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Abstract 

Background Mangoes (Mangifera indica L.) are a widely grown fruit tree crop across the world, but breeding new 
varieties can take 15-20 years due to its long juvenile period and high heterozygosity. Marker-assisted selection can 
accelerate breeding new mango cultivars with desirable traits for fruit quality, storage, horticulture, pest and disease 
resistance, and nutrition.

Results To achieve this, a genome-wide association study (GWAS) was conducted to discover molecular markers 
for 14 morphometric and economically important fruit traits of 161 mango accessions with diverse genetic back-
grounds. These traits included pulp and brix; fruit weight, length, thickness, and width; stone weight, length, thick-
ness, and width; and seed weight, length, thickness, and width. In this report, we employed the fixed and random 
model circulating probability unification (FarmCPU) model for conducting GWAS using 135,079 high-quality SNP 
markers. These analyses revealed 103 SNPs that were significantly associated with these traits. Of these markers, 7 
were commonly associated with different traits, while 96 markers were uniquely associated with specific traits.

Conclusions To choose the most promising mango accessions for future breeding and for closing genetic gaps 
among the accessions and increasing genetic diversity, a new selection method is suggested based on phe-
notypic traits such as high-yielding mango fruit cultivars, number of reference alleles, and genetic distance 
among the selected genotypes. Based on these criteria, 20 accessions were identified as the most promising parents 
for crossing to produce high mango yield. Gene annotation of the significant markers revealed candidate genes cod-
ing for important proteins, enzymes, and transcription factors associated with fruit development traits.

Keywords Mango germplasm, Marker traits association, Population structure, Single nucleotide polymorphism, Fruit 
development

Background
Mangoes (Mangifera indica L.) are among the most 
widely consumed fruits worldwide and are referred 
to as the "king of fruits" [1, 2]. Mangoes are grown in 
more than 100 countries in tropical and subtropical 
areas around the world from latitudes 37° N in Sicily to 
33° S in South Africa [3]. India, Indonesia, China, Paki-
stan, and Mexico are the top five producing countries 
[1]. Although production data only on mangoes are not 
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reported, when combined with mangosteens, and gua-
vas, world production of mangos, reached slightly over 
59 million metric tons in 2022, an increase from approxi-
mately 57 million tons in 2021 (https:// www. fao. org/ faost 
at/). Mangoes rank as the fifth most produced fruit crop 
worldwide. Mangoes are members of the Anacardiaceae 
family and genus Mangifera [4]. Although M. indica is 
the most commonly planted species, there are numer-
ous other Mangifera species that also produce edible 
fruits, including M. altissima (also known as Paho) and 
M. rubropetela (also known as Red Petaled Mango) [1, 5]. 
Mango fruits has a pleasant aroma and are mostly eaten 
fresh, however, a substantial amount is also process into 
making powder, juice, jam, and nectar [2, 6].

Various fruit quality factors such as weight, size, colour, 
aroma, flavour, taste, and texture influence consumer’s 
preference and determine commercial value of mango 
cultivars. However, in response to increasing consumer 
interest in health-promoting foods, nutritional content 
has emerged as an additional factor in consumer pref-
erence [7]. Furthermore, the quality of mangoes and 
their bioactive compounds are affected by the ripening 
stage during harvest and during storage [7, 8]. Older M. 
indica varieties and other species that thrive in North-
East India, the Andaman Islands, and across South-East 
Asia demonstrate that the fruit of early domesticated 
mango types is often small [9]. Mango fruit size has long 
been a top breeding goal, and as a result, highly traded 
mango types now average 400 g in size [5, 9–13]. Tran-
scription factors and plant hormones affect fruit growth 
in both climacteric and non-climacteric fruits. Different 
genes regulate fruit size, shape, and weight, and abnor-
mal expression of these genes can cause physiological 
disorders [14]. Mango fruits are characterized as climac-
teric, in which ripening continues after harvest primar-
ily attributed to an increased production of autocatalytic 
ethylene and enhanced respiration. Molecular markers 
such as simple-sequence-repeat (SSRs) associated with 
fruit weight, width, volume, total soluble solids (TSS), 
titratable acidity, ascorbic acid, and total sugars, together 
with decreasing sugars, are useful in the selection pro-
cedure for M. indica varieties and seedlings that exhibit 
desirable fruit traits [15, 16].

Due to the long juvenile period and cost-prohibitive 
horticultural operations involved with generating, main-
taining and evaluating fruit quality traits in mango breed-
ing populations, development and release of new mango 
cultivars is very slow. In addition, the polygenic nature of 
most fruit quality traits further exacerbates selection of 
these traits. Development and application of high-density 
molecular markers for fruit quality traits at the seedling 
stage can significantly accelerate and simplify breed-
ing new mango cultivars. Towards the application of 

marker-assisted selection (MAS) and quantitative traits 
loci (QTLs) mapping, several mango genetic maps based 
on restriction fragment length polymorphism (RFLP) and 
amplified fragment length polymorphism (AFLP) have 
been created [17–19]. Using 80K SNP chip, a mango link-
age map as well as QTL mapping for fruit color and firm-
ness have been reported, which, in addition to the work 
reported in this manuscript, provides foundations for 
future studies [20]. However, the small number of map-
ping populations and markers, does not allow drawing 
valid conclusions and application of markers in breeding 
programs. Recently, genome sequencing and using whole 
genome resequencing of more than a total of 250 differ-
ent cultivars [1, 21–23], high density single nucleotide 
polymorphic (SNP) markers have been developed, which 
has started to discover markers associated with fruit 
quality traits with high confidence using genome-wide 
association studies (GWAS) [21]. For example, these 
markers are expected to be developed into cost-effective 
platforms such as competitive allele specific PCR (KASP) 
and applied in marker assisted selection in breeding 
programs. Among these, those markers associated with 
qualitatively inherited traits that display mendelian seg-
regation such as polyembryony and disease resistance R 
genes are likely to be used more widely followed by those 
associated with quantitative traits that display polygenic 
segregation using genomic selection (GS) tools.

