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Abstract 

Solute carriers (SLC) are integral membrane proteins responsible for transporting a wide variety of metabolites, signal-
ing molecules and drugs across cellular membranes. Despite key roles in metabolism, signaling and pharmacology, 
around one third of SLC proteins are ‘orphans’ whose substrates are unknown. Experimental determination of SLC sub-
strates is technically challenging, given the wide range of possible physiological candidates. Here, we develop a pre-
dictive algorithm to identify correlations between SLC expression levels and intracellular metabolite concentrations 
by leveraging existing cancer multi-omics datasets. Our predictions recovered known SLC-substrate pairs with high 
sensitivity and specificity compared to simulated random pairs. CRISPR-Cas9 dependency screen data and metabolic 
pathway adjacency data further improved the performance of our algorithm. In parallel, we combined drug sensitiv-
ity data with SLC expression profiles to predict new SLC-drug interactions. Together, we provide a novel bioinformatic 
pipeline to predict new substrate predictions for SLCs, offering new opportunities to de-orphanise SLCs with impor-
tant implications for understanding their roles in health and disease.
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Introduction
Solute Carriers (SLCs) represent the second largest fam-
ily of membrane proteins in the human genome after 
G-protein Coupled Receptors (GPCRs). According to the 
latest classification database, 456 protein-coding genes 
are classified as SLCs [1]. SLC proteins are localised 
throughout the cell, across cell and organelle membranes, 
and regulate the flux of many different classes of small 
molecules, including ions, sugars, amino acids, peptides, 
vitamins, and nucleotides [2, 3].

SLCs are alpha-helical integral membrane proteins and 
operate under the influence of ion or metabolite gradients 

to transport molecules across membranes using an alter-
nating access cycle. Although several versions of the alter-
nating access cycle have evolved, they all share the same 
fundamental process: an outward open state, wherein a 
central binding site is available to the non-cytoplasmic 
side of the membrane; an occluded state, where ions and/
or metabolites are trapped inside the transporter; and an 
inward-facing state, where the transporter has opened its 
binding site to the cytoplasm [4].

The breadth of substrate specificities and subcellular 
localization of SLCs gives them critical roles in regulating 
cellular metabolism [5], energy production [6–8], signal 
transduction [9], and the maintenance of physical char-
acteristics such as cell volume [10]. Inherited mutations 
in SLCs have been linked to at least 100 monogenic dis-
orders [11]. Beyond their physiological substrates, SLCs 
also transport drug molecules and are thus of crucial 
importance in pharmacokinetics, drug sensitivity and 
therapy outcomes [12–14].
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The key roles played by SLCs in regulating cellular 
metabolism and their potential to control the efficacy of 
drug treatments mean that the characterisation of both 
physiological and non-physiological substrates of SLCs 
is of great importance to the pharmaceutical industry. 
However, many SLCs have no substrate annotated and 
are described as ‘Orphan Transporters’. A recent survey 
reported that around 28% of SLCs had no experimen-
tally determined substrate [3]. The key challenge to de-
orphanising SLCs is the inability to predict substrates 
based on sequence or structure alone, as many transport-
ers within the same family recognise chemically diverse 
molecules [1]. For example, members of the SLC13 fam-
ily share 40%—50% amino acid identity but separate into 
two different groups based on function: whilst SLC13A1 
and SLC13A4 transport sulfates, SLC13A2, SLC13A3 
and SLC13A5 recognise carboxylates [15]. Therefore, 
it is currently not possible to accurately infer SLC sub-
strates from their amino acid sequence, and experimen-
tal determination of substrates is required. However, 
screening enough substrates to cover all the possibilities 
is not practical. Thus, methods that could produce pre-
dictions for the likely substrate of any given SLC would 
be extremely valuable in narrowing down the list of sub-
strates to test in functional assays, as well as suggesting 
insights into cellular functions of uncharacterised SLCs.

Here, we describe a new method to use existing 
multi-omics high throughput datasets to predict SLC 
substrates. We demonstrate that our method carries pre-
dictive power in recovering known SLC-substrate pairs 
when applied to multiple major cell line panels. We use 
our method to generate predictions for orphan SLCs. 
In parallel, we develop our method to produce new 

predictions for the effects of SLC expression on sensitiv-
ity to drugs. We hope that our predictions act to gener-
ate new hypotheses for the substrates, cellular roles, 
and therapeutic implications for uncharacterised SLC 
proteins.

