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Abstract
Background  Diversifying animal cultivation demands efficient genotyping for enabling genomic selection, but non-
model species lack efficient genotyping solutions. The aim of this study was to optimize a genotyping-by-sequencing 
(GBS) double-digest RAD-sequencing (ddRAD) pipeline. Bovine data was used to automate the bioinformatic analysis. 
The application of the optimization was demonstrated on non-model European whitefish data.

Results  DdRAD data generation was designed for a reliable estimation of relatedness and is scalable to up to 384 
samples. The GBS sequencing yielded approximately one million reads for each of the around 100 assessed samples. 
Optimizing various strategies to create a de-novo reference genome for variant calling (mock reference) showed 
that using three samples outperformed other building strategies with single or very large number of samples. 
Adjustments to most pipeline tuning parameters had limited impact on high-quality data, except for the identity 
criterion for merging mock reference genome clusters. For each species, over 15k GBS variants based on the mock 
reference were obtained and showed comparable results with the ones called using an existing reference genome. 
Repeatability analysis showed high concordance over replicates, particularly in bovine while in European whitefish 
data repeatability did not exceed earlier observations.

Conclusions  The proposed cost-effective ddRAD strategy, coupled with an efficient bioinformatics workflow, enables 
broad adoption of ddRAD GBS across diverse farmed species. While beneficial, a reference genome is not obligatory. 
The integration of Snakemake streamlines the pipeline usage on computer clusters and supports customization. This 
user-friendly solution facilitates genotyping for both model and non-model species.
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Background
Humans have successfully domesticated over five hun-
dred animal species, and the number of newly cultivated 
species has been increasing by at least ten species per 
year [1, 2]. Particularly in recently domesticated spe-
cies, our understanding of their genetic diversity and the 
genetic basis of traits may be insufficient. Genome wide 
data and genomic selection have revolutionized animal 
breeding by improving productivity [3–5], as well as 
incorporating health and welfare traits [6, 7]. In genomic 
selection, thousands of DNA markers are used to pre-
dict the genomic breeding value of an individual [8, 9], 
but genotyping presents a significant challenge for rare 
or novel production species. A recent review of genome 
data [10] revealed that nearly half of the aquaculture spe-
cies, with an annual production exceeding 350 million kg 
[11], lack reference genome information, which together 
with genetic polymorphism characterization is a neces-
sary resource for the development of commercial SNP-
chip platforms or targeted genotyping-by-sequencing 
solutions. Therefore, it is crucial to make cost-effective 
and reliable alternative genotyping methods widely avail-
able for non-model organisms to advance genomic selec-
tion and stock management in niche production species.

The advantage of genome-assisted breeding value esti-
mation largely stems from reliable estimation of relation-
ships [12] and a common genomic selection approach 
is directly based on the genomic relationship matrix 
(GRM), which estimates the proportion of the genome 
shared identical by descent between pairs of individu-
als. Unlike in typical genome focused situations, where 
understanding the functional genomic basis of traits is 
essential, here a genomic map or a reference genome is 
not required and the method performs well even with 
low marker densities (10 SNPs per morgan) [13]. How-
ever, additional markers are beneficial and, for example, 
in Atlantic salmon, densities up to 50 to 200 markers per 
morgan (1 000 to 5 000 markers in total) have been rec-
ommended [4, 14]. The accuracy and cost-effectiveness 
of genomic selection depend on the balance between 
the number of genotyped markers and individuals, with 
marker numbers of 1 000 to 2 000 SNPs being suggested 
[15].

Choosing the genotyping methodology for practi-
cal production or breeding purposes requires balancing 
needs, costs, precision and time pressure [16]. Espe-
cially, when supporting genomic information may be 
inadequate, genotyping-by-sequencing (GBS) [17] is a 
cost-effective approach for simultaneous genome-wide 
SNP discovery and genotyping. Restriction-site associ-
ated DNA sequencing (RAD) [18–20] and double-digest 
RAD-sequencing (ddRAD) [21, 22] are reduced-repre-
sentation genome sequencing methods that target a small 
portion of the genome using restriction enzymes. These 

methods do not provide as dense information as low-pass 
sequencing based GBS methods [16], but enable rapid 
generation of data and can generate sequencing-libraries 
from hundreds to hundreds of thousands of fragments 
genome wide. Both wet lab protocols and parameters 
used in post-sequencing analysis impact the number 
of recovered reads, mean sequencing target coverage, 
recovered genetic loci/marker, and genotype complete-
ness and accuracy [21]. While the number of polymor-
phic markers is the main concrete criterion for evaluating 
the suitability of a genotyping method for genomic selec-
tion, the actual genotyping goal of reliable estimation of 
relatedness might be influenced by the minor allele fre-
quencies (MAF), codominant or Mendelian inheritance 
and repeatability. GBS variants typically have a lower 
call rate per sample and repeatability among sample 
sets compared to SNP arrays. Additionally, genotyping 
errors, especially allelic dropouts (as false homozygotes), 
can introduce bias in the relatedness estimates used in 
genomic selection [23]. However, optimized GBS pipe-
lines can exhibit high consistency with SNP-chip data 
[24]. While optimizing data generation has been widely 
assessed [25–27], finetuning the bioinformatic flow has 
gotten less attention. In the context of GBS analysis, 
parameter selection is particularly critical, as it signifi-
cantly influences the results obtained from the pipeline. 
Our contribution emphasizes the importance of iden-
tifying optimal parameter sets and demonstrates how 
parameter fine-tuning can lead to improved and reliable 
outcomes. This principle is independent of the specific 
pipeline employed but underscores that GBS workflows 
are highly sensitive to parameter choices. As such, con-
trary to common practice, these workflows should not be 
used blindly with default settings but should always be 
tailored to achieve robust and accurate results. Following 
this approach, we extended the existing GBS-SNP-CROP 
workflow [28] into a publicly available Snakemake pipe-
line, called Snakebite-GBS [29]. This pipeline is designed 
to be versatile, functioning effectively for organisms 
with existing reference genome as well as for those that 
require building a de-novo / mock reference genome. 
Additionally, it prioritizes user-friendliness by minimiz-
ing software installation requirements by making use of 
containerization while ensuring reproducibility of results.

Besides here presented pipeline, there are other imple-
mentations available to call variants from ddRAD data. 
Other well-known software suites are TASSEL-GBS [30] 
and Stacks [31], which is also available wrapped within 
a Snakemake workflow and is listed inside the Snake-
make workflow catalogue. A popular python software is 
ipyrad [32], which superceded pyrad [33] and makes use 
of Jupyter notebooks. Another, bash-based wrapper for 
various steps of ddRAD analysis is dDocent [34]. There is 
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also a Nextflow [35] workflow within the nf-core [36, 37] 
framework, called nf-core/radseq, available.