Different genes are involved in fruit development traits 
such as Mitogen-activated protein kinases (MAPKs) 
[24]. Serine/threonine protein kinases called MAPKs 
are involved in the phosphorylation-based upstream and 
downstream control of signalling cascades. Plant fruit 
growth is mediated by MAPK cascades through the eth-
ylene signalling system [14, 24, 25]. Ten MAPKK and 
77 MAPKKK genes were shown to be involved in tissue 
growth, fruit development and ripening, and response to 
abiotic stressors such as cold, drought, and salt, accord-
ing to an accurate transcriptome of bananas [26]. Dillon 
et al., [22] identified two genomic regions, one on linkage 
group four (LG4) and one on LG7 containing 28 candi-
date genes associated with fruit size in the mango map-
ping population ‘Tommy Atkins’ x ‘Kensington Pride’ 
during complete final ‘Tommy Atkins’ genome assembly.

GWAS is a powerful tool for identifying markers asso-
ciated with complex traits in unstructured populations, 
such as breeding lines and germplasm collections [27–
29]. Compared to bi-parental populations, these GWAS 
panels display higher recombination rates thus signifi-
cantly improving mapping resolutions [22, 23]. Com-
pared to annual crops, due to the complexity of fruit crop 
genomics, high heterozygosity, long generation times, 
and limited genomics resources, identifying associated 
genetic markers in fruit crops is challenging [24, 25]. 
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The application of GWAS and marker-assisted selection 
(MAS) tools to fruit quality traits that in fruit tree crops 
can be measured only after several years of vegetative 
growth, have been limited [30–33]. In this study, using 
whole genome resequencing, we identified high-quality 
high-density SNP markers in a genetically diverse panel 
of M. indica accessions. Utilizing these markers, we iden-
tified markers associated with morphometric fruit-qual-
ity traits that will be useful for marker-assisted selection 
in mango breeding programs.

Materials and methods
Plant material
The cultivars used in this study are maintained at the 
United States Department of Agriculture, Agricultural 
Research Service (USDA-ARS), Subtropical Horticulture 
Research Station (SHRS) located in Miami, Florida. The 
average temperature was 75.60°F, ranging from 62°F to 
90°F, with an average annual precipitation of 60.51 inches 
(Miami-Dade County Weather). A total of 269 M. indica 
accessions originating from various parts of the world are 
maintained at this station. Of these, complete molecular 
markers data and substantially diverse phenotypic data 
for a set of 161 accessions were available, which were 
used in this study (see below).

Mango morphometric fruit quality traits
The selected 161 accessions displayed extensive variation 
in morphological traits. Nineteen accessions produced 
small fruit (< 200g), 115 accessions produced medium 
size fruit (200-500g), and 27 accessions produced large 
fruits (> 500g). A comprehensive list of all Mangifera sp. 
accessions included in this study is provided in Table S1. 
Mature mango fruits (12–36) were collected over a nine-
year period (2013–2022), and 14 morphometric fruit 
quality traits were evaluated. These traits included fruit 
weight, fruit length, fruit thickness, fruit width, stone 
weight, stone length, stone thickness, stone width, seed 
weight, seed length, seed thickness, seed width, pulp, and 
Brix, which are commercially important and influence 
consumer’s preference and marketability. The pulp, which 
denotes the mango fruit’s soft, juicy, or fleshy part, was 
estimated as the quotient between fruit weight and stone 
weight. Conversely, brix is a measure of the dissolved sol-
ids in a liquid and is commonly employed to determine 
the dissolved sugar content of an aqueous solution. One 
degree Brix equals 1 gram of sucrose in 100 grams of 
the solution. Brix measurements were obtained using a 
PAL-1 refractometer (ATAGO, WA, USA). The Interna-
tional Plant Genetic Resources Institute (IPGRI) meas-
urement guidelines were followed for the traits reported 
in this study [34]. The Shapiro-Wilk test was conducted 
to identify the normal distribution for each trait and 

the histograms were visualized using R software. The 
Pearson’s correlation coefficient was calculated among 
all traits using the “cormat” code in R software and the 
upper triangle heatmap was visualized using R “ggplot2” 
package.

 DNA extraction and SNP calling
Biosearch Technologies, LGC (Middleton, WI) used a 
unique procedure to isolate DNA from leaf samples of all 
mango accessions. Using a Quant-iTTM dsDNA Assay 
Kit, the quality of the DNA was evaluated. To prepare 
the library, 500 ng of gDNA were shared using a Cova-
ris® LE220 Focused Ultrasonicator. Then, using the Bio-
search Technologies NxSeq® UltraLow and NxSeq HT 
Dual Indexing Kit, normalization was performed for the 
creation of shotgun fragment libraries. Libraries were 
sequenced on an Illumina NovaSeq™ 6000 instrument at 
the University of Wisconsin Biotechnology Center utiliz-
ing the Illumina 150x PE platform. The reads underwent 
simultaneous quality trimming and adapter clipping with 
a minimal final length of 50 bp and a mean Q score of 
20, utilizing a 10 bp sliding window. Using BWA-mem 
with default parameters, cleaned reads were aligned to 
the ‘Alphonso’ reference genome CATAS_Mindica_2.1 
(GCA_011075055.1) [1]. Duplicates with default param-
eter settings were marked with the Genome Analysis 
Toolkit (GATK) Picard Tools [35].

