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The case‑only design is a powerful approach 
to detect interactions but should be used 
with caution
Rui Dong1, Gao T. Wang1, Andrew T. DeWan2 and Suzanne M. Leal1* 

Abstract 

Background  The case-only design is a powerful approach to identify gene × gene and gene × environment interac-
tions for complex traits. It has been demonstrated that for the case-only design to be valid the genetic and environ-
mental factors must be independent in the population. Additionally, there is a rare disease assumption for the case-
only design, but the impact of disease prevalence and other factors, e.g., size of main effects, on type I and II error 
rates has not been investigated.

Methods  Through theoretical and extensive simulation studies, we investigated type I error, power, and bias of inter-
action term for a wide variety of disease prevalences, main and interaction effect sizes, sample sizes, and variant 
and environmental exposure frequencies.

Results  For diseases with prevalence < 4%, the case-only design usually has well controlled type I error rates 
and is substantially more powerful to detect interactions than the case–control design, but for higher disease preva-
lences both type I and II error rates can be inflated and the estimate of interaction term biased. However, when one 
or both main effects are large there can be inflated type I error rate even for low disease prevalences, e.g., < 1%, 
but if there is no or only one main effect, type I error rate is controlled regardless of the disease prevalence. Addition-
ally, type I error rate can increase with sample size.

Conclusions  We determined the upper bound of the disease prevalence in order not to violate the rare disease 
assumption for the case-only design. To verify that a case-only design study does not have increased type I error rate, 
the bias of the interaction term should be estimated. Although the case-only design is a powerful method to detect 
interactions, prevalences for some complex traits are too high to implement this method without increasing type I 
error rates.

Keywords  Case-only design, Complex traits, Gene × gene and gene × environment interactions, Rare disease

Background
Genome-wide association studies (GWAS) have detected 
associations for thousands of complex traits with millions 
of single-nucleotide variants (SNVs). Most GWAS are 
designed to detect main effects, while interactions either 
between genetic variation and environmental factors (G 
× E) or genetic variations (G × G) may explain “missing 
heritability”. In the past due to insufficient sample sizes 
most studies were underpowered to detect interac-
tions, however large biobanks that include genetic and 
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environmental data, e.g., UK Biobank, are making it pos-
sible to potentially detect interactions [1].

One method to detect G × E interactions, the case-
only design, has received considerable attention since 
Piegorsch et al. proposed it [2]. It can also be applied 
to study G × G interactions, aka epistasis [3]. Piegorsch 
et  al. stated that two assumptions must be met when 
applying the case-only design to estimate the interac-
tion effect: (1) the disease should be rare (2) G and E 
or G and G are independent. The second assumption 
of independence is well studied [4–6] and has been 
evaluated using control data [2, 7]. For the case-only 
design the effect of deviation from Hardy–Weinberg 
equilibrium (HWE) in controls was also examined [8, 
9]. Additionally, it was shown that population strati-
fication can also introduce a bias [4]. However, the 
rare disease assumption has not been investigated. In 
practice the case-only design has been applied to com-
plex traits with a wide range of disease prevalences, 
including breast, prostate and ovarian cancers, Crohn’s 
disease, and rheumatoid arthritis [10–14]. For these 
studies it is not clear whether the rare disease assump-
tion was met and if it was appropriate to use the case-
only design.

Using theoretical analysis and simulation studies, we 
evaluated the role of disease prevalence for the case-only 
design, assuming G and E are independent in the overall 
population. We determined that there is no set disease 
prevalence where type I error rates are always well con-
trolled, since not only does disease prevalence impact 
type I error rate, but also main effects and sample sizes 
and to a lesser extent variant and environmental expo-
sure frequencies. Generally, for diseases with a preva-
lence of < 4% the case-only design has well controlled 
type I error rate. When main effects are large, e.g., odds 
ratio ( OR ) > 5.0, the disease prevalence must be < 1% to 
control type I error rates. Contrarily, when there is no 
or only one main effect, the disease prevalence can be 
high, e.g., 20% and type I error rates are controlled. The 
estimate of the interaction bias can be used to evaluate 
if type I error rate is controlled. To facilitate this evalua-
tion, we provide the CaseOnly R code, which simulates 
and analyses data to assess type I error rates and statisti-
cal power in case-only designs, thereby offering research-
ers a robust tool for detecting interactions. The case-only 
design is a powerful method to detect interactions, and 
it is advantageous to apply it when type I error rate is 
controlled.