Previously, other studies compared ddRAD data with 
WGS [38] or with SNPChip data [39] and found that 
ddRAD based SNP calls are comparable with SNPChip 
and WGS based called variants. Also in compari-
son to low density and HD chips a similar observation 
was made, showing that the ddRAD is an interesting 
approach compared to aforementioned methods [40]. 
Another publication [41] investigated best filtering strat-
egies for SNP for RAD data, combined with the advice to 
always make the raw data available together with the final 
filtered datasets, while also tools for the optimal design of 
ddRAD studies were developed [26].

When off-the-shelf SNP genotyping has not been 
available, ddRAD/RAD has been an effective method in 
several aquaculture species as the first step to study the 
genomic determination of the traits and structure of 
populations [42–45], and a similar method is needed for 
European whitefish (Coregonus lavaretus L). European 
whitefish is the second most important farmed fish spe-
cies in Finland, and a breeding programme is used to 
improve production, quality and fish health traits [46, 
47]. It is also a species used in ecological studies and it 
is known to have undergone widespread phylogeographic 
structuring and the repeated evolution of distinct eco-
logical ecotypes [48]. Genotyping by sequencing has also 
been implemented in cattle [49], and in absence of refer-
ence genome the use of sequence tags as dominant mark-
ers was an early solution [17]. The primary objective of 
this study was to optimize the GBS method ddRAD and 
fine-tune the bioinformatic pipeline parameters for pro-
cessing and controlling of the high-quality SNP data for 
genomic selection in non-model species. Here, our aim 
was to demonstrate how to identify optimal parameter 
settings to find a trade-off between a good yield and high-
quality SNPs. The second objective was to test the repeat-
ability of the data generation, which is, given the complex 
nature of the European whitefish genome, not granted. 
We fine-tuned the bioinformatics pipeline parameters 
by utilizing dairy cattle GBS and whole-genome rese-
quencing (WGS) data. Following this, we applied the 
established data processing routines on data generated 
for European whitefish (Coregonus lavaretus L) using the 
available reference genome of the closest relative Core-
gonus supersum ‘balchen’ [50]. European whitefish is the 
second most important farmed fish species in Finland 
[46, 47]. It is also a species used in ecological studies and 
it is known to have undergone widespread phylogeo-
graphic structuring and the repeated evolution of distinct 
ecological ecotypes [48]. The overarching objective was 
to make the GBS method simpler to use across diverse 
species, eliminating the need for extensive bioinformatics 
expertise or specialized units. This advancement holds 

the potential to enhance genomic selection and refine 
animal breeding practices, particularly within less stud-
ied species.

Results
Restriction enzyme selection in silico
The expected sequencing library composition was simu-
lated using SimRAD [27] focusing on five restriction 
enzyme pairs used in other species. The numbers of 
double digested genome fragments within the suitable 
range of 150–400  bp and consequently the expected 
variant numbers were three to four times more strongly 
influenced by the choice of the enzyme pair than by the 
species assessed (Fig.  1). The predicted fragment num-
bers fulfilled the preset criteria for all enzyme pairs, the 
number of fragments being the lowest for the EcoRI; 
SphI pair, with approximately 25–50 thousand fragments 
(or 20–40 thousand estimated variants). The reference 
genome based fragment numbers for the two main tar-
gets, Bos taurus (ARS-UCD1.2), and Coregonus supersum 
(AWG_v2), were for the pair EcoRI; SphI 50 000 and 30 
000, for the pair EcoRI; MspI 120 000 and 110 000, for the 
pair MluCI; SphI 270 000 and 230 000, for the pair EcoRI; 
MseI 380 000 and 180 000, for the pair EcoRI; NlaIII 440 
000 and 200 000, respectively. The predicted fragment 
number for the EcoRI; SphI pair was within the desired 
range of 10 000–100 000 fragments, which was expected 
to provide a minimum of 5 000 relatedness informa-
tive variants. Moreover, this enzyme pair provided the 
most uniform distribution of fragments across the size 
range, reducing the size selection lab protocol choice to 
the decision of window width (Fig.  1). The EcoRI; SphI 
pair was the most optimal for all the currently assessed 
species.

Raw GBS and WGS sequencing data
Data was generated using the modified ddRAD method 
[51] with EcoRI-HF and SphI-HF restriction enzymes on 
NextSeq550. GBS sequencing of 36 cow libraries gener-
ated in total 43 109 115 PE reads of 2 × 75 bp in length, 
with an average of 1 197 475 PE reads per sample. After 
trimming, 39 730 518 PE reads remained (avg: 1 103 625 
reads per sample). Sample details are listed in Table S1. 
In case of the 66 whitefish libraries sequenced, from the 
total of 78 577 269 PE reads of 2 × 75 bp in length (avg: 
1 190 565 reads per sample) 71 655 413 reads passed 
the quality control trimming (avg: 1 086 688 reads per 
sample). After quality control, the average read length 
dropped to 66 bp for reads R1 and 60 bp for reads R2.

WGS sequencing of 12 cow samples generated in total 
3 918 912 122 PE reads of 2 × 150 bp in length, with an 
average of 326 659 344 PE reads per sample. After trim-
ming, 3 865 355 653 PE reads remained with average of 
322 112 971 reads per sample.
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Fig. 1  In silico comparison of enzyme pairs. Expected variant numbers across the species and assessed restriction enzyme pairs (a), where whiskers 
indicate the impact of symmetric widening or narrowing the fragment size range by 100 bp. The predicted frequency distribution of double digested 
template fragments of different sizes in Bos taurus (b) and Coregonus sp. (c) averaged over 50 bp window across fragment sizes from 100 to 1 000 bp. The 
grey area denotes the included size range (150–400 bp)
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GBS fragment recovery
The mapping of the quality-trimmed GBS derived cow 
data against the non-size selected in-silico (EcoRI; SphI) 
digested Bos taurus (ARS-UCD1.2) reference genome 
was done with BWA-mem [52] and indicated that 
about 86% of the reads aligned to fragments within the 
150–400  bp size range (Fig.  2). This alignment window 
was narrower than the expected full insert size range of 
150–550  bp. The in-silico digestion simulation gener-
ated in total 66 450 genome fragments between 150 and 
400 bp in length. Considering that the remaining 14% of 
the reads were outside this span, our mock reference was 
expected to have between 66 450 and 79 100 clusters.

