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Abstract 

Small proteins with fewer than 100, particularly fewer than 50, amino acids are still largely unexplored. Nonethe-
less, they represent an essential part of bacteria’s often neglected genetic repertoire. In recent years, the develop-
ment of ribosome profiling protocols has led to the detection of an increasing number of previously unknown small 
proteins. Despite this, they are overlooked in many cases by automated genome annotation pipelines, and often, 
no functional descriptions can be assigned due to a lack of known homologs. To understand and overcome these lim-
itations, the current abundance of small proteins in existing databases was evaluated, and a new dedicated database 
for small proteins and their potential functions, called ’sORFdb’, was created. To this end, small proteins were extracted 
from annotated bacterial genomes in the GenBank database. Subsequently, they were quality-filtered, compared, 
and complemented with proteins from Swiss-Prot, UniProt, and SmProt to ensure reliable identification and charac-
terization of small proteins. Families of similar small proteins were created using bidirectional best BLAST hits followed 
by Markov clustering. Analysis of small proteins in public databases revealed that their number is still limited due 
to historical and technical constraints. Additionally, functional descriptions were often missing despite the presence 
of potential homologs. As expected, a taxonomic bias was evident in over-represented clinically relevant bacteria. 
This new and comprehensive database is accessible via a feature-rich website providing specialized search features 
for sORFs and small proteins of high quality. Additionally, small protein families with Hidden Markov Models and infor-
mation on taxonomic distribution and other physicochemical properties are available. In conclusion, the novel small 
protein database sORFdb is a specialized, taxonomy-independent database that improves the findability and classifi-
cation of sORFs, small proteins, and their functions in bacteria, thereby supporting their future detection and consist-
ent annotation. All sORFdb data is freely accessible via https://​sorfdb.​compu​tatio​nal.​bio.
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Background
A significant portion of bacterial proteins are well studied 
today, broadly available in public databases, and routinely 
annotated in newly sequenced genomes [1–3]. Despite 
these advancements, the exploration of small proteins 
of up to 100 amino acids (AAs), encoded by short open 
reading frames (sORFs), has been largely neglected, and 
they often have been disregarded as noise in eukaryotic 
and bacterial genomes [1, 4]. Following, we consider 
small proteins to be functional proteins with a length of 
100 AA or fewer.
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The application of various length cutoffs for the pre-
diction and identification of protein sequences has led 
to an inconsistent definition of small proteins. Histori-
cally, these cutoffs have resulted from limitations in lab-
oratory protocols and gene prediction tools to reliably 
detect proteins of such a small size. Gene prediction tools 
exhibit higher false-positive rates for smaller proteins, 
which are addressed by implementing strict length lim-
its [5, 6]. Due to the high number of false-positive small 
proteins in early annotated genomes, minimum length 
cutoffs were implemented in genome databases [7], and 
previous small proteins thought to be coding had to be 
removed later [8].

However, in recent years, the development of experi-
mental ribosome profiling techniques and improvements 
in mass spectroscopy have resulted in the detection of 
numerous small proteins [9–11]. Following the identifi-
cation of small proteins, the elucidation of their purpose 
has revealed essential cellular functions, including regu-
latory proteins, membrane-associated or secreted pro-
teins, toxin-antitoxin systems, stress response proteins, 
and various virulence factors [1, 12–18]. These promi-
nent roles emphasize that the largely unexplored space 
of small proteins provides essential functions in bacteria. 
The best-studied bacterial organisms containing small 
proteins are model organisms and clinically relevant 
species like Escherichia coli and Salmonella enterica, 
in which many new proteins and their encoding sORFs 
have been reported [10, 18]. The most recently identified 
proteins in E. coli belonged to small proteins with up to 
100 AA, particularly with 50 AA or fewer [19].

Consequently, genetic origins and underlying evo-
lutionary mechanisms of small proteins still need to be 
better understood [17] as they tend to exhibit features 
differing from genes encoding for proteins longer than 
100 AA in bacteria. In particular, start codon usage, ribo-
somal binding sites (RBSs), and composition biases can 
differ from longer coding genes [12, 17, 19–21]. These 
differences could stem from small proteins being devel-
oped through de novo gene origination, and their com-
paratively young evolutionary age is insufficient to show 
the typical organism-specific features of longer coding 
genes [17, 22]. Pervasive translation of sORFs is also pos-
sible [22, 23], although sORFs encoding functional small 
proteins are probably subject to codon bias [10, 21, 23]. 
Because of these differences, sORFs and small proteins 
in bacteria have been overlooked for a long time and are 
still underrepresented in public databases.

Clustering and identifying new protein families from 
protein sequences of average length has become a stand-
ard bioinformatic procedure. The Markov clustering 
algorithm [24] has been proven to be reliable for iden-
tification in general [25, 26]. However, small proteins 

challenge existing clustering approaches and tools due to 
their short length. A metagenomic study has shown vast 
numbers of hitherto unknown small proteins in human 
microbiomes and protein families identified by clustering 
[13].