Results
Correlation analysis between metabolomics 
and expression datasets successfully predicts SLC 
substrates
We set out to de-orphanise SLC proteins by investigat-
ing the potential effects their expression might have on 
cellular metabolite concentrations. We reasoned that the 
transporter activity of SLCs might result in correlations 
between SLC expression level and the intracellular con-
centrations of their corresponding substrates (Fig.  1A). 
We used a major cancer cell panel profiling 225 metab-
olites with liquid chromatography-mass spectrometry 
(LC–MS) across almost a thousand cancer cell lines from 
the Cancer Cell Line Encyclopedia 2019 (CCLE2019) 
[16]. We selected a list of 447 SLC and 72 SLC-like genes 
(S1 Table) from previous curations [3, 17]. For each SLC 
or SLC-like gene in the list, we obtained Spearman’s rank 
correlation coefficients (ρ) between normalised transcript 
levels and metabolite concentrations in 913 cell lines and 
calculated the Z-score of the absolute values of the cor-
relation coefficients (transformed Spearman’s ρ) for each 
metabolite to account for varying degrees of correlation 
strength across different metabolites (see Methods). 
Upon inspection of this set, we observed many cases 
where the expression of an SLC correlated most strongly 
with its known substrate. For example, SLC6A6, a Na+/
Cl−-dependent β-alanine and taurine transporter [18], 

(See figure on next page.)
Fig. 1  Correlating SLC transcript levels to substrate concentrations reveals known substrates of SLC. A Schematic representation shows 
the principle of correlation analysis. SLC expression levels are hypothesised to correlate with the intracellular concentration of their corresponding 
substrates. Blue, SLC exporting substrate; red, SLC importing substrate. Figure created with elements from BioRender. B Scatter plot shows 
transformed Spearman’s ρ and adjusted p-value for 225 metabolites correlating with the expression level of SLC6A6 and SLC6A8 across 913 
cell lines from CCLE. Key substrates are labelled. C Mutual concordance of SLC-metabolite correlation outcomes from different datasets, each 
processed with the pipeline specified in Methods. Nodes, datasets, edge, concordance parameter measured in Spearman’s ρ. Dark red represents 
the concordance are assessed in the known correlation pairs, while grey represents the concordance are assessed in all correlation pairs. CCLE2019 
and NCI60, p = 4.30 × 10–293 (all), p = 1.60 × 10–4 (known); CCLE2019 and CCL180, p = 1.50 × 10–221 (all), p = 6.56 × 10–221 (known); NCI60 and CCL180, 
p = 2.38 × 10–24 (all), p = 0.197 (known). D Distribution plots show the distributions of 100 bootstrapped mean transformed Spearman’s ρ or mean 
confidence score in known SLC-metabolite set compared to 100 simulated random sets in each dataset. Colored distribution curves in yellow (top 
left), green (top right), and purple (bottom left) represent the bootstrapped mean transformed Spearman’s ρ in NCI60, CCLE2019, and CCL180, 
respectively; Colored distribution curves in dark red (bottom right) represents the bootstrapped confidence score calculated from evaluation 
of correlation strength of the 3 previous datasets; grey distribution curves represent respective simulated random sets that were generated 
independently for each datasets. p-value was derived from one-tailed t-test against the null hypothesis that mean transformed Spearman’s ρ (or 
confidence score) of known set is not higher than its corresponding 100 simulated random sets. E Across confidence score cutoff selected (from 
1 to 100), fraction of pairs recovered (having confidence score better than cutoff ) in known set compared to in simulated random set. Red dashed 
line, recovered fraction value in the known set; grey violin distribution recovered fraction value in the simulated random set; p-value was derived 
from one-tailed Wilcoxon test against the null hypothesis that fractions recovered in the known set are not higher than its corresponding 100 
simulated random sets
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correlated most strongly to β-alanine and taurine, whilst 
SLC6A8, a Na+/Cl−-dependent creatine transporter [19], 
correlated most strongly to creatine (Fig.  1B). Notably, 
the expression of SLC6A8 also strongly correlated with 
two other metabolites, phosphocreatine and creatinine, 
which are direct derivatives of creatine [20, 21].

These examples indicated that the expression and 
metabolite level variation across cancer cell lines might 
be generally predictive of the functions of SLCs. To test 
this systematically, we expanded the correlation analy-
sis to two other major cell line panels, NCI-60 [22] and 
CCL180 [23] (Table S2-S4), and updated the database of 

Fig. 1  (See legend on previous page.)
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SLC annotations based on previous report [3], forming a 
list of 667 known transport activities with substrates or 
substrate derivatives present in the metabolomics data-
sets (Table S5; see also Table S1 for references). Since the 
annotated names for the same metabolites were often dif-
ferent across the databases, we manually examined 1980 
metabolomic annotations in the three metabolomics 
we used to ensure consistent nomenclature (Table  S6). 
Next, we assessed the concordance for all correlation 
pairs among the three analyses with Spearman’s correla-
tion (Fig.  1C). We noticed that the concordances in the 
known pairs are stronger compared to all pairs among 
datasets, demonstrating consistency across datasets. 
However, the relationship is rather weak for CCL180 and 
NCI60, regardless of which pairs were assessed. The low 
concordance might be due to the different cancer types 
used and different methodologies in measurements of 
metabolite levels [23, 24].