Mock reference quality
The construction of a mock reference was done with 
vsearch [53], using reads that are, if possible, merged 
together with PEAR [54] or if no overlap is present, 
stitched together with a sequence of 20 N, relies on the 
defined data and parameter configurations. An evalu-
ation against the size-selected in-silico digested refer-
ence, that was obtained with a tailored SimRAD script, 
measuring average coverage percentages and second-
ary alignments (Figure S2), unveiled an over-inflation of 
the mock reference when utilizing all samples, resulting 
in the exclusion of mock-strategy 4. While focusing on 
one sample (mock-strategy 1 and 2) approximated the 
optimal cluster counts, it introduces the risk of sample-
specific biases in the mock reference. As a result, mock-
strategy 3 emerged as the preferred choice. However, its 
advantage over mock-strategy 4 was reduced by the final 

mock refinement step, which curbed most of the exces-
sive cluster inflation, as indicated by consistent alignment 
trends nearing the expectation value (Figure S2, gray 
box).

Adjustments to input data parameters had minimal 
impact on the mock reference. PE read merging using 
p-value thresholds (0.001, 0.01, 0.05) yielded consis-
tent mock reference lengths and alignment percentages 
against the in-silico reference. Around 99.8% of the mock 
clusters aligned with minimap2 [55] against the reference 
genome, accompanied by a modest number of unaligned 
clusters (417–900). Mock cluster counts and secondary 
alignments remained stable. Parameter pl (min. merged 
cluster length) showed negligible impact across reason-
able values, aligning with expectations. Cluster gen-
eration parameters, especially the nucleotide similarity 
parameter (id), had, however, significant influence. Its 
extreme values led to drastic changes in the merged clus-
ter numbers, while moderate values (e.g., 0.85) yielded 
expected alignments. The minimum cluster length (min) 
and read stitching optimization (rl) parameters had lim-
ited impact. Optimal parameters for the mock reference 
creation were p = 0.05, pl = 50, id = 0.85, min = 80 and 
rl = 75 (Figure S3).

For the mock refinement step, strict parameters (e.g., 
average 10 reads per sample per cluster, ≥ 10 samples 
with aligned reads on cluster) appeared optimal for a 
stable variant set creation. Refined mock references 
exhibited improved alignment against the Bos taurus 
(ARS-UCD1.2) reference genome (dashed-line), although 
the average sample-wise alignment of data against the 

Fig. 2  Distribution of quality-trimmed cow GBS reads across in-silico digested Bos taurus (ARS-UCD1.2) reference genome fragment lengths. Red vertical 
lines indicate the boundaries of the estimated effective fragment size
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mock reference was slightly decreased for the refined 
mock compared to pre-refinement mock (Figure S4).

Variant calling and GBS quality estimation
Applying the GATK best practice variant calling pipe-
line to the full genome WGS data produced in total 17 
376 716 variants for the cow samples, with 42 160 vari-
ants intersecting regions on the reference genome that 
had a minimum coverage of three reads from the GBS 
data from at least 10 samples. Aligning GBS data to the 
reference genome (ARS-UCD1.2) resulted, after similar 
filtering, in 20 794 variants. Calling variants using the 
pre-refinement mock reference, based on mock strategy 
3, yielded 16 404, and with refinement, 16 416 variants. 
In the case of GBS, we obtained a MAF of 0.26 (sd: 0.13) 
using the mock reference and 0.27 (sd: 0.14) while using 
the reference genome. The average call rate using the 
GBS approach in combination with the ARS-UCD1.2 ref-
erence genome was 94.8%, with average 11.38 (sd: 0.75) 
samples per variant, respectively 11.37 (sd: 0.76) with 
using the created mock reference genome. For the WGS, 
we observed for the 42 160 variants a MAF of 0.21 (sd: 
0.14) with a call rate of 99.9% with 11.99 (sd: 0.13) sam-
ples having called each variant on average.

The overlap of reference based GBS and WGS vari-
ant sets, defined by their chromosomal positions, com-
prised 18 196 loci, representing approximately 87.5% 
alignment between the GBS and WGS datasets. These 
variants exhibited a WGS-based MAF of 0.26 (sd: 0.13) 
and nearly 100% call rate (sd: 0.05). On a chromosomal 
level, GBS-set missingness ranged from 9 to 15%, with 
a notable exception of the X-chromosome displaying 
over 30% missingness (Figure S5). Sample-wise genotype 
concordance between GBS and WGS data ranged from 
82.6 to 97.5% (mean: 93.3%). A mere 1.3% of GBS-called 
homozygous variants were identified as heterozygous in 
the WGS dataset, and only 0.2% of heterozygous GBS 
variants were classified as homozygous in the WGS data-
set. In total, 2 598 (12.5%) GBS variants were exclusive to 
the GBS call set, while 23 964 (56.8%) WGS variants were 
absent from the GBS (Table S2) variants.

Evaluating GBS based variant data for its ability to 
recover the realized relatedness matrix derived from 
> 10  million bovine SNPs in the full genome data using 
the R-package BGData showed a convergence of both. 
With approximately 1 000 variants the matrices approach 
equivalence, as indicated by the eigenvalue distance 
dropping from > 1 to approximately 0.15 (Fig.  3). After 
this point, the GBS genotype-based matrices exhibited a 
slower convergence compared to the WGS-based coun-
terpart. Results suggested that about 5 000 GBS mark-
ers equate to 2 000 WGS-derived SNP markers, fulfilling 
genomic selection needs.

Proof of concept using non-model European whitefish 
species as an example
The European whitefish mock reference created by strat-
egy 3, following the optimized mock creation parameters, 
was comprised of 159 403 clusters, spanning around 
26 million bp, and suggested an average 4x – 8x fold read 
coverage. While shallow sequenced samples exhibited 
low coverage (4x), most samples demonstrated accept-
able coverage (8x) against the created mock reference. 
Aligning the mock reference to the Coregonus sp. ‘bal-
chen’ reference genome (AWG_v2) resulted in a coverage 
of 34 million bp due to multiple mapping, with alignment 
rates around 90% for quality-filtered PE reads against 
the mock reference and slightly higher (91%) against the 
AWG_v2 reference genome.

Using an in-silico prediction for a 150–400  bp frag-
ment size threshold led to 28 085 fragments and an 
approximate 80% alignment rate against this reference. 
Employing the mock reference facilitated calling 18 678 
GBS variants, with a stable missingness below 5–7% for 
samples with over 1 million reads. Similarly, the existing 
reference genome enabled calling 23 275 GBS variants 
with a comparable stable missingness.

Genomic relatedness estimates between parent and 
offspring in whitefish trios averaged 0.53 (ranging 0.47–
0.57) with the AWG_v2 reference genome data, and 0.49 
(0.43–0.54) with the mock reference data aligning with 
the expectations [56]. Respectively, genomic related-
ness among the parental fish averaged 0.09 ranging from 
− 0.05 to 0.53 or averaging 0.08 and ranging from − 0.04 
to 0.49. Unrelated fish exclusively formed mated pairs (all 
relatedness estimates < 0.05), aligning with expectations. 
Rare non-Mendelian inheritance, consistent across fami-
lies, occurred in 3.3% (333.2 GBS variants on average) of 
the loci variable within the trios using AWG_v2 reference 
genome data and 3.4% (263.8 GBS variants on average) 
with mock reference data. Repeated Mendelian errors 
shared among loci were slightly smaller in the reference 
genome data (14.0%, 202 variants) compared to the mock 
reference data (14.8%, 167 variants). Both data sets exhib-
ited similar estimates with a maximum absolute related-
ness difference of 0.045 and generally agreed with prior 
pedigree knowledge.