Addressing these issues, we present sORFdb, to our 
knowledge the first dedicated database for small pro-
teins and sORF sequences in bacteria. It is a high-quality 
repository for known sORF and small protein sequences. 
In addition to protein sequences, physicochemical fea-
tures are provided to support the search for small protein 
groups of interest. Furthermore, it offers small protein 
families and hidden Markov models, enabling the con-
sistent identification and annotation of these families 
and providing entry points for further research. All data 
of sORFdb are publicly available for download and can 
be accessed via an interactive website at https://​sorfdb.​
compu​tatio​nal.​bio.

Methods and implementation
Creation of a small protein and sORF database for bacteria
For the creation of the sORFdb database, genomes 
and protein sequences from various data sources were 
downloaded and processed. From GenBank (Release 
256) [27], the 269,214 latest annotated genomes with 
an assembly level of “complete genome”, “chromosome”, 
or “scaffold” were downloaded and used as the primary 
source for sORFs and small proteins. Small proteins up 
to 100  AA in length were retrieved from the UniProt 
database (v2023_03) [2]. Curated and non-fragmented 
small proteins were downloaded from Swiss-Prot [2], and 
non-fragmented ones with evidence of existence at the 
protein, transcript, or homology level were downloaded 
from UniProtKB [2]. In addition, small proteins of the 
SmProt database (v2.0) [28] were retrieved and stored 
with the entries from the UniProt databases in a data-
set of verified small proteins. These were directly added 
to the sORFdb database. For filtering and identification 
steps of hypothetical proteins and small proteins from an 
unknown annotation source, the UniRef100 entries [2] of 
the proteins with evidence and the SmProt proteins were 
used. Hidden Markov models (HMMs) from AntiFam 
(v7.0) [8] and Pfam (v35.0) [29] were downloaded, com-
pressed with HMMER (v3.3.2) [30] and used for filtering 
and scanning for protein domains and motifs.

To extract sORFs and small proteins, several filtering 
and processing steps were applied to the aforementioned 
annotated bacterial genomes from GenBank. Complete, 
unambiguous, and unfragmented sORF and protein 
sequences and their functional product descriptions were 
extracted from the annotated genomes. False-positive 
small proteins were filtered out using PyHMMER (v0.9.0) 
[31] and AntiFam HMMs [8] with gathering cutoffs and 
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an additional upper E-value threshold of 1E-5. RBSs of 
sORFs were detected using Pyrodigal (v2.1.0) [32]. In 
addition, extracted small proteins were filtered accord-
ing to whether their annotation source was from a known 
trusted source, i.e., a reference, representative or NCBI 
Prokaryotic Genome Annotation Pipeline (PGAP) anno-
tated genome, or an unknown source. Non-hypothetical 
proteins from trusted annotation sources were stored in 
the sORFdb database. Additionally, hypothetical proteins 
and proteins from unknown annotation sources were 
compared against the dataset of verified small proteins 
from the Swiss-Prot, UniProt, and SmProt databases 
using Diamond (v2.1.8) [33].

To examine homology, BLAST Score Ratio Values 
(SRV), as proposed by Lerat et  al. [34], were calculated 
by normalizing bit scores of the best-observed alignment 
hits with the maximum bit scores of protein self-hits 
(Observed score/Maximum score). This normalization is 
used because common E-value or bit score thresholds 
are often too strict for small proteins due to their short 
length. As a relative metric, SRVs contain sequence 
length information, while SRV thresholds, are independ-
ent of sequence length. In contrast to E-value thresholds, 
SRV thresholds generalize well across proteins of differ-
ent lengths and do not need to be more lenient for small 
proteins. All homology-filtered small proteins with an 
SRV of 0.7 or higher were stored in the sORFdb data-
base. To detect very small proteins with only up to 50 AA 
length, potentially missed by the original genome anno-
tation, a combined approach using Pyrodigal [32], and a 
homology search with a minimum SRV threshold of 0.7 
was employed. A subsequent filtering step excludes all 
hits overlapping with existing annotations and filters for 
canonical start codons.

For all small proteins, physicochemical properties were 
calculated using Biopython (v1.8.1) [35] and Peptides.py 
(v0.3.1) [36]. Additionally, they were screened for Pfam 
families and domains with gathering cutoffs and an addi-
tional upper E-value threshold of 1E-5. The taxonomy of 
all small proteins was adapted to the nomenclature for 
phyla described by Oren and Garrity [37].

The workflow for the creation of sORFdb was imple-
mented in Nextflow (v23.04.1) [38] to achieve an 
automated and reproducible procedure (Fig. 1). The sup-
plemental materials provide all software packages and 
tools used, along with their respective versions (Suppl. 
Tab. S1-3).

Clustering of potential small protein families
sORFdb provides potential small protein families along 
with corresponding HMMs. Due to their short length 
and understudied clustering properties, a custom 
graph-based clustering approach was developed to find 

potential protein families (Suppl. Fig. S1). To reduce 
the graph size and focus on less studied small proteins, 
only non-redundant small proteins with 50 AA or fewer 
were clustered.