Methods
Simulation study
Data were generated for a genetic variant under a domi-
nant and additive model and for a binary environmental 

exposure. To evaluate type I error, the genetic variant 
and environmental exposure have no interaction effects. 
The main effects for the genetic variant ranged from 
βG = ln(1.050) ≈ 0.049 to βG = ln(3.846) ≈ 1.347 
for the dominant model, and for the additive model 
βG = ln(1.2) ≈ 0.182 for the carrier of one risk allele. 
For the environmental exposure the main effects ranged 
from βE = ln(1.10) ≈ 0.095 to βE = ln(5.00) ≈ 1.609 . 
We also tested when both main effects were protective 
[βG = ln (0.952) ≈ −0.049 to βG = ln (0.26) ≈ −1.347 , 
βE = ln (0.909) ≈ −0.095 to βE = ln (0.20) ≈ −1.609 ], as 
well as when one main effect was protective and the other 
increased risk. We also evaluated type I error when neither 
the genetic nor environmental factor had a main effect and 
when only one factor had a main effect. Data were also gen-
erated under the alternative where there was an interac-
tion, βG×E = ln(1.20) ≈ 0.182 . The minor allele frequency 
(MAF) of the genetic variant and the frequency of the envi-
ronmental exposure was varied between 0.05 and 0.50. 
We also varied the disease prevalence between 1 and 20%. 
Using a uniform distribution and a random number gener-
ator, genetic variant and exposure data were generated for 
the i th sample and a logistic regression model,

was used to assign the i th sample as a case or control. 
For case–control design, we generated samples of 10,000 
cases and 10,000 to 30,000 controls to obtain a ratio ( R ) 
between controls and cases ( R = 1, 2 , and 3 ). We also 
generated samples of different number of cases (2,500, 
5,000, 10,000, 20,000, and 50,000) to evaluate how sam-
ple size impacts type I error rate for the case-only design, 
with disease prevalence levels varying from 1% to 20%.

For the case-only design, the following formula was 
applied to estimate the interaction effect βG×E where OR 
is odds ratio:

For case–control design, a logistic regression model 
was used logit(Yi = 1) = β0 + βGGi + βEEi + βG×EGiEi 
to estimate the interaction effect βG×E . The p-value ( P) 
for both the case-only and case–control designs was 
computed using the Wald test for the coefficient of βG×E 
in the logistic regression model.

When estimating type I error under the null of no 
interaction ( βG×E = 0 ), 1,000,000 replicates were gener-
ated and analysed. Type I error was calculated for the dif-
ferent significance levels ( α ) varying from 0.001 to 0.05. 
Quantile–quantile (QQ) plots were also generated. For 
evaluating power under the alternative [βG×E = ln(1.2) ], 

(1)logit(Yi = 1) = β0 + βGGi + βEEi + βG×EGiEi

(2)

βG×E = ln(ORG×E |Y=1)

= ln(
P(G = 1,E = 1|Y = 1)× P(G = 0,E = 0|Y = 1)

P(G = 1,E = 0|Y = 1)× P(G = 0,E = 1|Y = 1)
)
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100,000 replicates were generated and analysed. Power 
was estimated as the proportion of replicates with 
P < 0.05 . For data generated under the null and alter-
native the distribution of β̂G×E was obtained using all 
replicates.