Repeatability
The repeatability assessment, i.e. assessment of intersec-
tions between data sets, were done using bcftools and in 
bovine encompassed three separate runs: two utilizing 
250 ng DNA (Orig- and RepI-set) and one employing 500 
ng DNA (RepII-set) as starting material. All three sets 
underwent the same wet lab and optimized bioinformatic 
protocol using the ARS-UCD1.2 reference genome. The 
initial pipeline optimization run for the Orig-set yielded 
20 794 GBS variants while the RepI-set and the RepII-set 
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produced 19 066 and 19 988 GBS variants, respectively. 
Analyzing variant locations revealed a high degree of 
shared loci, with the RepI-set displaying 16 559 (79.6%) 
shared variants, and the RepII-set exhibiting 17 459 
(84.0%) shared variants. Remarkably, the two repeated 
runs shared 16 556 variants in common, resulting in a 
cumulative sharing of 15 246 (73.3%) variants across all 
three runs (Fig. 4a).

Within the whitefish dataset, a repeatability analy-
sis encompassing two distinct scenarios for a subset of 
12 samples was performed. The first scenario involved 
technical replicates of identical libraries (Orig-set and 
Tech-set). In the second scenario, duplicate libraries were 
prepared from the same DNA samples (Rep-set). Dedi-
cated pipeline runs for each set yielded 15 991 variants 
for the Orig-set, 16 025 variants for the Tech-set, and 12 
253 variants for the Rep-set. Examination of intersect-
ing variant locations highlighted a pronounced similar-
ity between the Orig-set and Tech-set, sharing 13 561 
(84.8%) loci. In contrast, the degree of sharing between 
the Orig-set and the Rep-set dropped to 6 110 (38.2%) 
and a similar value of 6 216 (38.8%) was observed for 
the Tech-set. Altogether, 5 725 variants were common 

to all three sets (Fig. 4b). For the Orig-set as well as for 
the Rep-set the data aligned to the correct size selec-
tion range. However, the Rep-set had a slightly worse 
size range specificity but also less reads mapping to a few 
highly overrepresented sizes (Fig. 4c).

Repeatability of individual variants at the whitefish 
sample level was also evaluated by intersecting variants 
using VCFtools [57]. For the 5 725 overall shared vari-
ants, 44.4–93.0% variants were equally called among 
repeated individuals. In pairwise comparisons, Orig-
Tech samples shared 93.0% equally called variants, for 
the Orig-Rep comparison, however, on the average only 
44.8% and in the Tech-Rep 44.4% of the variants were 
called equally. For the 15 246 shared variants across the 
three independently repeated cow GBS runs we obtained, 
however, for all three pairwise comparisons an average 
repeatability of over 90%.

Further, lift-over chains between the created mock 
references and the pre-existing reference genomes have 
been created to match variants called via the mock refer-
ence and those called by utilizing the pre-existing refer-
ence genome. For cattle, 16 571 variants were called using 
the mock reference. In total, 13 471 of these variants 

Fig. 3  Evolution of eigenvalue distances as a function of the number of utilized DNA variants. The plot compares the distance between GRM matrix 
based on all whole genome sequence (WGS) derived variants and smaller variant subsamples from mock/reference GBS or WGS data. The plot displays 
the mean and 90% confidence intervals, generated from 1 000 bootstrapped resampling. Variant counts range from 50 to 30 000, encompassing the full 
GBS sample sets. The Y-axis is log-transformed to enhance visibility of differences
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Fig. 4  Repeatability intersection Venn diagram. Left side (a) Cattle, right side (b) Whitefish, (c) read frequency distribution of the two Whitefish repeats
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received successfully via lift-over a chromosomal location 
on the pre-existing reference genome. From these, 11 649 
(> 70%) intersected with the chromosomal location of 
variants called by utilizing the reference genome. In case 
of whitefish, from the 13 376 called variants via mock 
reference 10 693 could be lift-overed to the reference 
genome, with 6 481 (48.5%) variants having a chromo-
somal match with variants called based on the pre-exist-
ing reference genome.

Discussion
We present here a GBS approach containing a refined 
ddRAD approach, where through the adaption of a pub-
lished laboratory protocol [58] and the optimization and 
streamlining of the GBS sequencing data analysis steps 
utilizing the Snakemake workflow manager, we introduce 
a cost effective and robust genotyping procedure. RAD-
Seq, since its inception by [18], has rapidly gained stand-
ing across diverse genetic research domains, spanning for 
example genetic map creation [14, 59], mapping of pro-
duction traits [51, 60, 61], population dynamics [62], and 
generating SNP resources for SNP array development 
[51, 63]. Particularly, GBS stands out as a valuable tool 
for generating markers in non-model species with limited 
genome information. Our work extends the prior experi-
mental demonstration of the ddRAD GBS method to 
facilitate genomic selection and breeding planning, espe-
cially for less studied farmed species. We successfully 
applied the developed protocol in non-model species 
(European whitefish), demonstrating its versatility and 
effectiveness, albeit revealing some remaining challenges.

The prevailing trend strongly favors incorporating bio-
informatic workflow engines for robust pipeline imple-
mentations [64]. Snakemake [65], a widely adopted 
choice within the NGS field, was employed in our study 
to manage task dependencies, to reduce redundant 
computations upon pipeline re-execution, and to facili-
tate automated deployment, including integration with 
the slurm workload manager on our cluster. The native 
docker and singularity support enabled seamless utili-
zation and versioning of necessary software tools. With 
a single command, the pipeline execution is initiated, 
channeling outputs into a well-organized main folder 
with structured subfolders housing the resultant analy-
ses. This comprehensive strategy ensures full reproduc-
ibility and user-friendliness, accommodating those with 
limited programming skills, as all essential configurations 
are consolidated within a central configuration file. We 
chose GBS-SNP-CROP [28] as base solution as it utilizes 
the generated sequencing data in a straightforward way 
producing a large number of reliable variant genotypes 
[28]. We wrapped the well-established GBS-SNP-CROP 
pipeline into a Snakemake workflow and extended it with 
various steps to create an automatically generated report 

that allows the user to evaluate the GBS run and to trace 
possible problems with it.

