRC5, KIF2C

mir-21 GSE136665 COAD up negative ACADSB, NAP1L5

up positive AKAP11
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the differential expression after miRNA perturbation and 
the correlation in TCGA. Given the fact that TCGA data 
was generated from primary tumor samples while most 
of the independent datasets were generated from in vitro 
experiments, the 45% of alignment represented interest-
ing miRNA target genes that exhibited robust regulatory 
patterns in different experimental designs, and can serve 
as hypotheses for further experimental validation.

Discussion
In this study, we aimed to identify potential miRNA-gene 
associations that have not been previously reported in the 
literature. Specifically, we used multi-omics data of cancer 
patients to compute correlate features for miRNA-gene 
pairs, leveraged existing miRNA target databases to define 
class labels, and applied XGBoost to train machine learn-
ing models to predict potential miRNA-gene relationships. 
Among the 871 predicted significant miRNA-gene pairs, 
5.5% were validated using independent held-out miRNA 
target databases and literature survey, while the remaining 
could serve as promising hypotheses for future experimen-
tal validation. In addition, we further validated the identi-
fied miRNAs by analyzing gene expression profiles before 
and after specific miRNA perturbations in multiple inde-
pendent datasets, and we consistently observed an align-
ment between the correlation direction of the predicted 
miRNA-gene pairs and their regulatory patterns presented 
in these datasets. Although there were instances where the 
correlation direction diverged from their regulatory pat-
terns in the independent datasets, such discrepancies can 
be attributed to the fact that these validation datasets were 
derived from cell lines, while the correlations we calculated 
were based on primary tumor samples profiled by TCGA.

This study is not without limitations. A key issue is 
that the existing literature provides only a limited num-
ber of confirmed miRNA-gene interactions. The lack 
of data makes it difficult for machine learning models 
to identify all potential relationships due to the imbal-
ance between confirmed interactions and unreported 
ones. This imbalance has significant impact on our 
machine learning model. When working with such 
imbalanced data that was dominated by the negative 
class, the model is biased toward predicting negatives. 
To address this, we performed data downsampling to 
reduce the prevalence of the negative class and trained 
our model on various downsampled versions of the data. 
By doing so, we ensured that the model could focus 
more on potential miRNA-target relationships rather 
than being overwhelmed by the prevalence of negative 
pairs. The imbalance also means that our approach can-
not be expected to capture all possible miRNA-target 
interactions without generating a large number of false 
positives. Instead, our goal was to focus on identifying 

high-confidence predictions, which may serve as hypoth-
eses for further experimental validation. As we continue 
to refine our models, incorporating additional datasets 
and experimental techniques may help improve the pre-
dictive power of our approach.

Nevertheless, our study introduced a new methodology 
to discover previously unreported miRNA-gene asso-
ciations, advancing a comprehensive understanding of 
miRNA-gene interactions. The findings from this inves-
tigation offer insight into miRNA regulation and hypoth-
eses for experimental explorations.

Methods
Data access
The miRNA expression data was downloaded from 
TCGA Genomic Data Commons (https://​portal.​gdc.​can-
cer.​gov/). A total of 1,881 miRNAs were included in this 
study. The miRNA expression data was subsequently log-
transformed for analysis. The gene expression data were 
downloaded from ucsc xena (http://​xena.​ucsc.​edu) (Illu-
minaHiSeq, level 3 expression), which comprised a total 
of 20,530 genes. The miRNA and gene expression data 
covered 10,004 patients across 32 cancer types (glioblas-
toma was excluded from this study due to the small sam-
ple size in miRNA data).

In addition, we collected established miRNA targets 
from five different databases (mir2Disease, miRecords, 
TarBase, miRTarBase, and TargetScan) to label each 
miRNA-gene pair during model training. In total, 
197,877 known miRNA-gene relationships were included 
in this study.

For the purpose of validating the predicted miRNA-gene 
pairs, a total of 9 datasets were collected from the GEO data-
base. These datasets were specifically selected to contain gene 
expression profiles both before and after specific miRNA 
perturbations. These datasets were GSE68742, GSE9586, 
GSE62951, GSE69990, GSE12091, GSE83690, GSE25215, 
GSE18510, and GSE136665.

To compare our method with other existing tools, such 
as, miRanda, TargetMiner, and PITA, we downloaded 
924 human miRNA sequences and 15,705 3 ′ UTRs from 
Ensembl database (https://​useast.​ensem​bl.​org/​index.​html) 
using BiomaRt tool.

Correlation analysis between miRNAs and genes
We performed a Pearson’s correlation analysis between 
miRNA expression and gene expression for each cancer 
type. To mitigate the effect of small sample sizes, we cal-
culated correlation coefficients only for miRNA-gene pairs 
with expression data from at least 10 patients per cancer 
type. Pairs that could not be calculated in more than three 
cancer types were excluded from the study. All statistical 
tests were performed using standard Python functions.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://xena.ucsc.edu
https://useast.ensembl.org/index.html


Page 8 of 9Lin and Qiu ﻿BMC Genomics           (2025) 26:77 

Construction of prediction model
We used XGBoost (Python library version 2.1.1) to per-
form binary classification, predicting potential miRNA-
gene relationships. The analysis involved over 22 million 
miRNA-gene pairs, each labeled as either positive or nega-
tive based on existing miRNA target databases. Only 0.12% 
of the pairs were labeled as positive, representing con-
firmed miRNA-gene relationships, while the remaining 
99.88% were labeled as negative since they were not docu-
mented in the databases. To address this significant class 
imbalance, we downsampled the negative class at various 
rates (ranging from 0.1% to 10%). For each downsampled 
version of the data, samples (miRNA-gene pairs) in the data 
were split, with 80% used for training and 20% for testing. 
Model prediction performance was evaluated using the 
Area Under the Curve (AUC) metric. At each downsam-
pling level, we trained 1000 models, which were applied 
only to the negative class. MiRNA-gene pairs consistently 
predicted by these models were identified as potential, pre-
viously undiscovered miRNA target relationships.

Literature survey
A literature search was performed using PubMed. We 
programmatically searched the PubMed database using 
custom Python scripts. We searched through PubMed 
for all keywords in all fields, including title, abstract, and 
main texts of the articles.

Differential expression analysis
In each of the independent datasets, we performed a 
t-test to identify genes that expressed differently before 
and after the specific miRNA perturbations. Genes were 
considered as DEGs if the significant p-value <0.05.
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