Theoretical and analytical studies
We developed a theoretical framework to demonstrate 
the relationship between the interaction effect and the 
OR between G and E in the cases and controls. As stated 
in Piegorsch et  al. [2], under the logistic model (1), the 
exponential value of interaction effect βG×E approxi-
mately equals to the OR between G and E among the 
cases when the disease prevalence is sufficiently low and 
G and E are independent in the population. Here we 
explicitly write the relationship as follows:

When the disease prevalence is sufficiently low, ORG,E |Y=0 
is approximately the OR between G and E in the population 
(Supplementary Methods Sections 1, 2.1, and 2.2).

Besides, by comparing β̂G×E in formula (2) and the true 
βG×E in formula (3), we show the analytical bias given the 
true βG , βE and βG×E and the baseline prevalence of the 
disease (Supplementary Methods Sect. 2.3):

Results
Simulation studies
Type I error—case‑only and case–control designs
Simulation studies were used to evaluate type I error 
when testing for interactions ( βG×E ) for the case-only 
and case–control designs. Tables  1a and Supplemen-
tary Table S1 show the type I error for the case-only and 
case–control designs for α = 0.001, 0.01 and 0.05 when 
there are main effects, i.e., βG = ln(1.2) and βE = ln(2) 
under the dominant model. Similar results were observed 
for the additive model (Supplementary Table S2).

As the disease prevalence increases, type I error rate gen-
erally becomes higher in this setting and the type I error 
rate is inflated when disease prevalence is ≥ 4%. When 
disease prevalence is 4%, type I error for case-only design 
is 0.001098 and 0.051387 when α = 0.001 and α = 0.05 , 
respectively. When disease prevalence is 20%, type I 

(3)exp(βG×E) =
ORG,E |Y=1

ORG,E |Y=0

(4)bias = β̂G×E − βG×E

= ln (ORG×E |Y=0)

= ln(
P(G = 1,E = 1|Y = 0)× P(G = 0,E = 0|Y = 0)

P(G = 1,E = 0|Y = 0)× P(G = 0,E = 1|Y = 0)
)

= ln(
exp(2β0 + βG + βE)+ exp(β0 + βG)+ exp(β0 + βE)+ 1

exp(2β0 + βG + βE + βG×E)+ exp(β0 + βG + βE + βG×E)+ exp(β0)+ 1
)

error rate is greatly inflated to 0.002091 and 0.070049, for 
α = 0.001 and α = 0.05 , respectively. As observed in the 
QQ plot it is evident that type I error rate for the case-only 
design increases with increasing disease prevalence, but for 
the case–control design the type I error rate is well con-
trolled even when the disease prevalence is 20% (Fig. 1 and 
Supplementary Fig. 1a). When one or both main effects are 
absent, the case-only design has well controlled type I error 
rate even when the disease prevalence is high, e.g., 20% 
(Table 1b-d and Supplementary Figure S1b-d).

Main effects and type I error for the case‑only design
We also evaluated type I error for a variety of main effects 
(Table  2a), the results suggest that if one or both main 
effects are strong, the disease prevalence should be < 
4% for well controlled type I error rate. If βG is increased 
from ln(1.2) to ln(3.846) and βE remains ln(2) , and the 
disease prevalence is 1%, type I error rate increases from 
0.050132 to 0.056403. When both main effects are strong 
[βG = ln(3.846) and βE = ln(5) ], even when the disease 
prevalence is as low as 1%, type I error is very inflated, 
i.e., 0.141321 for α = 0.05 . Interestingly, if the main 
effects are protective, the case-only design can be applied 
to diseases with higher prevalences without inflated type 
I error issues, e.g., when both main effects are strongly 
protective, e.g., βG = ln (0.26) and βE = ln (0.2) , type I 

error is 0.048999 when the disease prevalence is 5%. If 
the main effects are in the opposite directions but both 
strong, even for a disease prevalence of 1%, type I error 
is still inflated (Supplementary Table  S3a). If both main 
effects are weak, then the disease prevalence can be > 4% 
for well controlled type I error rate, e.g., if βG = ln (1.05) 
and βE = ln(1.1) , type I error is well controlled 
(0.049666) even when the disease prevalence is 20%.