SNPs were called for each sample independently using 
DeepVariant v1.4.0 [36] and --model type = WGS using 
a Singularity container that was constructed from a pre-
built docker container (https:// github. com/ google/ deepv 
ariant). Using GLnexus v1.2.7. with --config DeepVari-
antWGS for Whole Genome Sequencing, the resultant 
gVCF files were merged into a single vcf file. GLnexus 
was run on a Singularity container, which was con-
structed from a docker container (https:// github. com/ 
dnane xus- rnd/ GLnex us). Using vcftools, SNPs were fil-
tered with the following criteria: quality ≥ 30, missing call 
rate = 0.9, min_depth = 6, max_depth = 1000, minor allele 
frequency = 0.05. A set of 135,079 high-quality SNPs 
(MAF > 0.05, missed call rate < 0.1, median gap = 0.306 
kb, average gap = 2.645 kb) was obtained. The SNP dis-
tribution density on chromosomes was visualized using 
CMplot [37] and custom R code based on the Alphonso 
reference genome (GCA_011075055.1) CATAS_Min-
dica_2.1 [1]. The high quality 135,079 SNPs markers are 
persented in Table S2.

Analysis of linkage disequilibrium (LD) and population 
structure
The analysis of linkage disequilibrium (r2) of each pair of 
the 135.079 SNPs was calculated using TASSEL v.5.2.5 
software [38]. Moreover, for each chromosome, the LD 

https://github.com/google/deepvariant
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was also calculated to understand the structure of LD in 
the current population. The significant LD between each 
marker pair was determined using a Bonferroni correc-
tion set at a significance level at 0.01. The LD decay was 
calculated according to Remington et al. [39] using R ver-
sion 4.3.3.

A Bayesian model-based method using 135,079 SNPs 
was employed to assess the potential number of subpop-
ulations in the accessions reported in this study. The pop-
ulation structure study was conducted using STRU CTU 
RE 3.4.0, as described [40] using k values ranging from 1 
to 10. For each k-value, three independent analyses were 
conducted with a burn-in iteration of 100,000, followed 
by 100,000 Markov chain Monte Carlo (MCMC) replica-
tions [41]. The optimal value of k for the present popula-
tion was calculated using STRU CTU RE SELECTOR [42] 
(https:// lmme. ac. cn/ Struc tureS elect or/). The fixation 
index  (FST) and the expected heterozygosity  (He), which 
were  determined using STRU CTU RE 3.4.0 [40], repre-
sent the proportion of genetic variation within a subpop-
ulation compared to the total genetic variation.

Genome‑wide association studies (GWAS)
The GWAS were performed for all traits using the rMVP 
R package [43]. In this report, we used three different 
GWAS models: (1) the Fixed and random model Circu-
lation Probability Unification (FarmCPU), (2) the Gen-
eralized Linear Model (GLM), and (3) the Mixed Linear 
Model (MLM). The best fitted model for each trait were 
selected based on expected and observed p-values in 
QQ-plots. To account for structuring and kinship (Kin) 
in the data, principal component analysis (PCA), and 
PCA + Kin were added to each model separately. Com-
bination of stepwise regression (fixed effect models) and 
mixed linear models enhances efficiency of FarmCPU. 
The FarmCPU model avoids the confusion between kin-
ship and the genes driving an attribute in a mixed lin-
ear model by replacing kinship with a set of markers 
linked with the causal genes. According to X. Liu et al., 
[44], to prevent model overfitting, the related markers 
are optimized using a maximum likelihood technique in 
MLM with variance and covariance structures defined 
by the linked markers. Significant markers associated 
with the traits were discovered using a p-value < 0.0001. 
The targeted marker allele was identified as the one that 
increases the traits under investigation.

Candidate genes identification and gene ontology 
enrichment analysis
Genes closely located to significant markers were identi-
fied and further examined for their molecular and bio-
logical function as follows. Using the GFT file extracted 
from https:// www. ncbi. nlm. nih. gov/ datas ets/ genome/ 

GCF_ 01107 5055.1/ for the "Alphonso" reference genome 
(CATAS_Mindica_2.1;GCA_011075055.1), custom Python 
scripts were designed to verify the genomic position of 
each markers to specific genes [1]. TBtools [45] was 
used to perform the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway and Gene Ontology (GO) 
enrichment analysis. The GO ID and KEGG ID was 
extracted using eggNogmapper (http:// eggnog- map-
per. embl. de/). The signaling pathways were drawn using 
the KEGG web program (https:// www. genome. jp/ kegg/ 
pathw ay. html).

Results
Phenotypic analysis of the mango varieties
The descriptive analyses including minimum, maxi-
mum, and mean for all genotypes are presented in 
Table  1. The distribution of 14 morphometric fruit 
traits  data for all accessions is presented in Figure 
S1. Normal frequency distributions were observed in 
most of the morphometric traits with a little skew-
ness for some traits using Shapiro-Wilk test (Table S1). 
Wide ranges were observed in fruit weight from 80.71 
to 931.33 g, fruit length from 61.88 to 189.68 mm, fruit 
thickness from 48.41 to 111.25 mm, and fruit width 
from 38.33 to 97.04 mm. The stone weight and stone 
length also displayed a wide range of values, ranging 
from 13.44 to 57.46 g and 39.62 to 156.17 mm, respec-
tively. For stone thickness, the range was 25.74 to 54.27 
mm, while for stone width, it was 12.29 to 27.14 mm. 
Furthermore, there was a broad variation in the seed 
size attributes, which ranged from 6.63to 36.49 g for 