During the initial step of the clustering approach, 
an all-against-all BLAST search was performed using 
BLAST+ (v2.14.1) [39]. SRVs were calculated for all 
BLAST hits, and a lower limit of 0.3, as proposed 
by Lerat et  al. [34], was applied to identify possible 
homologs. In addition, a minimum mutual alignment 
coverage of at least 70.0  % was required to obtain 
sequence alignments of higher quality and to exclude 
artifacts of small proteins only sharing a few AA. After-
ward, singletons comprising proteins without homologs 
and distant hits with only one alignment with another 
protein were excluded. The SRVs of the BLAST hits 
were transformed into a symmetric undirected graph. 
For this purpose, SRVs were averaged with their reverse 
BLAST hit.

Small proteins represent nodes and SRVs weighted 
edges in the graph. To reduce the node degrees in the 
graph and improve the clustering performance, only 
k best edges of a node were kept. For this purpose, k 
was chosen as the minimum number of edges of a node 
without creating singletons in the graph. The previous 
pruning steps exclude distant proteins that otherwise 
lead to singletons at high values of k. Therefore, k was 
chosen as the smallest possible value for which no sin-
gletons were reported.

Afterward, to remove edges that could lead to incor-
rect clusters, a heuristic proposed by Apeltsin et al. [40] 
was applied to every graph component, consisting of a 
connected subgraph of proteins unconnected to every 
other connected subgraph.

The pruned graph was then split into batches of com-
ponents with similar properties depending on the com-
ponent’s mean node degree and mean edge weights. 
This was done to improve the selection of the infla-
tion parameter value, which controls the granularity 
of the clustering. For all batches, a Markov clustering 
with different inflation values, between 1.2 and 4.0, 
was computed using MCL (v22-282) [24]. The inflation 
value was chosen based on the efficiency criterion [41]. 
A visualization of the clusters used for family identifi-
cation is available in the supplemental materials (Suppl. 
Fig. S2).

For all clusters with more than five members, multiple 
sequence alignments were computed using MUSCLE 
(v5.1) [42]. Based on these alignments, HMMs were built 
using PyHMMER (v0.10.2) [31]. Gathering cutoff val-
ues were computed for all HMMs, and where possible, a 
protein product was assigned by a major voting decision 
based on the annotated protein functions in sORFdb.
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sORFdb website
The data of sORFdb is stored in an Elasticsearch cluster 
[43]. Access to the data is provided via a REST API that 
was implemented in Java with the Vert.x framework [44]. 
The website’s graphical user interface was implemented 
using Vite, Vue, and Typescript [45–47]. It provides a 
function for an exact sequence and an ID search using 
the API above to match the queries against the sequences 
and IDs stored within the Elasticsearch cluster. The 
alignment-based search uses a BLAST SequenceServer 
[48] with all stored small proteins as a database return-
ing the IDs of the matching subject sequences which then 
are used for a search in the Elasticsearch cluster. The 
small protein family search is performed on the server-
side using HMMER (v3.3.2), and the IDs of matching 
HMMs are also used to search for the HMM entries in 

the Elasticsearch cluster. For all entries cross-links to the 
original data sources are provided.

The web-frontend, the Elasticsearch server, and the 
BLAST SequenceServer are deployed on a scalable 
Kubernetes cluster, which is hosted in the de.NBI consor-
tium’s cloud computing infrastructure.

Results
Small proteins encoded by sORFs have long been over-
looked in bacteria due to laboratory and computational 
limitations. With the advent of new laboratory protocols, 
many small proteins with essential functions have been 
reported. Despite these advancements and improvements 
in gene prediction tools, sORFs and small proteins still 
need to be explored. There are no dedicated databases 

Fig. 1  Scheme of the data processing and sORFdb compilation workflow

Annotated genomes from GenBank were quality-filtered for complete and unambiguous sORFs and their annotation source. Small proteins 
with evidence were retrieved from the Swiss-Prot, UniProt, and SmProt databases and used for sORFdb and additional quality filtering steps. 
Hypothetical proteins and small proteins from an unknown source were filtered using Score Ratio Value cutoffs based on normalized bit scores. 
Similarly, missing sORFs were identified. Spurious small proteins were filtered out using AntiFam. Pfam families and domains were assigned, 
and physicochemical properties were calculated for all small proteins
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that focus solely on small proteins in bacteria. sORFdb 
was created to provide a taxon-independent collection 
of high-quality bacterial sORFs, small proteins and their 
assignments to protein families in a comprehensive data-
base to address this issue. This resource is accessible via 
https://​sorfdb.​compu​tatio​nal.​bio.

A large‑scale collection of small proteins
To capture bacterial sORFs and small proteins in a com-
prehensive, taxonomically independent, and standard-
ized manner, including potential unannotated sequences, 
they were collected from the public data sources Gen-
Bank, Swiss-Prot, UniProt, and SmProt, enriched with 
additional information on taxonomy and RBS usage and 
processed into a dedicated database. As the public data-
bases contain sequences of varying-quality, all sequences 
were quality-filtered in a workflow before acceptance.