Exposure frequencies and type I error for the case‑only design
Genetic variant and environmental exposure frequen-
cies also affect type I error for the case-only design. Type 
I error rate first increases as variant and environmental 
exposure frequencies become greater, then decreases 
as the minor allele becomes the major allele or > 50% of 
the population are exposed. For example, when the dis-
ease prevalence is 5% and frequency of environmental 
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exposure is 10%, type I error is 0.049830 (MAF = 0.05), 
0.052221 (MAF = 20%), and 0.051684 (MAF = 50%), 
respectively. However, the impact of MAF and the envi-
ronmental exposure frequency on type I error rate is 
limited compared to the influence of main effects and 
disease prevalence (Table 3a).

Sample size and type I error for the case‑only design
We also evaluated the role of sample size plays on type I 
error for the case-only design. When the disease preva-
lence is 4% and there are two main effects [ βG = ln(1.2) 
and βE = ln(2) ], type I error is 0.050325, 0.051155, 
and 0.058031 for 2 500, 10,000, and 50,000 cases for 
α = 0.05 . If the sample size is 20,000 the disease prev-
alence should be ≤ 2% for well controlled type I error 
rate. For a disease prevalence of 2% and a sample size 
of 50,000 cases, type I error is inflated (0.051977). On 
the other hand, if the sample size is 2 500, type I error is 
still well controlled (0.050102) when the disease preva-
lence is 5% (Table 4).

Statistical power—case‑only and case–control designs
When there are two main effects [ βG = ln(1.2) and 
βE = ln(2) ] under the dominant model with disease 
prevalence ≤ 5%, the case-only design has higher power 
than case–control designs even when R = 3 . Similar 

results were observed for the additive model (Supple-
mentary Figure S2). When disease prevalence is 1%, the 
power for case-only and case–control ( R = 1 ) designs 
are 0.93 and 0.56, respectively, and even when disease 
prevalence increases to 4%, the power of case-only 
design (0.87) is 1.58 × greater than case–control design 
(0.55). The power of case-only design drops substan-
tially when disease prevalence increases to 10%, but it is 
not until the disease prevalence reaches 20% that case–
control design ( R = 1 ) has greater power (Fig. 2a).

When one or both main effects are absent, the power 
for the case-only design is also significantly higher 
than for the case–control design, even though the for-
mer has a much smaller sample size, e.g., N = 10,000 
for case-only and N = 20,000 for case–control ( R = 1 ) 
designs. For a disease prevalence of 4%, when there is 
only a main genetic effect [ βG = ln(1.2) and βE = 0 ], 
the power is 0.76 and 0.48 for the case-only and case–
control designs, respectively. As the disease preva-
lence increases to 20% the power for the case-only 
design is still greater than for the case–control design 
but the gain in power is not as great, i.e., 0.56 vs. 0.47. 
The result is similar when there is only one main envi-
ronmental effect [ βG = 0 and βE = ln(2) ] or no main 
effects [ βG = 0 and βE = 0 ] (Fig. 2b-d).

Higher MAF and frequency of environmental expo-
sure may also have an impact on power. For example, 
when MAF remains 0.2 and disease prevalence is 4%, 

Fig. 1  Quantile–Quantile plot for the case-only and case–control designs. Data were generated under the null with no interaction when there 
are two main effects [ βG = ln(1.2) and βE = ln(2) ]. The MAF for the genetic variant is 0.2 and the frequency of the environmental exposure 
is 0.1. A total of 1,000,000 replicates were generated. The sample sizes are N = 10,000 cases for both the case-only and case–control designs 
and additionally for the case–control design there are N = 10,000 controls
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the power for the case-only design is 0.65, 0.87, 0.97 for 
frequency of environmental exposure being 0.05, 0.10, 
0.20, respectively. However, when MAF increases from 
0.05 to 0.20 to 0.50 with frequency of environmen-
tal exposure fixed as 10%, under the dominant model, 
the power will first increase from 0.53 to 0.87, then 
decrease to 0.73 (Supplementary Figure S3).