Table 1 Descriptive statistics for morphometric fruit quality traits 
in Mango

Min Minimum value observed, Max Maximum value observed, SD Stander 
deviation, SE Stander error of the mean

Trait Mean Min. Max. SD SE

Fruit Weight (g) 359.83 80.71 931.33 147.57 11.63

Fruit Length (mm) 105.13 61.88 189.68 21.23 1.67

Fruit Width (mm) 79.11 48.41 111.25 11.84 0.93

Fruit Thickness (mm) 71.15 38.33 97.04 11.05 0.87

Stone Weight (g) 31.43 13.44 57.46 8.56 0.67

Stone Length (mm) 82.07 39.62 156.17 19.87 1.61

Stone Width (mm) 38.72 25.74 54.27 5.38 0.42

Stone Thickness (mm) 19.48 12.29 27.14 2.48 0.20

Seed Weight (g) 18.74 6.63 36.49 5.41 0.43

Seed Length (mm) 56.34 35.68 78.08 8.19 0.65

Seed Width (mm) 29.95 18.02 40.66 3.91 0.31

Seed Thickness (mm) 15.83 10.15 23.52 2.14 0.17

Pulp 11.54 3.82 28.80 3.94 0.31

Brix 16.10 9.92 22.40 2.42 0.19

https://lmme.ac.cn/StructureSelector/
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_011075055.1/
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_011075055.1/
http://eggnog-mapper.embl.de/
http://eggnog-mapper.embl.de/
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
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seed weight, 35.68 to 78.08 mm for seed length, 18.02 
to 40.66 mm for seed thickness, and 10.15 to 23.52 
mm for seed width. Furthermore, there was significant 
variance in the brix values across the mango cultivars, 
ranging from 9.92 to 22.40, and the pulp, ranging from 
3.82 to 28.80.

The Pearson’s correlation coefficient analysis among 
all morphometric fruit quality traits is presented in 
Figure S2. These analyses  revealed varying but high 
and significant correlation among most traits except 
the brix and pulp. The highest strong positive corre-
lation was found between fruit width and fruit thick-
ness (r = 0.95***) followed by fruit length and stone 
length (r = 0.94***), then fruit weight and fruit width 
(r = 0.89***). No significant or very low significant 
correlations were observed between brix and the rest 
of the traits. A negative correlation was observed 
between fruit thickness and brix (r=−0.35**) and fruit 
width and brix (r=−0.33**)

Linkage disequilibrium and population structure analysis
LD was estimated by calculating the squared correla-
tion coefficient  (r2) for all the 135,079 SNPs markers. 
Genome-wide LD decayed with increased genetic dis-
tance. Specifically, LD decayed to its half at 3.73 Mb 
(37391 bp) for whole genome (Fig.  1a). The model-
based analysis of population structure along with the 
Delta K method of Evanno et al., [34] revealed the pres-
ence of two genetically distinct clusters, K = 2 Fig.  1b, 
which corresponded to the majority of cultivars from 
the United States, India, Southeast Asia and Carib-
bean countries. These results are illustrated in Fig. 1C, 
which shows a clear peak (Δ)K = 2. With the arbitrary 
cutoff value of 65% ancestry for assignment, 73 culti-
vars (45.34%) were attributed to one cluster (SP1) and 
88 cultivars (54.65%) to the other cluster (SP2). The 
germplasm collection of mangoes in our study includes 
cultivars that were developed from India, Southeast 
Asia, South America and the Pacific islands, Florida, 
Egypt, and Israel. The PCA showed that the 161 mango 

Fig. 1 Genetic diversity and population structure analysis of mango cultivars. a Scatterplot showing linkage disequilibrrum (LD) decay estimated 
by plotting  (r2) against genetic distance (bp) in 161 mango accessions. The green vertical line indicates the threshold point where LD dropped 
to 50% of its maximum value. The LD decay value at the cutoff point is indicated on the x-axis with green font. b The estimated population structure 
of 161 mango accessions using k=2; on (k=2) SP refers to subpopulation using STRU CTU RE. c Delta (Δ)K for determining the optimal number 
of subpopulations (k=2). d PCA scatter plot based on the first two components
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accessions were divided into two different clusters 
(Fig. 1d). A cluster in red color contained most Indian 
accessions, as well as those from Southeast Asia, China, 
and Egypt (SP1), and the cluster in green contained 
accessions from the United States, South America, 
Israel, and the Caribbean (SP2). A significant genetic 
variance was detected between the two subpopula-
tions, as well as the average genetic distance (expected 
heterozygosity  He) among mango genotypes within 
each subpopulation (Table  2). The maximum  He was 
observed in SP2, with a value of 0.305, while SP1 exhib-
ited a score of 0.281. The  FST was computed to evaluate 
the population substructure and is recognized as the 
most effective measure for analyzing the overall genetic 
variance between the two subpopulations. The  FST val-
ues for SP1 and SP2 were 0.247 and 0.256, respectively.