A total of 31,653,437 sORFs and 34,007,166 small 
proteins were collected from public databases. 269,214 
annotated bacterial genomes from GenBank were sys-
tematically screened for sORFs and small proteins, 
and different filtering steps were applied to extracted 
sequences. The filtered proteins were split into two 
groups. The first consists of non-hypothetical small pro-
teins stemming from a trusted annotation source. The 
second group contains hypothetical ones or ones stem-
ming from an unknown annotation source. From the 
first group, 22,846,872 annotated small proteins were 
included in sORFdb. An additional homology-based fil-
tering step was applied to the second group. 8,596,036 
small proteins were kept after applying a strict SRV fil-
ter since they possessed a homolog with an SRV of 0.7 
or higher to sequences from Swiss-Prot, UniProt, or 
SmProt. For 2,722,346 small proteins previously anno-
tated as “hypothetical protein”, the product description 
could be updated using information from well-annotated 
homologs. From UniProt, 2,322,213 small proteins with 
evidence on transcript, protein, or homology level were 
collected.

Since automated annotation pipelines rely primarily 
on computational gene prediction tools, they are limited 
by hard length cutoffs, and sORFs encoding small pro-
teins may be missed despite possible homologs. To col-
lect these in the annotated genomes, they were detected 
using a combined approach comprising Pyrodigal, a 
homolog search, and an overlap and start codon filter. 
Based on homology alone, 1,363,907 potentially missing 
small proteins could be detected. After applying the fil-
ter mentioned above, a further 198,723 were stored in the 
sORFdb database. As a result, sORFdb contains 5,073,415 
non-redundant small protein sequences and 5,640,450 
non-redundant sORF sequences. Despite the absence of 
sORF sequences for some of the small proteins collected, 

the total number of non-redundant proteins is smaller 
than that of non-redundant sORFs due to the use of 
synonymous codons. Detailed information on the num-
bers of the total and unique sORF and small protein 
sequences, as well as related database sources, are shown 
in Table 1.

The group of proteins for which the most new pro-
teins have been reported in recent years is the group of 
small proteins with up to 50 AA [19]. To investigate the 
length distribution of the total and non-redundant small 
proteins in sORFdb, their lengths were compared with 
entries in the UniRef100 database.

In line with expectations, the number of known small 
proteins in the sORFdb and the UniRef100 database tre-
mendously declines with decreasing length (Fig.  2). The 
historical and the default gene length cutoffs of standard 
gene prediction tools and databases (30 AA, 38 AA, and 
60  AA) are visible for the predicted UniRef100 entries 
[5, 7]. In contrast, these cutoffs do neither occur for 
UniRef100 entries with evidence nor sORFdb entries. 
While less numerous than all predicted UniRef100 
entries, sORFdb provides a considerably higher number 
of non-redundant small proteins, especially with fewer 
than 50 AA, than the UniRef100 entries with evidence.

Taxonomic distribution
Based on the literature and reports for newly identified 
small proteins in clinically relevant species, we suspected 
a bias in the taxonomic distribution in our sORFdb data-
base. For this reason, the taxonomy information of sORFs 
and small proteins was extracted from source genomes 
and databases to assess the spread and conservation 
across different bacterial taxa. Phyla were standardized to 
use a consistent nomenclature based on  Oren and Gar-
rity [37].

In line with our expectation, the taxonomic distribu-
tion of small proteins in the sORFdb database showed 

Table 1  Number of sORFs and small proteins in sORFdb and the 
used public data sources

Database sORFs Small proteins

GenBank total 31,641,552 31,641,552

non-redundant 5,628,909 4,366,039

Swiss-Prot total - 30,520

non-redundant - 19,718

UniProt total - 2,322,213

non-redundant - 1,612,347

SmProt total 11,885 12,881

non-redundant 11,858 12,419

sORFdb total 31,653,437 34,007,166
non-redundant 5,640,450 5,073,415

https://sorfdb.computational.bio
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a clear overrepresentation of clinically relevant species 
and model organisms (Fig. 3A). 60.0 % of all small pro-
teins belonged to the phylum of Pseudomonadota, for-
merly known as Proteobacteria. Within this phylum, 
34.0  % of all protein entries belonged to Escherichia, 
Klebsiella, and Salmonella genera. Other dominantly 
represented genera were Pseudomonas, Bacillus, 
Staphylococcus, and Streptococcus, each accounting for 

4–6  %. This bias is much less prominent in the taxo-
nomic distribution of non-redundant small proteins 
(Fig. 3B). While 42 % of all non-redundant small pro-
teins are also found in Pseudomonadota, there are no 
overrepresented genera, as is the case for all entries in 
the database.