We were curious as to whether the transformed Spear-
man’s ρ between SLC-substrate pairs were better than 
randomly permutated pairs of the same set (“simulated 
random pairs”). We bootstrapped 100 mean-transformed 
Spearman’s ρ out of 667 known pairs (excluding all deriv-
atives) and compared them to 100 mean-transformed 
Spearman’s ρ from 100 iterations of 667 simulated ran-
dom pairs. All three datasets showed significantly higher 
mean transformed Spearman’s ρ values (Fig.  1D). It 
should be noted that the NCI60 dataset demonstrated a 
tendency for random pairs to be higher than the other 
two datasets, representing a systematic bias within this 
dataset specifically. However, the true pairs still sig-
nificantly outperformed random pairs in this dataset 
(Fig. 1D).

Datasets, although different, captured correlations 
from transport activities. We reasoned that novel SLC-
substrate pairs might become apparent if we unify the 
datasets. Therefore, we defined a confidence score as a 
measure of the correlation strength across the three data-
sets. The confidence score was calculated for every pair 
per dataset by assessing whether its transformed Spear-
man’s ρ was higher than the dataset-specific lower bound 
(“Threshold of Discovery”) we set and how it ranked 
among the known pairs in this dataset. A threshold of 
discovery of 0 means that every pair with transformed 
Spearman’s ρ lower than 0 (i.e. the Spearman’s ρ is lower 
than the mean among the correlation between this SLC 
and all other metabolites) will be assigned a confidence 
score of 0, while if higher, the confidence score will be 
from 1 to 11 according to the ranking relative to known 
SLC-substrate pairs. The threshold of discovery was 
chosen to maximise the fractional difference between 
true positive (fraction of the known pairs with a higher 
score than the cutoff) and false positive (100 fractions of 

the simulated random pairs with a higher score than the 
cutoff) across a range of confidence score cutoffs in the 
dataset (Figure S1A-C). A final confidence score for the 
pair will thus be the sum of the three from each dataset 
(see Methods Confidence score). We demonstrated that 
the mean confidence scores for the known SLC-substrate 
pairs are significantly higher (Fig. 1D), and the fractions 
recovered in the known set across a range of confidence 
score cutoffs are consistently higher (Fig. 1E; Figure S3A, 
S3B; ROC AUC = 0.5704, PR AUC = 0.5880), compared 
to simulated random pairs. Taken together, these results 
indicate that correlation analysis can detect SLC-sub-
strate pairs, and the unification of correlation strength 
from different datasets could be a potential method to 
predict new substrates for orphan SLCs.

Data from gene dependency screens improves SLC 
substrate predictions
We next considered whether data from genome-wide 
gene dependency screens [25] could be incorporated into 
our predictions of SLC substrates. We reasoned that cell 
growth may be dependent on a specific SLC if the cells 
grow more slowly after the expression of that SLC is 
depleted due to the loss of that particular metabolite(s) 
(Fig.  2A). Metabolites whose concentrations are signifi-
cantly different between dependent and non-dependent 
cell lines might, therefore, be candidate substrates for the 
SLC in question. We used the CRISPR-Cas9 dependency 
screen [26], recording cell growth in over a thousand cell 
lines upon CRISPR knockdown, of which 625 cell lines 
overlap with CCLE2019 metabolomics profiling. To infer 
the dependency of cell lines on specific genes, we used 
the gene effect score, which had been defined previously 
[27]. Genes annotated with negative gene effect scores 
indicated that cells exhibit reduced proliferation upon 
their deletion compared to normal cells. For each SLC 
gene in the curated list, we ranked the cell lines based on 
their corresponding gene effect scores, excluding positive 
scores where growth was improved by loss of the SLC. 
We computed a p-value following multiple test correc-
tions for the difference in each metabolite between cell 
lines with the top 20% of negative scores (more depend-
ent) and bottom 20% of negative scores (less dependent) 
(Table  S7). Across a range of p-value cutoffs, the frac-
tion of significant pairs recovered from the known set 
is higher than that of simulated random pairs. The frac-
tional difference is maximised when the p-value cutoff 
for significance is set to 0.16 (Figure S1D). For p-values 
smaller than the cutoff, a confidence score is assigned 
based on its position within a similarly calculated decile-
based quantile of known pairs, scaled to 1.0 (Figure S1E; 
see Methods Confidence score). Thus, incorporating the 
CRISPR-Cas9 dependency screen as an additional data 
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source improved the prediction performance, as the con-
fidence score difference between known pairs and simu-
lated random pairs increased by 5% (Fig. 2C), as well as 
a slight improvement in the ROC and PR curve (Figure 
S3A, S3B; ROC AUC = 0.5723, PR AUC = 0.5920).