Genome wide association studies for morphometric fruit 
quality traits
The GWAS results for FarmCPU model showed 103 sig-
nificant SNPs associated with 14 morphometric fruit 
quality traits. Even though the GLM model identified 
260 significant markers, the comparison of expected and 
observed p values in the QQ plot analysis demonstrated 
that FarmCPU was the most effective GWAS model 
for each trait (Figure S3). On the other hand, the MLM 
model revealed just one significant marker for each of the 
three traits brix, fruit thickness, and fruit width, while no 
significant markers were found for the rest of the traits. 
The Manhattan plots for all the traits using GLM model 
were presented in Figure S4. Consequently, the signifi-
cant markers that the FarmCPU model identified will 
be the focus of this study. Figure  2a displays the distri-
bution of all 103 significant single nucleotide polymor-
phisms (SNPs) across the chromosomes of mango. These 
markers were covered all the mango chromosomes. The 
greatest number of significant SNPs (12) was observed 
on chromosome 3, while the lowest number of signifi-
cant SNPs (1 SNP) was detected on chromosomes 15. 
Stone weight had the highest number of significant SNPs 
(18 SNPs) followed by seed weight (11 SNPs), then fruit 
weight (9 SNPs). While the lowest number of significant 
SNPs (2) showed in stone width (Fig. 2b). The Manhattan 

Table 2 Population structure analysis for genetic differentiation 
in 161 mango accessions

FST Fixation Index (significant divergences), Exp. Heterozygosity Expected 
heterozygosity (average distances), No. of accession Number of genotypes in 
each subpopulation

Sub Population FST Exp. Heterozygosity No. of 
accession

SP1 0.247 0.281 79

SP2 0.256 0.305 113

Fig. 2 lot Distribution of alleles associated with mango fruit quality traits. a distribution of 103 significant SNPs across mango chromosomes b 
the distribution of 103 significant markers across the 14 morphometric fruit quality traits
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plot for all morphometric fruit quality traits is presented 
in Fig. 3. Detailed information on the significant markers 
associated with these traits using FarmCPU is presented 
in Table  S3, and the significant markers detected using 
GLM were presented in Table  S4. Furthermore, a sum-
mary of the significant markers identified for each trait is 
presented in Table 3. The p value varied from 1.25984E-10 
to 7.40E-06 for markers NC_058152.1_5147960_G_A 
and NC_058148.1_13940961_A_G, respectively. The 

maximum allele effect was observed in marker NC_ 

058142.1_ 17753741_T_C, which was significantly asso-
ciated with fruit weight. The lowest allele effect was 
observed in marker NC_058155.1_12601679_A_T, which 
was significantly associated with fruit weight.

Significant pleiotropic effect markers
The GWAS results revealed that 7 common  SNP 
markers are significantly associated with at least two 

Fig. 3 Manhattan plots displaying SNP marker-trait associationsed for 14 morphometric fruit traits using FarmCPU GWAS model. Analyses 
were derived from 135,079 SNPs markers distributed across 20 chromosomes. Significant SNPs surpassing the -log10(p) significance threshold 
values, indicated by horizontal lines, are highlighted in red. Color bars on the top right represent the distribution of SNP markers on each 
chromosome displayed at the bottom of each chromosome bar graph



Page 8 of 15Eltaher et al. BMC Genomics          (2025) 26:120 

phenotypic traits suggesting possible pleiotropic effect 
or indirect effects of these markers on mango morpho-
metric fruit quality traits. Interestingly, these common 
markers were also detected by the GLM model, which 
even though did not reveal  several markers detected 
by FarmCPU. Table  4 provides a detailed descrip-
tion of the results for 7 common markers that are sup-
ported by various GWAS models. These markers were 
distributed on 6 chromosomes (3, 4, 7, 17,19 and 20). 
The lowest p value 9.41E-08 was observed for marker 
NC_058140.1_12343085_C_A,  which associated with 3 
different traits: fruit weight, fruit thickness and fruit width; 
this marker was reported in the three different models 
MLM, GLM and FarmCPU. The largest p value 7.34E-06 
was observed for marker NC_058139.1_22916155_G_A, 
which was significantly associated with two differ-
ent traits, seed length and stone weight, in two models 
GLM and FarmCPU. The maximum allele effect 8.62 was 
observed for marker NC_058156.1_9437676_A_G, which 
was significantly associated with seed weight and seed 
length in two models. The lowest allele effect − 101.41 was 
observed for  in marker NC_058140.1_12343085_C_A, 
which was significantly associated with fruit weight, fruit 
thickness and fruit width in three different models.

Table 3 GWAS analysis summary for morphometric fruit quality 
traits describing the range of p-values, the range of allele effects, 
and the number of SNPs linked to these traits

Trait No. of Markers P value Range Allele effect 
Range

Min. Max Min. Max

Fruit Weight 9 8.35E-07 7.40E-06 −65.24 80.75

Fruit Length 7 7.71E-08 5.88E-06 −8.62 13.7

Fruit Thickness 4 1.11E-06 5.48E-06 −7.37 5.32

Fruit Width 8 2.61E-10 3.90E-06 −5.33 6.69

Stone Weight 18 3.02E-07 7.34E-06 −5.8 7

Stone Length 6 1.14E-09 3.52E-06 −5.4 11.72

Stone Thickness 6 7.49E-08 5.79E-06 −7 0.91

Stone Width 2 2.18E-06 6.47E-06 −1.32 2.2

Seed Weight 11 2.12E-06 6.77E-06 −4.08 4.89

Seed Length 6 1.44E-09 2.40E-06 −3.52 4.86

Seed Thickness 6 1.26E-10 4.95E-06 −0.96 3.18

Seed Width 6 3.83E-07 6.94E-06 −7.62 3.58

Pulp 7 1.05E-09 4.11E-07 −1.81 2.09

Brix 7 2.49E-09 2.91E-06 −0.87 1.76

Table 4 Summary of GWAS results for the common significant markers supported by different GWAS models using 135,079 SNPs