Fig. 2  Length distribution of sORFs and small proteins in sORFdb and UniRef100

The number of known small proteins decreases with decreasing sequence length. sORFdb provides more non-redundant small proteins 
than the UniRef100 database with evidence. Especially for sORFs encoding small proteins with few AA, sORFdb provides more entries

Fig. 3  Taxonomic distribution of redundant and non-redundant small proteins

 A Most known small proteins in sORFdb stem from Pseudomonadota , model and clinically relevant organisms. B The taxonomic distribution 
of non-redundant small proteins showed a much less pronounced bias in comparison. The figure was created with Krona (v2.8.1) [49]
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Differing genetic properties between sORFs and longer 
genes
sORFs are known to have non-canonical start codons 
more often than genes encoding proteins with more 
than 100 AA [20]. To determine their start codon usage, 
these were extracted from all non-redundant sORF 
sequences in sORFdb. With decreasing length, there was 
a frequency increase in non-canonical start codons, while 
canonical start codons were most frequently used for 
all sORFs encoding small proteins of more than 20  AA 
(Fig. 4). Although ATG was the most frequent canonical 
start codon, the frequency of the alternative canonical 
start codons GTG and TTG increased with decreasing 
sequence length. sORFs encoding small proteins of 20 AA 
or fewer had a high proportion of non-canonical start 
codons compared to longer ones. The codons AAG, 
ACG, and AGG occur much more frequently in these 
than in sORFs encoding for small proteins with more 
than 20 AA. The non-canonical start codons ATA, ATC, 
ATT, and CTG occurred primarily in these longer sORFs. 
Regarding their source databases and genera, 73.4  % 
of the sORFs encoding small proteins with 20  AA or 
fewer belonged to the genus Escherichia. 68.9 % of these 
sORFs were collected from SmProt, while the remaining 
sequences were obtained from the GenBank database. In 

the group with up to 10 AA, 99.8 % of the sequences were 
annotated in the genus Escherichia, and 99.6 % of them 
were extracted from the SmProt database.

sORFs are known to be pervasively transcribed, which 
can happen through leaderless translation [22, 23]. To 
analyze potential leaderless translation, the usage of RBSs 
of the non-redundant sORFs in the annotated genomes 
from GenBank was examined using Pyrodigal [32]. RBS 
could be detected in 73.8 % of all non-redundant sORFs. 
Despite this fact, the existence of an RBS varies enor-
mously depending on the sequence length. With decreas-
ing size, the detection of an RBS decreased (Fig. 5). This 
can be observed for sORFs encoding small proteins with 
60  AA or fewer. For all sORFs encoding small proteins 
with 10  AA or fewer, no RBSs could be detected, and 
87.5 % of the ones encoding small proteins with 20 AA or 
fewer also did not have a predicted RBS.

Functions of small proteins
Functional characterizations of small proteins have 
revealed essential roles in bacteria. However, homologs 
and functional descriptions are often unavailable for 
newly discovered small proteins. For this reason, all 
small proteins were filtered during the sequence collec-
tion process, and hypothetical protein products were 

Fig. 4  Distribution of canonical and non-canonical start codons in sORFs

With decreasing sORF length, the frequency of non-canonical start codons increases. Shorter sORFs have a higher frequency of the alternative 
canonical start codons GTG and TTG. The ones encoding small proteins with 20 AA or fewer have the highest frequency of non-canonical start 
codons. In addition, they show a shift towards different start codons compared to the non-canonical ones used in the group with more than 20 AA
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re-annotated with functional descriptions of homologs, 
if available. In addition, all small proteins were queried 
against the Pfam database to assign protein families and 
domains.

The most common functional descriptions and Pfam 
hits were analyzed to investigate whether the functions 
of the collected small proteins were consistent with the 
literature. For 74.0  % of the non-redundant small pro-
teins, a Pfam family or domain could be assigned, with 
the number of known assigned Pfam domains decreas-
ing with decreasing sequence length. Most small proteins 
in sORFdb are structural proteins of ribosomes that are 
highly conserved and well-studied. Besides these, essen-
tial functions of regulatory proteins, stress response pro-
teins, and toxin-antitoxin systems are predominant. This 
is in line with previous reported findings [1, 14, 15, 17, 
19]. Most regulatory proteins are denoted as helix-turn-
helix containing transcriptional regulators. Cold-shock 
proteins are the most abundant stress response proteins, 
and the three most common toxin-antitoxin systems are 
Type II toxin-antitoxin systems of the RelE/ParE, HicA 
or Phd/YeFM families. The top 20 small protein product 
annotations are available in the Supplementary Mate-
rial Table  S4. Small proteins with 50  AA or fewer also 
frequently possess the functional description for helix-
turn-helix containing transcriptional regulators. How-
ever, many of these are membrane-associated, like the 
yjcZ family sporulation protein, lmo0937 family protein 

ATPase subunits, and others. The most common toxin-
antitoxin systems are entericidin family proteins. This 
has also been reported in previous studies [1, 12, 17, 19]. 
In addition, small proteins with the domain of unknown 
function DUF3265, DUF2256, or DUF1127 are also fre-
quently found in the annotations of sORFdb and the 
assigned Pfam domains.