Inclusion of adjacent metabolites improves substrate 
prediction for SLCs
Our results demonstrated that the correlation analy-
sis and CRISPR-Cas9 dependency carry predictive 
power towards recovering known SLC-substrate pairs 
(Figs.  1  and  2). However, substrates might easily dissi-
pate into downstream derivatives, leading to poor cor-
relation and reduced predictive power. Furthermore, 
the prediction of substrates will be reinforced if the SLC 
correlates with the derivatives of the substrates as well. 
To address these ideas, we created a metabolite adja-
cency matrix (Table  S8) from annotated KEGG meta-
bolic pathways. This was done by extracting the number 
of conversion steps required for one metabolite node to 
reach another, with each unit of adjacency representing 
a conversion edge between two metabolite nodes. We 

reasoned that the expression of the SLC that transports 
the substrate molecule may correlate with its proximal 
derivatives, while for its distant derivatives, the distri-
bution of correlation strength will be more random and 
thus more similar to metabolites that are not related 
to the substrate of the SLC (Fig.  3A). To validate this 
hypothesis, we generated adjacency tables containing 
the derivatives that represent different steps of conver-
sion away from the original SLC-substrate table, from 
proximal to distant. For each SLC-derivative pair in the 
table, we measured the similarity between the correla-
tion of SLC-derivative pairs and the original SLC-sub-
strate pairs by calculating their Spearman’s ρ difference. 
Subsequently, these differences were compared against 
the control tables containing randomly sampled non-
adjacent metabolites. Non-adjacent metabolites cannot 
be linked to the substrate node via any continuous path. 
For each non-adjacent control in the previous com-
parison, 100 non-adjacent controls were compared in a 
one-to-one manner to ensure robustness. Our results 
demonstrate that proximal derivatives (those requiring 
fewer conversion steps) showed greater similarity to the 

Fig. 2  CRISPR loss-of-function screen provides alternative source for SLC prediction. A Schematic representation shows the principle of CRISPR 
loss-of-function data analysis to predict SLC substrates. Figure created with elements from BioRender. B Violin plot shows the recovered 
fractions in known sets compared to simulated random sets across different cutoff selected for resulting adjusted p-values. The p-value 
comparing the fraction distribution between known and simulated random was derived from one-tailed Wilcoxon test against the null 
hypothesis that fractions recovered in known set is not higher than its corresponding 100 simulated random sets. C Boxplot showing the effect 
of incorporation of CRISPR loss-of-function screen into prediction algorithm on the confidence score difference between true positive and false 
positives (“+”), compared to considering cell panels alone (“−”). The p-value comparing the confidence score difference was derived from one-tailed 
Wilcoxon test against the null hypothesis that confidence score difference calculated using both correlation analysis and CRISPR loss-of-function 
screen (“+ ”) is not better than only using correlation analysis (“−”)
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original substrates compared to distant derivatives and 
that the difference between derivatives and non-adjacent 
molecules decreased with increasing distance from the 
substrate, especially for derivatives that are within 3 units 
of adjacency, regardless of whether the Spearman’s ρ is 
raw (Fig.  3B) or transformed (Figure S2A). We selected 
2 as the unit of adjacency to use for our analyses since 
this selection produced the highest fractional difference 
(Figure S2B). We next determined the optimal thresh-
old of discovery (Figure S1F-G) and the confidence score 

to be added for each discovery (Figure S1I) to maxim-
ise the difference between known SLC-metabolite pairs 
and simulated random pairs (see Methods Confidence 
score). This improved the confidence score difference by 
127% (Fig. 3C), fractional difference by 47% (Fig. 3D) and 
AUC in the ROC and PR curve (Figure S3A, S3B; ROC 
AUC = 0.5998, PR AUC = 0.6126), indicating that metab-
olite adjacency information bolstered the accuracy of our 
prediction algorithm.