Bias—analytical results
In formula (4), we derived the analytical bias of β̂G×E 
given the baseline risk (  1

1+e−β0
 ), main effects ( βG and βE ), 

and true interaction effect ( βG×E ). Under the null, when 
one or both main effects are absent, the bias of β̂G×E 
equals 0. However, when the main effects either both 
increase or decrease the risk of developing disease, β̂G×E 
underestimates the true interaction effect βG×E , leading 
to a negative bias of β̂G×E , and the bias is greater with 
higher disease prevalence. For example, when 
βG = ln(1.2) , βE = ln(2) for the following disease preva-
lences 1%, 4%, and 20% the biases are −0.001667, 
−0.006330, and −0.023631, respectively. Stronger main 
effects also lead to greater bias of β̂G×E , e.g., when both 
main effects are strong [ βG = ln(3.846) and βE = ln(5) ], 
the bias of β̂G×E reaches −0.144066 even when the dis-
ease prevalence is only 4%. When main effects ( βG and 
βE ) are in opposite directions, β̂G×E for the case-only 

design overestimates βG×E (a positive bias), with the bias 
increasing as the disease prevalence increases. As long as 
there are two non-zero main effects, β̂G×E is biased 
(Table  3b, Supplementary Table  S3, Supplementary Fig-
ure S4 and Supplementary Sect. 2.3).

Under the alternative [ βG×E = ln(1.2) ], even when 
there are no main effects, the bias of β̂G×E is negative, 
indicating that the case-only design underestimates 
the interaction effect. When βG = ln(1.2) , βE = ln(2) 
and βG×E = ln(1.2) , the bias is −0.005613, −0.021628, 
and −0.089011 for disease prevalences of 1%, 4%, and 
20%, respectively. The bias of β̂G×E is smaller when βG 
and βE are in opposite directions compared to when βG 
and βE are either both positive or negative, e.g., when 
βG = ln(1.2) , βG×E = ln(1.2) , and the disease prevalence 
is 20%, the bias is −0.089011 when βE = ln(2) , but only 
−0.008341 when βE = ln(0.5) . However, the bias still 
increases as the disease becomes more prevalent regard-
less of the main effects (Supplementary Table  S4 and 
Supplementary Figure S5).

The bias of β̂G×E is closely related to type I and II 
error rates for the case-only design. Under the null, 
when there are two main effects the bias of β̂G×E always 
leads to an increase in type I error rate, and β̂G×E for 
the case-only design either underestimates or overes-
timates βG×E . For the case-only design, as the disease 

Fig. 2  Statistical power of the case-only and case–control designs Data were generated under the alternative with βG×E = ln (1.2) for (a) two 
main effects [ βG = ln(1.2) and βE = ln(2) ]; (b) only a genetic main effect [ βG = ln(1.2) and βE = 0 ]; (c) only an environmental main effect [ βG = 0 
and βE = ln(2) ]; and (d) no main effects ( βG = 0 and βE = 0 ). The MAF for the genetic variant is 0.2 and the frequency of the environmental 
exposure is 0.1. Power is calculated as the proportion of instances that the null hypothesis is rejected among all 100,000 replicates ( α = 0.05)
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prevalence increases, the bias of β̂G×E is greater, lead-
ing to higher type I error rates. The case-only design 
may suffer from inflated type I error rate if the absolute 
value of the analytical bias of β̂G×E > 0.006 (both main 
effects increase risk), > 0.01 (one main effect increases 
and the other decreases risk), and > 0.025 (both main 
effects are protective) (Tables 3 and 4). Under the alter-
native, if the bias of β̂G×E is in the same direction as 
βG×E , this will boost the power of the case-only design. 
However, it should be noted even when βG×E and the 
bias of β̂G×E are in opposite directions, e.g., βG×E is 
positive and the bias of β̂G×E is negative, the power for 
the case-only design is greater than when a case–con-
trol sample is analysed for disease prevalences < 15% 
(Fig. 2 and Supplementary Table S4).