Families of small proteins in bacteria
While small proteins in bacteria are a rapidly evolving 
field of research and the number and deduced functions 
of novel identified proteins are the subject of current 
studies, their families are still understudied [13]. Clus-
ters of similar proteins can be used as a starting point 
to identify conservation within and across taxonomic 
groups and the evolution of beneficial functions of these 
proteins. To address this, potential families were inferred 
using a custom graph-based clustering approach on the 
non-redundant collection of bacterial small proteins.

Small proteins with up to 50 AA are the most rapidly 
growing protein category [19], and longer proteins have 
been better studied since they were not affected by his-
torical cutoffs [5–7]. For this reason, the clustering and 
the small protein families focused on the 309,042 less-
studied small proteins with up to 50  AA. The cluster-
ing approach was developed to handle small protein 
sequences’ properties better and make minimal assump-
tions about their clustering behavior. After applying 

Fig. 5  Frequency of sORFs without a detected ribosomal binding site

With decreasing sORF length, the frequency of detected RBSs also decreased, and for sORFs encoding proteins with 10 AA or fewer, no RBSs were 
found at all
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different pruning strategies, 272,018 small proteins 
remained for the clustering with MCL. 16,518 clusters 
were assigned in total by the graph-based clustering 
approach, of which 4,073 were singletons. Clusters with 
at least five members were used as the basis for the small 
protein families. Many of the separate graph components 
were completely assigned to one cluster. There were also 
large complex-structured graph components, consisting 
of proteins such as ribosomal or small proteins sharing 
a domain of unknown function, for which many clusters 
were determined (Suppl. Fig. S1).

Clusters with at least five members were denoted as 
small protein families to distinguish between techni-
cal sequence clusters and potential families. Based on 
this, 8,884 novel small protein families were created. 
These families had a mean of 27.7 and a median of 11 
members. The most prominent family consisted of 363 
members. Most families had members with a length 
between 40 and 50 AA. Additionally, there were more 
families with sequences of approximately 38  AA in 
length. While there was a slightly increased number of 
families with members of around 30 AA in length, fam-
ilies with shorter members were scarce (Fig. 6). HMMs 

were built for all small protein families, and accompa-
nying gathering cutoffs were calculated to foster the 
detection and annotation of small proteins belonging to 
the identified families. For 8,798 of the 8,884 families, a 
functional description could be assigned using a major-
ity voting approach based on the existing functional 
annotation of cluster members. For example, these 
families shared simple protein motifs, such as a domain 
of unknown function or a functional description. The 
most abundant functional descriptions assigned to the 
families stemmed from ribosomal proteins and regula-
tory proteins.

Interactive web‑based access to sORFdb
An interactive website was developed to provide a user-
friendly interface for the sORFdb database and to inte-
grate additional services for sequence and family search 
and data exploration. It makes the collected sORFs, small 
proteins, small protein families, and related information 
easily accessible to the scientific community. To accom-
plish this, it offers various functions for the interaction 
with the collected data. The database, protein and sORF 

Fig. 6  Distribution of cluster size and sequence length of small protein families

Most small protein families had an average member length between 40 and 50 AA or around 30 AA. Most of the families with shorter member 
proteins had members with a length of about 30 AA
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sequence data, small protein families and the corre-
sponding HMMs are available for download.

To enable researchers to find homologous sORF and 
small protein sequences, a sequence-based search func-
tion is provided with a fast, exact search and a similar-
ity-based BLAST search (Fig.  7A). In addition, a highly 
sensitive search for small proteins belonging to known 
protein families is available. All sequences and fami-
lies are findable and accessible via unique IDs. Besides 
sequence-based search functions, browse functions 
are provided to view small proteins and sORFs match-
ing user selected criteria. These criteria can be based on 
taxonomy, sequence features, functional description, or 
physicochemical properties (Fig. 7B). Search results and 
filtered sORFdb entries can be downloaded for local pro-
cessing (Fig.  7C). To provide further information, links 
to original resources are provided on a detailed page for 
each database entry. Similarly, the small protein families 
can be browsed and inspected in a detail view (Fig. 7D).

Discussion
Small proteins of 100  AA or fewer encoded by sORFs 
have long been overlooked in bacteria [1, 4]. However, 
the advent of ribosome profiling, improvements in mass 
spectrometry, and metagenomics have led to the identifi-
cation of numerous sORFs and small proteins [9–11, 13]. 
Despite this, sORFs and small proteins with evidence on 
transcript or protein level are often missing from public 

databases and newly annotated genomes. To address 
these issues, the landscape of publicly available bacte-
rial sORFs and small proteins in annotated genomes and 
protein databases was captured and analyzed to provide 
a unified, dedicated database for sORFs, small proteins, 
and their families.