Fig. 3  Inclusion of metabolite adjacency to the prediction substantially differentiates known interaction from simulated random interaction. A 
Schematic representation shows the relationship between adjacent metabolites (i.e., derivatives of the substrate) and non-adjacent metabolites (i.e., 
not derivatives of the substrate). Pipeline details specified in Method. Figure created with elements from BioRender. B Boxplot shows the general 
similarity of Spearman’s ρ between derivative across unit of adjacency. Red dashed line, Spearman’s ρ differences between adjacent derivatives 
and substrates are compared to non-adjacent controls across unit of adjacency. Grey boxes, Spearman’s ρ differences between non-adjacent 
controls are compared to another 100 non-adjacent controls across unit of adjacency. Black rectangular highlights the selectable range of the unit 
of adjacency (1, 2, 3). C Boxplot shows the effect of the incorporation of metabolite adjacency into the prediction algorithm ( −/− , cell panels; 
+/− , cell panels and gene dependency; +/+ , cell panels, gene dependency, and metabolite adjacency). The p-value comparing the confidence 
score difference was derived from one-tailed Wilcoxon test against the null hypothesis that confidence score difference calculated adding 
metabolite adjacency (“+/+ ”) is not better than only using correlation analysis (“+/−”). D Violin plot shows the fractional difference between true 
positive and false positives calculated with the inclusion of metabolite adjacency compared to the algorithm without including metabolite 
adjacency over a range of confidence score cutoffs ( −/− , cell panels; +/− , cell panels and gene dependency; +/+ , cell panels, gene dependency, 
and metabolite adjacency). The p-value comparing the confidence score difference was derived from one-tailed Wilcoxon test against the null 
hypothesis that confidence score difference calculated adding metabolite adjacency (“+/+ ”) is not better than only using correlation analysis 
(“+/−”)
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Predicted substrates for Orphan SLCs
The previous analysis confirmed that true SLC-substrate 
pairs tend to associate with higher confidence scores, and 
increasing confidence scores yielded consistently higher 
fractions in the known set compared to simulated ran-
dom. We validated that true SLC-substrate pairs tend to 
appear in a higher position compared to simulated ran-
dom pairs when pairs for each SLC were ranked accord-
ing to their confidence scores, measured with the median 
rank of the sets (Fig. 4A). We determined that the frac-
tional difference peaked at positive recovery of 46.6% if 
we only considered predictions ranked within 25% of all 
metabolites with non-zero confidence scores (Fig.  4B). 
However, to generate a number of predictions for orphan 
SLCs that could be reasonably tested experimentally, we 
sought to reduce the number of predictions further. We 
reasoned that we could improve the predictive power 
for a smaller number of possible substrates by simulta-
neously identifying over-represented metabolite path-
ways within the set. We curated a list of 623 metabolites 
across the three metabolomics datasets that could be 
linked to 57 metabolic pathways (Table  S9). Using the 

known SLC-metabolite pairs, we showed that consider-
ing metabolites that ranked in the top 4% of predictions 
with non-zero confidence scores were optimal to success-
fully predict enriched metabolic pathways containing the 
known substrate (Fig.  4C). To further evaluate the pre-
diction method, we ran 10 iterations of partition, train-
ing and testing processes (see Methods) using 70% of 
randomly selected known pairs (training sets) to obtain 
parameters for the confidence score formula, then using 
this to calculate scores for the remaining 30% of known 
pairs (testing sets). Across 10 iterations, the mean con-
fidence scores of training sets are consistently higher 
compared to simulated random pairs of the training sets 
(Figure S4). On average, our method robustly predicted 
46% of all pairs in testing sets, with almost 17% in the 
sets appearing in the top 4% among predictions (Fig. 4D; 
ROC AUC, mean = 0.595, SE = 0.00271; PR AUC, 
mean = 0.601, SE = 0.00311).

On this basis, we used our prediction algorithm to cre-
ate a list of substrate predictions with high confidence 
scores for 128 orphan SLCs at the cutoff of the top 4% 
per SLC (Table S10). We identified many predictions that 

Fig. 4  Top-ranking predictions of known transport activity.A Distribution plot shows 100 bootstrapped median ranks of known SLC-substrate 
pairs compared to 100 median ranks in simulated random pairs. The p-value comparing the median rank was derived from one-tailed Wilcoxon 
test against the null hypothesis that the median rank in the known set is not closer to top than in simulated random set. B Fractional difference 
between true positive (TP%) and false positive (FP%) when only rank percentile above the given value is considered as predicted. Black line, 
median fractional difference; grey, range of fractional difference. C Point plot shows the number of SLC with substrate converged with the pathway 
enriched from metabolites ranked above the given rank percentile in the prediction list. D Stacked bar plot shows the fraction of all pairs 
in the testing set that was recovered in each iteration. Dark red stack, the fractions of pairs in the testing set appeared in the top 4% of predictions 
per SLC, ranked by confidence scores; pink stack, the fractions of pairs in the testing set with confidence score above locally optimised score cutoff; 
grey stack, the fractions of pairs in the testing set with confidence score below locally optimised score cutoff. Black dashed line represents the mean 
fractions of pairs in the testing set appeared in the top 4% across 10 iterations
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are in line with experimental data. For example, we found 
strong associations between the orphan SLC CLN3 and 
several glycerol phosphate-related metabolites (e.g. phos-
phatidylcholine, alpha-glycerophosphocholine, alpha-
glycerophosphate, glyceryl phosphoryl ethanolamine), 
agreeing with recent research indicating that CLN3 
mutant in zebrafish leads to glycerophosphodiesters 
(GPDs) accumulation in early development [28]. We pre-
dicted that MTCH1 could be associated with metabolites 
involved in glutathione synthesis (glycine, glutathione, 
glutamate, pyroglutamate, NADPH), which aligns with 
the recent observation that MTCH1-deficiency correlates 
with NAD+ depletion in mitochondria [29]. Moreover, 
our results converge with a previous attempt to predict 
SLC substrate predictions that used sequence informa-
tion [3]. In this publication, SLC25A45, SLC22A25 and 
SLC35E2B were all predicted to have nucleobase-con-
taining substrates, and our algorithm also predicted a 
variety of nucleobases as substrates for these transporters 
(Table  S10). Together, our predictions could be used to 
generate plausible hypotheses for novel SLC substrates, 
which can be used to narrow down subsets of metabo-
lites for downstream experimental verification and lead 
to faster de-orphanisation.