For the cattle samples we intersected and compared the 
results obtained from our GBS pipeline to results from 
our WGS pipeline, which is based on the GATK4 best 
practices. We considered here the GATK4 variants as 
gold standard to which we wanted to compare the results 
from the GBS pipeline. Further, following the approach 
of two independent pipelines allowed us to test for bugs 
in the developed pipeline, as we could assume a certain 
degree of consistency between the results.

Data generation
We utilized the modified ddRAD method [58] for 
sequence data generation. By avoiding costly barcoded 
adapters and instead ligating digested fragments to 
non-barcoded adapters and utilizing standard Illumina 
dual-indexed barcodes for PCR enrichment and sample 
multiplexing, we reduced the library preparation costs 
to < 9€/sample. While the laboratory workflow involves 
multiple steps that lack convenient commercial kits, 
optimization efforts streamlined the process. Hands-on-
time was halved to 10 h for 96 samples and 30 h for 384 
samples by normalizing DNA concentrations using Myra 
liquid handling system (Bio Molecular Systems, Austra-
lia), incorporating SPRIselect beads for size enrichment 
allowing to omit one of the two time consuming con-
centration measurements with Qubit. The utilization of 
BluePippin (Sage Science, USA) and other possible auto-
mations may further solidify routines and improve qual-
ity and time- and cost-efficiency.

By generating shorter 2 × 75 bp PE sequencing reads on 
the NextSeq550 we reduced sequencing cost to 10–14€/
sample, with a yield of 1  million reads per sample. Uti-
lizing shorter reads is advantageous over longer reads, as 
the aim is to use unlinked variants and to avoid the com-
plications caused by closely linked markers in related-
ness estimation [66]. Decreasing read length in favor of 
increasing the read depth helps in avoiding too low read 
depth, which may lead to under-calling the heterozygotes 
and incorrect assignment of them as a homozygotes [67]. 
Our results suggest that a sequencing depth exceeding 
one million reads per sample leads to a stable variant call-
ing with minimal variant missingness in assessed species. 
However, the required sequencing depth highly depends 
on the number of targeted fragments, which is a balance 
between DNA quality, used enzymes, used fragment 
size range and the genome size of the investigated spe-
cies and even the chosen sequencing technology. More-
over, the number of recovered variable sites depends on 
the genome variability. As a result, preliminary evalua-
tion with a limited subset of samples is recommended to 
establish the balance between the targeted fragments and 
the minimum coverage threshold.
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In European whitefish, around 40% of GBS vari-
ants were scored repeatedly across two fully indepen-
dent analyses, aligning with earlier observations [58]. 
Conversely, in the bovine analysis, the first two repeats 
shared over 80% of the called variants, and all three 
repeats shared still approximately 75% of variants despite 
purposefully varying DNA amount. This indicated on 
the one hand a high level of repeatability achievable 
in certain species, and on the other hand, a remaining 
challenge in repeatability in other species. Here, e.g., a 
duplication [68] in the genome could cause read align-
ment issues that cannot be circumvented, and which 
could possibly cause differences in variant calling. In that 
case, filtering out paralogs as suggested by [59] could be a 
promising approach to follow.

General stochastic variability inherent in wet lab 
methods, encompassing fluctuations in PCR, library 
generation, and fragment size selection, plays a role in 
the repeatability [69]. These aspects may further inter-
act with the applied bioinformatic methodologies. For 
example, DNA fragments carrying the reference allele are 
more likely to be successfully mapped or receive higher 
quality scores [70]. The repeatability is also influenced by 
the filtering steps during the variant calling phase, when 
various filters (MAF, minimum/maximum coverage as 
well as minimum call rate) are applied, as we confirmed 
comparing the pipeline reports for filtered and unfiltered 
variants (result not shown). Further, multi-mapping of 
reads might lead to unpredictable consequences. Nota-
bly even for European whitefish, repeated GBS variant 
scoring between technical replicates was frequent (85%), 
underscoring the potential enhancement of repeat-
ability through simultaneous library preparation for all 
analyzed individuals, although the results suggested the 
non-repeating variants might partially represent repeti-
tive genome segments. In cattle, where genomic selec-
tion relies on relatedness across generations, repeatability 
across fully independent analyses is of significance. Con-
trastingly, aquaculture-based genomic selection involves 
comparing reference populations and selection candi-
dates within a generation [71], diminishing the need for 
repeatability across generations. Additionally, related-
ness estimation remains reasonably robust against miss-
ing data and genotyping errors when the variant count is 
substantial [23].

The GBS approach was tailored here for genomic selec-
tion utilizing a genomic relationship matrix, with the 
optimal informative GBS variant number falling between 
1 000 and 10 000 [15] with a minimum of 1 000–2 000 
SNPs generally suggested [15]. An in-silico comparison 
underscored the substantial influence of enzyme pair 
selection on reducing assessed genome complexity. How-
ever, even the enzyme pair with the lowest projected frag-
ment count (EcoRI; SphI) was anticipated to yield ample 

variants. The difficulties of predicting fragment sequenc-
ing coverage are well-known and unassessed fragments 
are to be expected [69, 72]. Accordingly, our final GBS 
variant numbers in cattle and whitefish (20k and 16k) 
reduced from their projections (36k and 21k forecasted). 
Unassessed fragments could arise from multiple factors, 
including genomic structural variations between refer-
ences and samples, variation at restriction cut sites [73], 
and repeated regions, biased nucleotide content, and 
sequence length variation [69]. A sufficient variant num-
ber margin is preferrable, as breeders running a genomic 
selection program might prefer excluding low MAF vari-
ants increasing the variance of diagonal GRM elements 
[74] or variants with suspiciously high observed hetero-
zygosity (> 50% [75]),. Notwithstanding the challenges, 
the simple projections demonstrated to be sufficient for 
estimating variant number magnitudes for the ddRAD 
GBS method.

Mock genome and pre-existing reference genome
For cattle a high-quality reference genome exists, while 
in our case representativeness of the European white-
fish reference genome was uncertain. Utilizing a mock 
genome is essential when a reference genome is absent 
or incomplete for the target species [74, 76]. Further, the 
spread between alignment rates for the existing refer-
ence genome and the created mock reference can serve 
as a metric for the evaluation of the representativeness 
of the reference genome for the data at hand. Acting 
as a stand-in scaffold or reference, the mock genome is 
essential for variant calling and the subsequent analyses 
by providing a foundation for aligning and mapping the 
sequencing reads as well as localizing the called variants. 
An effective strategy for determining cluster numbers 
include using either a small representative sample group 
or a single exemplary sample. The latter approach, how-
ever, may introduce biases from unique features of that 
single sample [74]. Constructing a mock genome from a 
broader sample range, although suggested [74], results 
in an inflated reference. Depending on the total number 
of samples and based on our observations, opting for a 
moderate collection of 3–5 samples minimize specific 
biases and avoids excessive inflation. The recommenda-
tion of Sabadin et al. [74], however, seems to be more rel-
evant for heterogeneous sample sets, as they are common 
e.g., in plant breeding. In these cases, the introduced final 
mock correction step is expected to curb excessive clus-
ter inflation. The refined final mock provides more stable 
results and is generally preferrable.