Discussion
We evaluated the case-only design through theoretical 
and simulation analysis, and showed that several factors 
including disease prevalence, main effects, variant and 
environmental exposure frequencies, and sample size may 
impact bias of the interaction term and type I and II error 
rates. While previous studies stated that for the case-only 
design a rare disease assumption is necessary, they often 
lack clarity on what constitutes a "rare" disease. Our simu-
lations investigated various disease prevalence thresholds, 
from 1% to 20%, to assess their effects on type I error rates 
and bias in estimating interaction terms. Compared with 
the conventional case–control design, the power of the 
case-only design can be a magnitude greater, but it should 
only be applied when type I error rate is controlled. Gen-
erally, under the assumption of independence between 
G and E, for disease prevalences < 4% type I error rate of 
the case-only design is not inflated, but for higher disease 
prevalences type I error rate can be high and the estima-
tion of interaction effect biased. When disease prevalence 
is > 20% the power for the case-only design can be lower 
than analysing a case–control sample. When one or both 
main effects are absent, the disease prevalence does not 
impact type I error rate. However, caution is required 
since there may be a failure to detect main effects even 
when they exist. The analytical bias can be calculated 
using formula (4), to aid in evaluating if the case-only 
design is appropriate to use. Besides the analytical bias, 
when the sample size is large ( > 10,000 cases), the case-
only design requires lower disease prevalence to avoid 
inflation in type I error rate.

Stronger main effects may lead to a greater bias of the 
interaction estimate and higher type I error rate. Though 
it is uncommon for complex traits to have a genetic 
risk factor with OR >1.5 there are several environmen-
tal exposures that have large main effects [15–17]. We 

recommend applying the case-only design to test for 
interactions for complex traits with low prevalences (e.g., 
ovarian cancer and celiac disease), and limit testing of 
interactions to variants and environmental exposures 
that do not have strong main effects.

Because of the bias of β̂G×E may be in the same or 
opposite direction of β̂G×E itself, type I and II error rates 
can both increase with increasing disease prevalence. 
Therefore, for the case-only design unlike most statistical 
tests as type I error rate increases power decreases.

Yang et  al. claimed that no assumption about dis-
ease prevalence is required stating that the cross-prod-
uct term of the 2× 2 table (presence or absence of the 
risk allele for genes 1 and 2 among cases) measures the 
departure from the multiplicative joint effects of relative 
risk aka the risk ratio ( RR ) (not OR ) [3]. The RR is used 
for observational cohort studies that have incidence 
cases and only approximate the OR for diseases with low 
prevalence. Therefore, using RR to define interaction is 
inaccurate and both β̂G×E estimated by the case-only 
design and the “interaction” defined by RR have high 
type I error rates when the disease is prevalent. In fact, 
the case-only design measures the “interaction” effect 
defined by RR (Supplementary Methods Sect.  2.4) and 
they are both biased estimates of βG×E (Supplementary 
Figures S4 and S5).

In addition to multiplicative interaction, there are other 
types of interactions such as additive [18] and sufficient-
cause interactions [9]. Interaction on an additive scale, 
often uses the index of relative excess risk due to interac-
tion, which should be used with caution due to use of the 
relative risk as discussed in the paragraph above. Sufficient-
cause interaction comprises a set of conditions or events 
that lead to a specific outcome, that is equivalent to the sce-
nario when the main effects for G and E are both absent.

Conclusions
Although the case-only design is a powerful method to 
detect interaction due to increased type I error rates 
for a variety of scenarios, e.g., main effects, allele and 
environmental exposure frequencies are not sufficiently 
low, type I error rate should be evaluated. Our research 
contributes to the existing literatures by establishing 
clear guidelines on the acceptable thresholds for dis-
ease prevalence that maintain type I error rates under 
control. This can be done by analytically examining the 
bias [formula (4)] and performing simulation studies by 
implementing the R code, CaseOnly, that simulates and 
analyses data to evaluate type I error rate. CaseOnly can 
also be used to evaluate power. Although the case-only 
design is a powerful method to detect interactions it 
should be used with caution.
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