Leveraging drug repurposing panels may predict new 
interactions between SLCs and cytotoxic drugs
Solute carriers are known to play an important role in 
determining drug pharmacokinetics, safety and efficacy 
profiles [30]. A key goal of the International Transporter 
Consortium is to identify transporters involved in drug 
transport and highlight potential issues around adverse 
drug-drug interactions involving transporters during 
clinical trials [31]. Therefore, in parallel to the prediction 
of physiologically relevant substrates, we investigated 
whether interrogation of omics datasets could be used 
to identify drug molecules that are substrates for spe-
cific SLC proteins. We reasoned that expression of SLCs 
might affect drug efficacy, thus altering the shape of the 
dose–response curve reporting the relationship between 
viability and drug concentration. For example, when 
considering cytotoxic drugs, if cell death is improved or 
attenuated with higher SLC expression levels, one possi-
ble indication is that the drug is a substrate for transport 
by the SLC in question (Fig.  5A). We investigated our 
hypothesis using the cancer repurposing screen profiling 
1448 active drugs against 578 cancer cell lines across 8 
doses [32]. 569 cell lines were found in CCLE2019 tran-
scriptomics, where we ranked the cell lines according to 
the expression level of each SLC in descending order. For 
any SLC, the first and last 20% of cell lines were marked 
with “high expression” and “low expression”, respec-
tively. The dose–response of cells post-drug treatment 

annotated with SLC expression level was represented as 
we fitted local polynomial regression models to the data 
points. The curves were compared as we calculated pre-
dicted viabilities at each predicted dose for each expres-
sion annotation and applied a pairwise t-test to derive 
p-values and the absolute values of the mean difference. 
Our data showed consistency with previously validated 
results. For example, SLC35F2 expression sensitised cells 
to the drug YM-155, a known substrate imported by this 
SLC [14]. SLC19A2 encodes a plasma membrane thia-
mine transporter [33], but thiamine uptake is not a dose-
dependent factor impacting cell viability (Fig. 5B).

To test if the analysis shows systematic power in pre-
dicting known transport activity with cellular viability, we 
curated a list of 180 known transport activities by SLCs 
on drug compounds (Table  S11). We selected 21 activi-
ties that satisfied the following criteria: (1) the compound 
is found in the list of active drugs in the screen; (2) the 
compound does not target any specific mutation; and 
(3) a significant difference (p < 0.05) in cellular viability 
is observed between the curves. Benchmarking with 100 
simulated random pairs demonstrated that known trans-
port activities correlated with larger viability differences 
(Fig.  5C) and that viability differences tended to cor-
relate stronger with dosage administered for pairs with 
known activities, demonstrating dose-dependent effects 
(Fig. 5D). Both predictors, the absolute mean difference in 
viabilities and dose-dependent effect, presented good sen-
sitivity and specificity (Figure S3C, S3D; Absolute mean 
difference, ROC AUC = 0.7080, PR AUC = 0.6814; dose-
dependent effect, ROC AUC = 0.6689, PR AUC = 0.6628).