While a mock genome reference might be necessary, it 
is not curated against computational artifacts related to 
sequencing errors [77], sequencing or base composition 
bias [78–80], or repetitive regions [77] which can consti-
tute 10–60% of the genome [81, 82]. The suggested mock 
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construction parameters are a good starting point for 
most animal species, but correctly separating duplicated 
genome regions while simultaneously collapsing and 
merging haplotypic differences into a haploid sequence 
is a challenge to all assemblers [83]. The challenges can 
be seen here with the used Whitefish and its complex 
genome structure. Here, we recommend several itera-
tions of the pipeline with different settings especially for 
the identity criterion for merging clusters for each new 
GBS data generation case. The identity criterion can be 
increased until the alignment rate begins to decrease sig-
nificantly while maintaining or increasing per-site cov-
erage. Other parameters fine-tune the pipeline mainly 
by removing noise from the input data and have smaller 
impact. Given the influence of data and parameters on 
the created mock reference, archiving and sharing the 
reference facilitates later comparability and repeatability. 
Further, many pipeline parameters that had little impact 
in the present comparison, could get more influential for 
problematic data and as such could rescue still semi-opti-
mal sequencing runs.

Using a subspecies-specific reference for cattle and a 
species group-specific reference for whitefish led to a 25% 
GBS variant increase over mock genomes, as expected 
when closely related reference genomes are available 
[75, 84, 85]. This underlines the advantage of employing 
reference genomes whenever feasible. While the surplus 
of variants might raise concerns about the genotype call 
quality, evaluating genotyping via Mendelian inheri-
tance [86] contradicted this notion, showing stable and 
comparable inheritance error rates to reported NGS-
generated SNP data [85–87]. Comparing GRMs between 
GBS and WGS sequencing favored the reference genome 
based GBS analysis, which approximated the WGS GRM 
matrix more closely. Despite the common concern of 
low MAF in GBS data [74], our comparison had lower 
MAF in the reference WGS data than in the GBS data-
sets. While the WGS data offers comprehensive insights, 
reference genomes are not flawless, for example, exclud-
ing variants on genome regions specific to individuals or 
populations [88, 89] which may explain the minor differ-
ence between the two GBS GRM matrices. In general, 
using a very closely related reference genome increases 
the mapping and genotyping accuracy [84, 90]. Therefore, 
it is recommended to execute both mock and possibly 
pre-existing reference genome paths of the pipeline and 
then compare the outcomes. Current observations sug-
gest a reference genome is advantageous and should be 
used when available, though it is not an absolute require-
ment. Using a pre-existing reference genome offers a high 
quality assembly and consistency and possibly annotated 
genomic context for interpretation [91]. Further, the use 
of a reference genome facilitates evaluating the represen-
tativeness of the data and allows linkage-based analyses.

Variant calling using different mock genomes or a pre-
existing reference genome might include different vari-
ants [28], but the approaches gave currently very similar 
relatedness estimates. This aligns with previous stud-
ies suggesting that while extensive repeatability of GBS 
genotype data can be challenging biological inferences 
based on these data sets are more robust [21, 92, 93]. 
When genomic selection analyses are based on related-
ness, fixing the reference genome is not the only option 
for merging data sets, since it is possible to combine par-
tially overlapping relatedness matrices [94]. However, 
this necessitates having representative population sam-
ples with reference individuals of varying relatedness for 
both having reliable estimates within each round and for 
enabling merging of the matrices. Comparability issues 
might occur even when basing analysis on reference 
genomes, which develop over time [95].

The results from the current study will guide the devel-
opment of whitefish SNP chips. While ddRAD provide 
the initial data for SNP discovery and ddRAD may suf-
fice in some cases, SNP chips will improve reproducibil-
ity across generations and populations, making the data 
more broadly applicable in breeding programs.

Conclusions
The relatedness estimates based on the developed 
ddRAD GBS protocol aligns with independent related-
ness estimates in both cattle and European whitefish 
samples, showcasing its versatility and extending the per-
formance demonstration beyond GBS-SNP-CROPs orig-
inal aim of identifying biological replicates. Our results 
conclude that while a pre-existing reference genome 
enhances variant calling quality and quantity, its absence 
does not impede the GBS-based genomic evaluation or 
selection. The applicability of the presented approach for 
genomic evaluation has been demonstrated for European 
whitefish [96], despite its challenging genomic structure. 
Further optimization, including fragment size window 
refinements and incorporation of methylation-sensitive 
restriction enzymes [17] could bring even greater effi-
ciency and accuracy. The robust and user-friendly bioin-
formatic pipeline with an implementation of best practice 
approaches and wet-lab workflow achieves our broader 
goal of democratizing genotyping methods for research-
ers with varying levels of bioinformatics expertise and 
across a wide range of species and especially in less-
studied production species. Experimenting with indi-
vidual tuning parameters for the data at hand remains, 
however, indispensable and normally several pipeline 
runs are required until satisfying results are obtained. 
Furthermore, adjusting the filtering thresholds of called 
variants according to the analysis scope is still a required 
step, though default values should work well in many 
situations.
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Methods
Samples
Altogether 12 Nordic Red dairy cows from the Luke 
research barn were selected for GBS and WGS sequenc-
ing, pipeline optimization and benchmarking. For each 
cow sample three repeated GBS libraries and one WGS 
library were created, starting from the same extracted 
DNA so that in total 36 GBS libraries and 12 WGS of cow 
samples were sequenced (Figure S1).

In addition, 42 European whitefish were used for pipe-
line validation and repeatability testing. Fish samples 
consisted of 27 randomly picked, unrelated individu-
als and 5 families of trios (parents and one offspring). 
From the set of random individuals, 12 whitefish were 
sequenced three times, twice with technical replicates of 
the same library and once with an entirely new library, 
that was started from the DNA. The European whitefish 
originate from the national breeding program owned 
and maintained by the Statutory Services of the Natu-
ral Resources Institute Finland (Luke), a governmental 
research institute. The fish are held at an inland, fresh-
water fish farm located in Enonkoski [46, 47]. The brood-
stock was established in 1998 from an anadromous wild 
strain of the river Kokemäki. Currently, the breeding pro-
gram is based on traditional sire-dam-offspring pedigree, 
maintained by the use of family tanks during the early 
phase of growth [46, 47], but the development of SNPs 
will enable to implement also genomic selection.