GWAS Model Associated Traits Marker ID Chromosome Position Allele Effect P-value

FarmCPU Seed Length 
and Stone Weight

NC_058139.1_22916155_G_A 3 22916155 3.44 8.83E-07

5.58 7.34E-06

GLM stone weight 5.58 7.34E-06

FarmCPU Fruit Thickness, Fruit 
Weight, and Fruit 
Width

NC_058140.1_12343085_C_A 4 12343085 −7.37 1.11E-06

−59.01 8.35E-07

−5.33 9.41E-08

GLM Fruit Thickness, Fruit 
weight and Fruit 
Width

−7.51 6.4E-07

−101.41 3.4E-06

−9.55 1.56E-08

MLM Fruit Thickness 
and Fruit Width

−7.58 6.43E-06

−9.25 1.14E-06

FarmCPU Seed Thickness 
and Stone Thickness

NC_058143.1_10614972_T_G 7 10614972 −0.96 3.825E-06

−1.40 7.49E-08

FarmCPU Stone Weight 
and Seed Weight

NC_058143.1_9040790_C_T 7 9040790 2.94 2.12E-06

4.62 2.68E-06

GLM Stone Weight 4.62 2.68E-06

FarmCPU Stone Weight 
and Seed Weight

NC_058153.1_11623544_A_G 17 11623544 −3.70 4.89E-06

−5.80 6.56E-06

GLM Stone Weight −5.80 6.56E-06

FarmCPU Fruit Width and Fruit 
Thickness

NC_058155.1_12441789_G_A 19 12441789 −5.08 2.79E-06

−3.70 6.74E-08

GLM Fruit Width −5.83 4.52E-06

FarmCPU Seed Weigh and Seed 
Length

NC_058156.1_9437676_A_G 20 9437676 4.86 4.86E-07

4.89 2.22E-06

GLM Seed Weigh and Seed 
Length

8.62 2.39E-06

5.46 2.46E-06
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Gene annotation of significant markers associated 
with morphometric fruit quality traits
The candidate genes associated with significant SNPs 
detected by GWAS for mango morphometric fruit quality 
traits are presented in Table S3. Gene annotation analy-
ses  revealed 87 candidate genes, which belong to differ-
ent functional groups including different transcriptional 
factors, amino acids receptors, auxin-induced protein, 
mitogen-activated protein kinases, serine/threonine-
protein kinase, ethylene-responsive transcription factor 
ERF017, CDPK-related kinase 5-like, transcript variant 
X2. According to the GO enrichment analysis (Figure 
S5), the candidate genes in our results are involved in 
three functional categories: 40 pathways belonging to 
biological processes, 18 pathways belonging to cellu-
lar components, and 18 different pathways belonging to 
molecular functions. Most of these proteins, enzymes 
and transcriptional factors had a direct and indirect role 
in the fruit development stage. As mentioned above, 
the mitogen-activated protein kinases (MAPKs) family, 
which is involved in different pathways, plays an effective 
role in various fruit developmental stage. Interestingly, 
we detected the MAPKs in the sphingolipid biosynthesis 
pathway, which plays  involved in different roles in plant 
processes  like pollen development, signal transduction 
and in the response to biotic and abiotic stress. MAPKs 
are involved in  hormonal signaling pathway (Figure 
S6). Three genes, LOC123211358, LOC123220493 
and LOC123200811 code for serine/threonine-protein 
kinase. LOC123211358 was found to be associated with 
stone weight and stone width while LOC123220493 was 
associated with stone thickness and LOC123200811 was 
found to be associated with seed stone length.

One significant marker NC_058140.1_12343085_C_A, 
supported by three different GWAS model, was associ-
ated with fruit weight, fruit thickness and fruit width. This 
marker was annotated to LOC123212704. which codes for 
a calcium-dependent protein kinase (CDPK).

Promising mango genotypes for future breeding program
In order to improve our findings, we focused on mango 
fruit weight because it is thought to be the most appeal-
ing trait for the commercial market, and it has the high-
est phenotypic variation among our accessions. Our 
analysis revealed nine significant markers associated 
with fruit weight. These markers are located on different 
chromosomes, including chromosomes 4, 6, 12, 13, 18, 
and 19. Figure  4 presents the distribution of the refer-
ence allele, alternative allele, and heterozygote allele for 
each significant marker among all the mango accessions, 
providing information on the allele that regulates this 
important trait. All the markers in our mango collection 

displayed three functional alleles, except for one marker, 
NC_058142.1_17753741_T_C, which exhibited both 
a heterozygote allele (TC) and one of the homozygous 
allele (TT). The homozygous allele with a high median 
in the box plots is considered the reference allele for 
fruit weight. To increase the genetic diversity in our 
germplasm  collection, twenty mango accessions were 
selected, ten with high and ten with low fruit weight. 
Fruit weight varied between 80.71g and 154.41g for the 
low- fruit weight accessions and between 624.76g and 
931.33g for the high-fruit weight accessions. The genetic 
distance among the 20 accessions is illustrated  in den-
drogram cluster analysis (Fig. 5a). All 20 accesions were 
from the two subpopulations (SP) according to our pop-
ulation structure analysis with 4 and 16 belonging to SP1 
and SP2, respectively. The genetic distance ranged from 
0.15 (‘Hatcher’ and ‘Kiett’; and ‘Hatcher’ and “Kent’) to 
0.34 (‘ThaiEverbearing’ and ‘Becky’; and ‘Kent’ and ‘Pur-
ple’) (Table S5). Figure 5b displays the distribution and 
total count of reference alleles in each selected acces-
sion. The accession ’O.P. Kiett’ had the largest number 
of reference alleles, with a count of 7 allele. This was 
followed by two different accessions, ’Becky’ and ’Cat-
Saigon’, which both had 6 reference alleles. These data 
are reflective of the phenotypic results we have achieved 
over a period of nine years. These cultivars are classified 
as having a high fruit weight. The weight of the mango 
fruit for ’O. P Kiett’ was 636.97g, whereas the weight of 
the ’Becky’ mango fruit was 659.92g, and the weight of 
the ’CatSaigon’ mango fruit was 931.33g. The accessions 
’S_19’, ’TUTEHAU’, ’Toledo’, ’Sel.Num3’, and ’Purple’ 
had the lowest count of reference alleles, which was 3 
alleles. Using the results derived from genetic distance 
between accessions, GWAS analysis, population struc-
ture and our understanding of the presence of refer-
ence alleles controlling this trait, we could enhance the 
genetic diversity of our mango germplasm by crossing 
accessions with high fruit weight and accessions with 
small fruit weight. To gather as many genes as pos-
sible that control fruit weight, we highly recommend 
crosses between ‘Becky’ × ‘Thai Everbearing’ and ‘Kent’ 
× ‘Purple’.