The treatments of cytotoxic drugs to cells create stress 
and might lead to variabilities in cellular viabilities that 
are specific to factors other than a particular SLC expres-
sion. To test this, for every drug, instead of selecting top 
and bottom 20% cell lines, we selected two groups of ran-
dom cell lines, each containing 20% of the total cell line 
number, and fitted local polynomial regression models 
to compare the predicted viability difference at each dos-
age. We repeated this process 100 times and calculated 
the mean and standard deviation from the 100 log10-
transformed p-values and absolute mean differences that 
resulted. A predicted interaction between drug and SLC 
will only be included if both of their t-test results, p-value 
and absolute mean difference, are at least two standard 
deviations higher than the mean derived from 100 ran-
dom cell line picking iterations (Table S12). We selected 
the top 50 predictions after filtering, ranked with absolute 
mean difference and dose-dependent effect (Table  S13). 
The SLC-drug pair with the best prediction statistics was 
an experimentally validated transport activity of YM-155 
by SLC35F2 [14]. Our algorithm also predicted previously 
unknown links; for example, we predicted an interaction 
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between the orphan SLC Patched Domain Containing 4 
(PTCHD4) and the drug molecule idasanutlin, which acts 
as a small molecule antagonist of p53 activity suppressor 
Mouse double minute 2 homolog (MDM2) (Fig. 5B; [34]). 
We also noticed a group of SLCs (SLC3A1, SLC7A7, 
SLC16A4, SLC23A1, SLC37A1, SLC37A2, SLC41A2, 
NPC1L1, CLN3) that interact with the small molecule 
inhibitor RITA, which leads to induction of cell apoptosis 
by (re)activating wild-type or mutant p53 [35]. SLC3A1 
is associated with attenuation, while the other is associ-
ated with sensitisation of the killing effect (Figure S5A). 
Importantly, the cell lines exhibiting high and low expres-
sion of each SLC were largely non-overlapping, indicat-
ing that the sensitivity is likely due to the SLC expression 
rather than the identity of cell lines (Figure S5B). In 

summary, our work provided a possible route to predict 
SLC-drug interactions in parallel to physiological sub-
strate determination, aiding the process of exploring SLC 
as a therapeutic target reservoir or alerting drug discov-
ery teams to potential downstream issues with cell toxic-
ity or adverse impacts on drug pharmacokinetics.

Discussion
The deorphanisation of SLCs has been a great collective 
effort in the community [36–39]. However, experimental 
substrate determination is hindered by the technical diffi-
culties in expressing and purifying functional membrane 
proteins and the huge range of potential compounds that 
could be tested even if the SLC is isolated for functional 
study. Therefore, accurate prediction of SLC substrates 

Fig. 5  Combining drug sensitivities and SLC expression profile reveals valuable associations between SLC and drug efficacy. A Schematic 
representation shows the principle of leveraging the drug dose response curve to predict SLC-drug associations. If a cytotoxic drug compound 
is transported by a SLC, expression of the SLC may either enhance or attenuate its killing effect. Figure created with elements from BioRender. 
B Non-linear regression shows an example of how SLC35F2 expression affects the killing efficacy of the known substrate drug YM-155 (Left); 
an example of how SLC19A2 expression does not affect sensitivity to thiamine (Middle); a prediction example of idasanutlin efficacy might associate 
with PTCHD4, which is not an identified link. Statistics were computed based on paired t-test of model prediction capturing the shape of fitted 
regression. C Distribution plot shows the distribution of mean absolute mean difference in 100 bootstrapped known interaction sets and in 100 
simulated random interaction sets. p-value is derived from one-tailed Wilcoxon test against a null distribution that mean absolute mean difference 
of the known set is not better than those of the simulated random. D Distribution plot shows the distribution of mean absolute Spearman’s ρ in 100 
bootstrapped known interaction sets and in 100 simulated random interaction sets. p-value is derived from one-tailed Wilcoxon test against a null 
distribution that mean absolute Spearman’s ρ of the known set is not better than those of the simulated random
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would be an important development for the field. Here 
we developed a new method to predict SLC substrates 
and demonstrated we could recover known interactions, 
indicating its potential for de-orphanising SLCs in the 
human genome. Below, we discuss how the algorithm 
compares to previous methods, its strengths and limita-
tions, and prospects for future improvement.

An obvious approach to attempt to predict SLC sub-
strates is to utilise structures of transporters with known 
substrates to generate a set of rules that could be subse-
quently used to predict substrates for orphan SLCs. This 
approach was attempted by [NO_PRINTED_FORM] [3], 
who trained a machine-learning algorithm with system-
atic SLC substrate annotations and structural features, 
such as sequence and topological domains. Probabilities 
were produced for 115 orphan SLCs against 18 selected 
substrate terms. Over the subsequent 3 years, substrates 
have been experimentally defined for 28 of these orphan 
SLCs, offering the opportunity to evaluate this method 
(Table S14). Prediction of the substrates of 4 SLCs aligned 
with experimental results (SLC39A11, TMEM165, 
SLC16A6, SLC16A17). For example, TMEM165, now 
characterised as a lysosomal Ca2+ importer [40], was pre-
dicted to have a high probability of transporting divalent 
metal cations. SLC6A17 was demonstrated to transport 
glutamine in mice synaptic vesicles (Jia et al., 2023) and 
was predicted to transport L-amino acids. However, 
for the remainder of SLCs where substrates were deter-
mined, the algorithm either did not provide any predic-
tions (16/28), or the predictions produced did not match 
experimental determination completely (8/28). For 
example, ANKH was predicted to have a high probability 
of transporting metal ions but turned out to mediate ATP 
and citrate export [41]. This evaluation showed that the 
prediction based on structural features has limitations.