Cow DNA was extracted from blood while fin tissue 
preserved in 100% ethanol was used for DNA extraction 
from fish. DNA was extracted using DNeasy Blood & Tis-
sue Kit (Qiagen, Germany) following manufacturer’s pro-
tocol. For fin tissue sampling, the fish were anesthetized 
by placing them for 5 min in oxygenated water which had 
140  mg tricaine methane sulfonate / 1  L of water, and 
140 mg bicarbonate / 1 L water.

Enzyme selection in silico
Restriction enzyme pairs for genome reduction were 
selected (i) to generate a number of fragments providing 
above 5 000 GBS variants and (ii) to leave a suitable over-
hang for library preparation. Assuming the proportion of 
variable sites of approximately 0.005 [50] and aiming for 
Paired-End (PE) sequencing with a total of 150 (2 × 75 bp) 
sequence read length per fragment, the number of vari-
able sites was expected to be 0.75 times the fragment 
number. That suggested inclusion of at least 10 000 frag-
ments, if all variable sites pass all quality ascertainment 
steps. The considered restriction enzyme pairs were 
EcoRI with MspI, SphI, MseI and NlaIII, or SphI with 
MluCI. These enzymes were previously used successfully 
for GBS in other species [22, 97, 98]. For a wider applica-
bility, six reference genomes were included for the restric-
tion enzyme evaluation: Bos taurus (ARS-UCD1.2), 

Coregonus supersum ‘balchen’ (AWG_v2), Gallus gal-
lus (GRCg6a), Hermetia illucens (iHerIll2.2), Oncorhyn-
chus mykiss (Omyk_1.0), and Salmo salar (ICSASG_v2). 
DdRAD library construction was simulated using Sim-
RAD version 0.96 [27], but the functions were adjusted 
to use the full cut site. Digestion was simulated by using 
both the full reference genome contigs as well as reduced 
genomes of 10 random 10% genome subsamples. The full 
genome based (Bos taurus and Coregonus supersum) pre-
dicted fragments for the chosen EcoRI; SphI enzyme pair 
were used for quality evaluation of the GBS analysis. The 
obtained sequence data was used to estimate the effective 
size window and as consequence the size selection win-
dow was set to 150–400, for consistency. The effective 
size window thresholds were roughly estimated as values, 
where the slope of the density curves of the aligned frag-
ments turned to + 1 (lower size threshold) and − 1 (upper 
size threshold).

ddRAD library preparation
The workflow (Figure S6) for the ddRAD library prepara-
tion was adapted from [58]. In detail, 250 or 500 ng of 
DNA was double-digested with two restriction enzymes 
EcoRI-HF (G^AATTC) and SphI-HF (GCATG^C) (New 
England Biolab, USA). The restriction reaction was per-
formed in a volume of 20 μL, containing 17 μL of DNA 
(250 ng/500 ng in total), 0.25 μL of EcoRI-HF (5 units), 
0.25 μL of SphI-HF (5 units), 2 μL of cut-smart buffer 
(10x) and 0.5 μL of molecular grade water at 37  °C for 
2 h, following heat-inactivation for 15 min at 65 °C. Two 
non-barcoded restriction site specific adapters (Table 
S3) were ligated by adding 1 μL of each adapter (adapter 
P1 EcoRI: 1 μM, adapter P2, SphI: 10 μM) to the restric-
tion mixture, 0.5 μL of T4 ligase (200 units) and 1.5 μL 
of ligation buffer (New England Biolab, USA). Ligation 
was performed at 16  °C for 14  h, following heat-inacti-
vation at 65 °C for 15 min. DNA-fragments were selected 
between 200 bp and 700 bp by using SPRIselect magnetic 
beads (Beckman Coulter, USA) with a left-right ratio 
of 1x-0.56x. In details, the volume of each sample was 
adjusted with molecular grade water to 50 μL and then 
28 μL of SPRIselect beads were added to achieve a 0.56x 
ratio for the selection of fragments shorter than 700 bp 
following selection of fragments longer than 200  bp by 
adding 22 μL of SPRIselect beads to achieve a ratio of 
1x. The size selected DNA was resuspended in 25 μL of 
molecular grade water. Samples were barcoded by add-
ing Illumina Nextera v2 (Illumina, San Diego, CA, USA) 
combinatorial dual-indexed barcodes (i7 and i5). For each 
individual sample a PCR-mix containing 6 μL of 5x Phu-
sion HF buffer, 0.4 μL dNTP (10 mM), 0.2 μL of Phusion 
HF DNA polymerase (0.4 units) (ThermoFisher scientific, 
USA), 1.5 μL of i5 barcode primer, 1.5 μL of i7 barcode 
primer, 5 μL of sample and 15.4 μL of molecular grade 
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water was prepared, two PCR reactions per sample were 
performed. The cycling conditions were as follows: initial 
denaturation at 98  °C for 30  s, followed by 18 cycles of 
10 s at 98 °C, 20 s at 61 °C, 15 s at 72 °C and a final elon-
gation step at 72  °C for 10 min. The two PCR reactions 
per sample were pooled, the volume was adjusted to 50 
μL, and small fragment removal was carried out with 40 
μL (0.8x) SPRIselect beads. The size selected PCR prod-
ucts were resuspended in 25 μL molecular grade water 
and quantified using Qubit Flex with 1x dsDNA HS assay 
(ThermoFisher scientific, USA). Only products with a 
significantly higher amount than the No Template Con-
trol (NTC) were used for sequencing (> 3 ng/μL).

Sequencing
Single ddRAD libraries were pooled in equimolar 
amounts. The pool was size selected with SPRIselect 
beads to the length between 300 and 700 bp (ratio 0.75-
0.56x), corresponding to the combined length of 150–
550 bp restriction insert and 147 bp adapter. The quality 
and size of the pooled sequencing library was evaluated 
on the TapeStation 4150 (Agilent, USA) using the DNA 
HS1000 assay. Quantification of the library was done 
using Qubit 4 (1x dsDNA HS assay) (ThermoFisher sci-
entific, USA). Following the guidelines from the NextSeq 
System denature and dilute libraries guide (Document # 
15048776 v09, December 2018 (Illumina, San Diego, CA, 
USA)), the library was diluted for sequencing to a final 
concentration of 1.4 pM, containing 10% PhiX control, 
to increase complexity at the start of the sequencing. The 
PE sequencing (2 × 75 bp) was performed on the NextSeq 
550 (Illumina, San Diego, CA, USA) using medium out-
put flow cell.

The WGS of cow samples was performed at the Finn-
ish Functional Genomics Centre (Turku, Finland) using 
TruSeq® DNA PCR-Free Library kit (Illumina, San Diego, 
CA, USA) and PE sequencing (2 × 150 bp) on an Illumina 
NovaSeq 6000 (Illumina, San Diego, CA, USA) platform.