Discussion
In the present study, we conducted GWAS to iden-
tify SNP markers associated with 14 different mango 
fruit traits using a panel of 161 accessions. Since 
these accessions originated from different geographic 
regions and carry substantial genetic diversity, it 
is expected that a major fraction of the phenotypic 
diversity in fruit quality traits is likely attributed to 
genetic factors, in addition to environmental fac-
tors. To accelerate the improvement of fruit traits in 



Page 10 of 15Eltaher et al. BMC Genomics          (2025) 26:120 

mango varieties, this panel of 161 accessions provides 
an opportunity to discovery novel quantitative trait 
loci (QTLs) and markers for application in in mango 
breeding programs. Genetic diversity arises from evo-
lutionary processes such as mutation, migration, and 
genetic drift, which drive shifts in allelic frequency 
that may cause statistical associations between ran-
dom genetic markers and traits [46, 47]. However, 
this genetic structure-related variation often needs to 
be clarified with loci contributing to trait variation in 
association studies, resulting in an inaccurate repre-
sentation of the genotype to phenotype map predicted 
by genomic selection models [48–51]. It is crucial to 
carefully account for the underlying genetic struc-
ture in association studies to avoid such errors. Stud-
ies such as this one, employing rigor and precision 

in their methodology, are essential for advancing our 
understanding of the genetic basis of complex traits. 
Studying genetic variation and population structure 
is crucial in understanding mango improvement and 
marker-trait association research. Indian mango cul-
tivars, which are geographically diverse, have served 
as a genetic foundation for local mango cultivation in 
other parts of the world [52]. The results of our study 
revealed that mango accessions can be divided into two 
groups based on population structure and PCA analy-
sis. The first group, SP1 in Fig.  1b, comprises most 
Indian and Southeast Asian accessions in one clus-
ter. The second group, SP2, includes accessions from 
the USA, South America, and Caribbean Countries. 
These findings align with the current understanding 
that mangoes originated in Northeast India and spread 

Fig. 4 Box plots showing the distribution of reference allele, alternative allele and heterozygote allele among 161 mango accessions for each 
significant marker associated with fruit weight
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eastward, primarily polyembryonic, and westward, 
primarily monoembryonic [9, 52–54]. Our STRU CTU 
RE analyses, supported by PCA, also identified several 
admixed accessions that resulted from natural cross-
ing, gene flow, and genetic drift. These findings are 
consistent with previous studies, such as that of Rav-
ishankar et al., [55], who assessed the genetic diversity 
and population structure of mango accessions from 
India using simple sequence repeat markers. Their 
model-based structural analysis revealed that cultivars 
from the "Southwest" and "Northeast" regions were 
part of two subpopulations. Similarly, Sherman et  al., 
[54] found the same results using 289 high-quality SNP 
data to genotype 74 accessions of the Israeli mango 

collection. The mango collection was divided into 
two major groups: one consisting primarily of Indian 
accessions clustered together with accessions from 
Southeast Asia, which corresponds to SP1 in our anal-
yses, and a larger group consisting of Floridian, South 
African, Australian, Israeli, and South American acces-
sions, which corresponds to SP2.

Genome wide association mapping reveals novel QTLs 
in morphometric fruit quality traits
The discovery and implementation of associations 
between molecular markers and fruit traits are expected 
to expedite fruit tree cultivars’ breeding significantly. The 
current study presents the first Genome-wide association 

Fig. 5 The hierarchical cluster analysis of 20 selected mango accessions based on fruit weight. a The accession name with red color refers 
to SP1, green color refers to SP2. “H-FW” denotes accessions belonging to the highest fruit weight group, while “LFW” indicates those belonging 
to the lowest fruit weight. b The allele matrix of 9 SNPs associated with fruit weight. Red color refers to homozygous allele for large fruit weight, 
orange color refers to homozygous allele for small fruit weight, yellow color refers to heterozygous allele, blue column shows number of reference 
alleles
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study (GWAS) of mango morphometric traits using 
high-quality SNP markers. In GWAS, various models 
are employed to increase the statistical power of iden-
tified markers, reduce false favorable rates caused by 
population structure and kinship, and minimize con-
founding effects related to population structuring [56]. 
Typically, every marker is tested for association with 
a trait, which can lead to false positives and inflation of 
test statistics due to the inclusion of population struc-
ture and kinship information. Using mixed linear models 
and principal component analyses can reduce the infla-
tion of test statistics and confounding due to population 
structure, albeit only for small-effect loci [57, 58]. Multi-
locus mixed linear models (MLMLM) are widely used to 
address large-effect loci and reduce confounding effects. 
However, these models still need to address these issues 
thoroughly.