To the best of our knowledge, sORFdb is currently the 
largest and most comprehensive sequence database for 
bacterial sORFs, small proteins, and related families. The 
combination of different data sources, particularly the 
integration of GenBank and the application of filtering 
steps, provides access to a broad collection of sequences 
and a higher number of sequences than individual data 
sources used. This aggregation also enables the access to 
sORFs and small proteins from databases which do not 
provide direct access for these or have a different focus. 
These include GenBank, which is a database of nucleo-
tide sequences with supporting biological annotations, 
as well as Swiss-Prot and UniProt, which contain pro-
tein descriptions including functional descriptions, but 
do not focus on high-quality small proteins. Due to this 
approach, sORFdb is taxonomically independent and not 
focused on specific species compared to the specialized 
small protein database SmProt, which focuses on E. coli 
and ribosome profiling [28]. In addition to the small pro-
tein and encoding sORF sequences, information on RBS 
usage and physicochemical properties are provided. Most 
importantly, sORFdb defines families for small bacterial 

Fig. 7  Screenshots of the sORFdb website

A The sORFdb website’ search page offers a fast exact and a BLAST-based sequence search for all sORFs and small proteins in the database. B The 
browse page provides an interactive selection for taxonomy, sequence-based features, and physicochemical properties to view matching protein 
entries in the database. C The matching entries of a search or browse query are made available in a downloadable table. The identifier of each 
entry links to a detail page with additional information. D The small protein family detail page provides information about family function, member 
sequences, taxonomy and the multiple sequence alignment
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proteins to facilitate the consistent identification of these 
hard-to-predict proteins as a starting point for further 
studies. Regarding the functions of small proteins, the 
annotated functions of the non-redundant proteins in 
sORFdb largely coincide with the literature. As expected, 
the most frequently found proteins are ribosomal. The 
following annotated top functions of regulatory proteins, 
membrane-associated proteins, stress response proteins 
and toxin-antitoxin systems of small proteins are also 
often described in the literature [1, 12–15, 18]. Besides 
these functions, the Pfam domains DUF3265, DUF2256, 
and DUF1127 occur with high frequency in small pro-
teins with up to 50 AA. Recent studies show that proteins 
with the DUF1127 domain serve essential functions con-
cerning the sRNA maturation and RNA turnover as well 
as the phosphate and carbon metabolism [50, 51]. Based 
on the DUF1127 small proteins, 37 different families with 
DUF1127 were identified. In contrast, the 41,097 single-
tons and 3,561 clusters with up to 4 small proteins identi-
fied with the clustering approach show the existence of 
less conserved or understudied groups. This is also con-
sistent with reports of small proteins conserved in only 
a few organisms [1]. While the functional annotations 
of well-studied small proteins in sORFdb align with the 
known literature, further investigation is needed for less 
conserved and understudied groups.

The taxonomic distribution of the available small pro-
teins in sORFdb shows a clear bias towards Pseudomon-
adota, particularly towards E. coli (Fig.  3A). This bias is 
due to the historical over-representation of these bacteria 
in sequenced genomes and the fact that most ribosome 
profiling experiments are conducted in this organism 
[10, 18]. Although this bias is not as evident for the non-
redundant small proteins (Fig. 3B), it still imposes limita-
tions. Combining different databases did not reduce this 
known bias, and SmProt, which only contains data from 
E. coli, further reinforced this effect. Nevertheless, the 
taxonomic distribution of non-redundant small proteins 
shows that sORFdb covers a broad range of non-clinically 
relevant bacteria despite this bias, allowing a taxon-inde-
pendent search for small proteins.

Since automated annotation pipelines and gene predic-
tion tools are limited in their ability to predict sORFs, a 
homology-based approach was used to detect potential 
missing sORFs in annotated genomes from GenBank. 
Identifying missing small proteins was based on assump-
tions derived from the current knowledge of sORFs 
encoding functional proteins, which is biased towards E. 
coli and related bacteria. Therefore, only potentially miss-
ing small proteins with canonical start codons, a known 
homolog and prediction with Pyrodigal were included 
[10, 12, 21, 23]. Applying this search filter, 198,723 likely 
non-spurious small proteins were identified from the 

1,363,907 candidates found by homology search. This 
comparatively low number, in conjunction with the fil-
ters applied, and the matching taxonomic bias of the 
database, indicates that more than a homology search is 
needed for identifying small proteins. Another limita-
tion is the computational prediction of sORFs since the 
used tools are not optimized for sequences of such short 
lengths.

The distribution of start codons in non-redundant 
sORFs contrasts with the criterion for using canonical 
start codons that was applied for missing sORFs in the 
GenBank genomes. As the length decreases, the num-
ber of non-canonical start codons increases and shifts 
towards different non-canonical start codons compared 
to sORFs that encode small proteins with more than 
20  AA (Fig.  4). A possible reason could be that most 
sORFs of this length were collected from SmProt and 
identified by ribosome profiling in E. coli alone. There-
fore, they might include sORFs encoding non-functional 
transcripts expressed by pervasive translation [21, 22]. 
Alternatively, these sORFs may be evolutionary young, 
stemming from de novo gene origination, and therefore 
may not exhibit the typical start codon and RBS usage 
observed in E. coli [17]. To address this, further stud-
ies on the codon usage of sORFs encoding functional 
small proteins are needed to distinguish spurious sORFs 
expressed by pervasive translation from sORFs stemming 
from de novo gene origination and conserved sORFs.