Mock-reference genome
Analyzing GBS data without a preexisting reference 
genome necessitates in creating a technical (mock) ref-
erence. For this, various sample selection methods were 
considered: choosing the sample with the highest read 
count (mock-strategy 1), a sample with an average read 
count (mock-strategy 2), a random subset of three sam-
ples (mock-strategy 3), or all samples (mock-strategy 4).

As the first step, the raw PE sequences were checked for 
overlap that might happen in case of short inserts. Over-
lapping reads were merged into single-end (SE) reads 
using PEAR [54], with two tuning parameters being opti-
mized here: the p option (values between 0.001 and 0.1) 
for a statistical test to determine read-pair merging, and 
the pl option (values 30 to 70) for defining the minimum 

accepted total length of the merged construct. These 
parameters determined when read pairs were merged 
and whether the construct’s length met the criteria for 
inclusion. PE reads that could not be merged, were then 
stitched together with a sequence of 20 N bases as stan-
dard for the pipeline. Stitching of reads was controlled by 
the parameter rl, and reads were stitched, if the length of 
read1 was larger than (rl − 19) and length of read2 was 
larger than (rl − 5), otherwise reads were not used for the 
mock generation. The resulting SE reads were utilized 
to construct the de-novo mock reference genome using 
vsearch [53]. In the de-novo building phase, two vsearch 
options were fine-tuned: the id option (values between 
0.8 and 0.99), defining the minimum pairwise identity 
for merging two clusters, and the min option (values 
between 80 and 160), setting the minimum cluster length 
for inclusion in the mock reference. The in-silico simu-
lated protocol as described in “Enzyme selection in silico” 
was used to evaluate the mock reference constructs.

Following the de-novo mock reference creation, an 
additional refinement step was applied, where clusters 
with low coverage were removed from the mock refer-
ence. Tuning parameters were totalReadCoverage and 
minSampleCoverage. The first parameter defines the 
minimum number of reads that need to be aligned across 
all samples on a cluster to keep it in the mock reference. 
The second parameter defines the minimum number of 
samples that need to have at least a single read aligned to 
a cluster so that this cluster remains in the mock. For the 
tuning of the totalReadCoverage we tested 6, 12, 24, 60 
and 120 as values and for minSampleCoverage reads from 
2 (10%), 4 (25%), 6 (50%), 8 (75%), 10 (90%), 12 (100%) of 
the total number of samples in the study.

Variant calling
The GBS variant calling was done with our developed 
Snakebite-GBS [29] pipeline, which is a Snakemake pipe-
line extension, that is based on the existing GBS-SNP-
CROP [28] pipeline. The Snakebite-GBS pipeline is part of 
the Snakebite framework Snakepit [99]. First, the quality-
trimmed reads were aligned with BWA-mem [52] against 
the mock and/or preexisting reference genome(s). Then, 
samtools mpileup [100] was used for variant calling and 
various filters were applied to obtain the final variant set. 
The underlying GBS-SNP-CROP pipeline allows for eight 
different filters: (1) mnHoDepth0 (value: 5), the minimum 
depth required for calling a homozygote when the alter-
native allele depth equals 0; (2) mnHoDepth1 (value: 20) 
the minimum depth required for calling a homozygote 
when the alternative allele depth equals 1; (3) mnHet-
Depth (value: 3) the minimum depth required for each 
allele when calling a heterozygote; (4) altStrength (value: 
0.8) the minimum proportion of non-primary allele reads 
that are the secondary allele; (5) mnAlleleRatio (value: 
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0.25) the minimum required ratio of the less frequent 
allele depth to the more frequent allele depth; (6) mnCall 
(value: 0.75) the minimum acceptable proportion of gen-
otyped individuals to retain a variant; (7) mnAvgDepth 
(value: 3) the minimum average read depth of an accept-
able variant; (8) mxAvgDepth (value: 200) the maximum 
average read depth of an acceptable variant. A pipeline 
flowchart with involved steps and tools can be found in 
Figure S7.

The cattle WGS variant calling was performed fol-
lowing the GATK4 best practices [101] implemented as 
Snakemake [65] workflow called Snakebite-WGS [102]. 
Implemented steps contain, among others, the GATK 
base recalibrator as well as a model to adjust the base 
quality scores and a base recalibration step. Variant call-
ing is done via haplotype caller. The pipeline utilizes 
also BWA-mem to align the data but includes a refine-
ment step using Picard before the GATK4 software suite 
is used for the final variant calling with applied default 
filters.

GBS quality evaluation
The generated cow GBS variant data was mapped against 
an in-silico digested ARS-UCD1.2 reference genome for 
evaluating the size selection performance. Following vari-
ant calling, sample-wise genotype concordance between 
GBS and WGS sequencing strategies was assessed using 
Picard.

The repeatability of the GBS runs was tested by inter-
secting the variant locations on the corresponding refer-
ence genomes. Here, bcftools [103] was used to intersect 
the three vcf-files and corresponding intersection num-
bers were calculated. Further, samtools mpileup was run 
for the GBS data aligned to the reference genome and 
for each sample contiguous areas, that had a minimum 
coverage of three reads, were identified and stored in 
bed-format. Individual sample-wise bed-files were then 
merged and only regions with read support from at least 
10 samples were kept. This bed-file was then used to 
intersect the WGS-based vcf file using bedtools [104] and 
extract WGS variants only from the corresponding inter-
secting genome regions.

In cattle, the GBS variant based variability and relat-
edness were compared against resampled WGS variants 
with restricted variant numbers from 50 to 30 000 to 
compare how the variant number influenced the classi-
cal Genomic Relatedness Matrix (GRM) calculated using 
the R-package BGData [105]. The GRM based on the full 
WGS variant matrix was compared to smaller bootstrap 
samples of WGS and GBS data.

The lift-over between mock reference and pre-existing 
reference genome to compare variants from both meth-
ods based on their chromosomal was done by using 
the tool transanno. Here, first the mock reference was 

aligned against the reference genome and the resulting 
file in pairwise mapping format (paf ) was then used in 
transanno to create the lift-over chain and eventually to 
perform the lift-over. Chromosomal locations between 
the lift-overed mock reference-based variants and their 
pre-existing reference genome based counterparts were 
then again matched via bcftools isec.

The GRM structure differences were quantified by 
measuring the variability in different directions using the 
distance between the eigenvalues of the matrices, calcu-
lated using the Frobenius matrix norm.

For whitefish data, relatedness was also calculated 
using the R-package BGData [105] was assessed using 
the full whitefish data set to overcome bias in the small 
data set caused by few closely related individuals in the 
parental generation though we focused on trio results. In 
addition to the genomic relatedness, the genotype quality 
was assessed by evaluating non-Mendelian inheritance 
of the GBS variants in five families of trios, that included 
parents and an offspring.
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