To overcome these challenges, fixed and random model 
circulating probability unification (FarmCPU) divides 
the MLMLM into fixed and random effect models and 
conducts them iteratively [59]. This approach has been 
shown to improve the statistical power of the results 
and computational efficiency. FarmCPU is computation-
ally efficient because the marker testing is conducted 
by a fixed effect model (FEM), which has a comput-
ing time complexity linear to the number of markers 
and individuals. Additionally, test statistics P-values for 
non-pseudo–quantitative trait nucleotides (QTN) mark-
ers are not inflated [44]. The model includes all mark-
ers that impact a phenotype as either pseudo QTNs 
or markers associated with pseudo QTNs. Significant 
P-values for non-pseudo QTN markers are not expected 
because association tests on all markers are carried out 
with pseudo QTNs as covariates [44]. The FarmCPU 
model was employed using 135,079 high-quality SNPs to 
uncover the genetic basis of 14 morphometric fruit qual-
ity traits in the present study.

A total of 103 significant SNP markers were associated 
with 14 traits, some of which were unique for each trait, 
and others were common, impacting at least two differ-
ent traits. Since the fruit traits analyzed in this report 
are quantitative, each is impacted by multiple loci with 
additive contributions. This was evident in our analy-
ses, showing that most loci had minor effects and can be 
considered minor QTLs. Although QTL mapping and 
development of molecular markers are scarce in mango, 
in a recent study, using 80K SNPs QTLs were mapped 
for fruit firmness and fruit color in a bi-parental popu-
lation [20]. Similarly, in a prior study, Azam et  al., [16] 
identified markers associated with 16 phenotypic traits, 
including fruit weight, fruit width, and brix, by employ-
ing 17 simple sequence repeat (SSR) loci. Similarly, Pad-
makar et al., [15] investigated 31 SSR markers on various 

fruit traits, including fruit weight and pulp content, in a 
48-mango core collection and found one marker asso-
ciated with fruit weight. In contrast to these works, we 
employed high-quality single nucleotide polymorphism 
(SNP) markers, identifying significantly associated mark-
ers with fruit quality traits. The annotation of genes near 
these significant markers revealed different proteins, 
enzymes, and transcription factors involved in various 
pathways. The traits reported in this study heavily influ-
ence the development, maturity, and ripening process 
of mangoes. Plant hormones, growth regulators, and 
various biological and environmental variables interact 
extensively during fruit development and ripening. The 
ripening of fleshy fruits such as mangoes involves eth-
ylene production, chloroplast differentiation, pigment 
accumulation (carotene and lycopene), flavor and aroma 
development, and softening of fruit tissues [60, 61].

Our findings suggest that three genes, LOC123211358, 
LOC123220493 and LOC123200811, which encode 
mitogen-activated protein kinases (MAPKs). Mitogen-
activated protein kinases (MAPKs) are integral to vari-
ous cellular processes including fruit development and 
fruit size traits. Studies provided by [62, 63] have shown 
that MAPK cascades are involved in the regulation of 
grain size and spikelet number per panicle in rice, sug-
gesting a similar mechanism could be at play in other 
fruit-bearing plants. Also, MAPKs might be involved in 
fruit ripening, as MAPK cascades are implicated in plant 
fruit development via an ethylene signaling pathway 
[25, 64]. Also, the role of 10 MAPKK and 77 MAPKKK 
genes in tissue development, fruit growth and ripening, 
and response to abiotic stressors such cold, drought, and 
salt was reported by [26] based on a full transcriptome 
of bananas. Li et  al., [64] found that a transcriptional 
study of the cultivated strawberry (Fragaria × ananassa) 
revealed the expression of all FaMAPK genes at every 
developmental stage. They observed that the expression 
of FaMAPK genes augmented endogenous abscisic acid 
(ABA), sucrose, and anthocyanin levels in strawberry 
fruits. This finding implied a close relationship between 
MAPK genes and strawberry ripening. The similarity of 
our study’s MAPK genes to the ones discovered in the 
published reports suggests that comparable pathways 
affect fruit quality traits in diverse plant species. The 
MAPK signaling cascade, which consists of varying num-
ber of MAPKs, MAPKKs and MAPKKs, is highly con-
served in higher plants with Arabidopsis harboring 20 
MAPKs, 10 MAPKKs, and 80 MAPKKKs [24, 65], rice 17 
MAPKs, 8 MAPKKs, and 75 MAPKKKs [66, 67], maize 
19 MAPKs, 9 MAPKKs, and 71 MAPKKKs [68, 69], 
tomato 16 MAPKs, 6 MAPKKs, and 89 MAPKKK genes 
[70, 71], and cucumber harboring 14 MAPKs, 6 MAP-
KKs, and 59 MAPKKKs [72]. According to Asif,, et  al., 
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[73], a total of 25 MAPKs were identified to play a role in 
various plant processes.

Conclusion
In summary, our study has reported 103 significant 
SNP markers for 14 morphometric fruit quality traits in 
a collection of 161 mango accessions. Of these, 7 com-
mon markers were significantly associated with at least 
two traits, while 96 unique markers were associated with 
only one trait. These findings establish a foundation for 
future studies, enabling precise mapping and identifica-
tion of candidate genes for the traits investigated in this 
study. This will serve as a valuable resource for further 
characterizing novel quantitative trait loci. Furthermore, 
the significant SNPs identified can be used to investi-
gate genomic selection methods with greater prediction 
accuracy for fruit traits in mangoes. Additionally, we 
combined information from genetic diversity, population 
structure, genetic distance, and GWAS results to iden-
tify the most promising mango accessions as potential 
parents for future breeding programs. Consequently, we 
identified 20 mango accessions that could be crossed in 
various combinations to mix diverse genes controlling 
critical fruit traits. Conducting targeted crosses informed 
by genetic analyses will be impactful in closing genetic 
gaps among the accessions maintained at the USDA 
National Plant Germplasm System. This, in turn, will be 
useful in developing modern mango cultivars that pos-
sess desired horticultural, nutritional, and climate adapt-
ability traits.
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