The selection of an appropriate identity threshold 
is critical for the clustering of homologous protein 
sequences. If prior knowledge is available, a suitable 
threshold can be chosen depending on the evolutionary 
distance or available information about the composi-
tion of the protein families to be clustered. Otherwise, a 
30  % identity threshold or the application of E-value or 
bit score thresholds have been shown to capture more 
distant homologs [52]. However, this approach cannot 
be applied to small proteins because for short sequences, 
even self-hits can have values outside these established 
thresholds [52]. For this reason, a custom graph-based 
clustering approach was used to identify small protein 
families. This approach was chosen to minimize assump-
tions about the clustering behavior of small proteins as 
much as possible since their clustering properties are not 
well known. SRVs based on normalized bit scores were 
used as a relative similarity metric to address the pos-
sibility of insignificant bit scores for shorter small pro-
teins, which can occur even for self-hits. Here, the lower 
threshold of 0.3 allows the detection of distant homologs. 
The clustering granularity is automatically selected based 
on the inflation value with the highest efficiency score. 
The various pruning steps aim to improve the clustering 
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by excluding singletons and barely matching small pro-
teins beforehand.

A total of 8,884 small protein families with at least five 
members were identified using this clustering approach. 
Despite the successful identification of protein families, 
only a few families covering sequences with fewer than 
30  AAs could be identified (Fig.  6). This is due to sev-
eral limitations, including the small number of collected 
sequences of this length in sORFdb (Fig. 2), too few small 
proteins reported in the literature being included in data-
bases, and possible low sequence conservation [1]. Most 
families cover small proteins with a length between 40 to 
50 amino acids and around 30 amino acids. This is likely 
due to the fact that there is an increased number of non-
redundant small proteins of about 30  AA length in the 
sORFdb database which is caused by historical and tech-
nical length cutoffs (Fig. 2).

A functional description could be assigned to nearly 
all protein families, and HMMs with gathering cutoffs 
providing high accuracy were built accordingly. The vari-
ous filtering steps employed during database creation 
and clustering reduced the number of false positives in 
the database and subsequently in the small protein fami-
lies. For this reason the HMMs can be used to accurately 
predict small proteins for genome annotation. The most 
common functional descriptions of the small protein 
families were consistent with those reported in the litera-
ture, such as toxin-antitoxin systems, membrane-asso-
ciated systems, and regulatory proteins [1, 12, 15, 18]. 
Despite this consistency of the identified high-quality 
small protein families, 37,024 small proteins were a priori 
excluded from the clustering by filtering strategies, and 
another 4,073 were reported as singletons. It is unclear 
whether these are true positives or false positives. They 
could be false positives that slipped through the extensive 
filtering steps during the database creation. This could be 
the case for pervasively translated non-functional small 
proteins predicted with ribosome profiling [21–23] or for 
false positives sORFs detected by gene prediction tools 
[5, 6]. Another possibility is that they may be small pro-
teins without homologs in the protein databases or are 
underrepresented in bacterial genomes due to difficult 
detection.

The development of the global microbial smORFs cat-
alog (GMSC), published during the submission of our 
work, highlights the diversity of small proteins and that 
there is still a large number of unknown small proteins 
in prokaryotes. Compared to sORFdb, which focuses 
on high-quality sORFs and small proteins in bacterial 
genomes, the GMSC resource contains a large catalog 
of sORFs and small proteins of varying quality, mostly 
identified from metagenomes. The focus on the microbial 

metagenome revealed a higher proportion of small pro-
teins in archaea than in bacteria in the GSMC [53].

sORFdb provides a comprehensive resource for infor-
mation on practically all currently known high-quality 
sORFs and small proteins. Due to the understudied 
nature of these targets, there is still room for improve-
ment in their detection and identification of their func-
tions. Improved computational gene prediction and 
laboratory protocols for the identification of non-spuri-
ous small proteins and the elucidation of sORF and small 
protein properties are still open fields that need further 
research.

Conclusion
To the best of our knowledge, sORFdb is the first com-
prehensive, taxonomically independent database dedi-
cated to sORF and small protein sequences and related 
information in bacteria. For this purpose, high-qual-
ity information from protein and genome databases 
enriched with physicochemical properties was com-
bined. Furthermore, small protein families identified 
by a custom graph clustering approach accompanied by 
HMMs are provided to foster detection and consistent 
annotation.

In conclusion, the sORFdb database aims to serve as a 
high-quality primary resource for researchers studying 
sORFs and short proteins. It will help to improve the 
functional annotation of sORFs and small proteins, as 
well as the future detection of novel short proteins in 
bacteria.
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