In comparison, our method is deliberately agnostic of 
SLC structural information and instead focuses on how 
varying levels of SLC expression affect metabolite levels 
in cells. This method is conceptually similar to genome-
wide association studies (GWAS), which link genetic 
variations, specifically single nucleotide polymorphisms 
(SNPs), in transporters to changes in the levels of endog-
enous metabolites [42]. However, the sensitivity of lev-
eraging GWAS is limited as it relies on common SNPs 
linked to an SLC for it to be interrogated, and of those 
SNPs that are linked, not all of them may result in altera-
tions in SLC function or expression. Our approach is 
also agnostic about known biochemical properties, 
which means that it has the potential to predict surpris-
ing or unexpected interactions, even if an experimen-
tally defined substrate has been annotated. This could 
be important as many substrates are defined experimen-
tally using a limited range of compounds and in  vitro 

assays, which, therefore, may not capture the full spec-
trum of activities for an SLC in  vivo. For example, ino-
sitol was found to have a high degree of correlation with 
the recently characterised facilitative taurine transporter 
SLC16A6 [43] in all three datasets but not with other 
SLC16 family members, potentially indicating that this 
may be an additional substrate of SLC16A6.

The biochemical naivety of our model also presents 
limitations. The availability of transcriptomics and 
metabolomics in well-curated cell lines is limited to a 
small number of datasets comprising cancer cell lines. 
The rewiring of metabolic pathways has been long estab-
lished as a hallmark of cancer [44], meaning that some 
of the associations may be cancer-specific. Neverthe-
less, this could provide an opportunity for our method to 
generate information relevant to understanding cancer 
cell physiology. Another limitation is that correlations 
between SLCs and metabolites may arise as a result of 
co-expression with other SLCs. Equally, there are many 
reasons why the expression of a particular SLC might not 
correlate with levels of its substrate, for example, post-
translational regulation of transport activity, subcellu-
lar compartmentalization of the metabolite, transporter 
redundancy or compensatory effects. Furthermore, our 
method is limited to metabolites measured robustly in 
metabolomics experiments. A notable absence from 
these measurements are most small ions, which are fre-
quently substrates for SLCs [45]. To address the lim-
ited metabolic space in our prediction, we included the 
adjacency information (Fig.  3) for all 1980 metabolites. 
Therefore, the predicted substrates should be considered 
as representing a group of potential substrates rather 
than a specific, clearly defined one. We recommend view-
ing our method as a tool for generating hypotheses that 
require further validation through in  vitro experiments 
with purified proteins.

In addition to identifying physiological substrates for 
SLCs, we also used omics data to identify potential drugs 
that might be substrates. Previous efforts to predict SLCs 
targeted by drugs include rational drug design target-
ing SLC structures, exploring compounds with chemical 
similarity to known substrates, and discovering inhibi-
tors using in silico screening of ultra-large compound 
libraries [46]. However, it is important to note that such 
discoveries are based heavily on high quality biochemi-
cal and 3D structural information. Taking protein–ligand 
docking as an example, despite the immense success of 
AlphaFold2 and 3 [47, 48], slight differences in the pre-
dicted binding site can lead to large inaccuracy in ligand 
binding [49]. Here, our method presents an alternative 
and explores the possibility of predicting SLC–cytotoxic 
drug interaction through cell viability data. A previous 
experimental approach screened the impact of knocking 
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out specific SLCs on 60 representative cytotoxic drugs, 
highlighting the broad role of SLCs in drug efficacy [50]. 
Of the 201 prominent associations (47 drugs, 101 SLCs) 
they reported, 39 drugs and 97 SLCs are also included 
in our analysis. Two-thirds (26/39) of these drugs were 
found to have associated SLCs predicted in our study, 
with five associated SLCs ranked highly in our predic-
tions: SLC1A4 & Triptolide (3rd out of 92), SLC19A1 & 
Methotrexate (6th out of 72), SLC2A1 & Idarubicin (6th 
out of 58), SLC15A1 & 6-Mercaptopurine (7th out of 
61), and SLC12A4 & 5-Azacitidine (11th out of 86). The 
remaining 13 drug associations were eliminated as they 
fell outside the range of drug-specific thresholds; how-
ever, half of these would have associated SLCs found in 
the top 10% of predictions for each drug, indicating con-
cordance and predictive power.

Our analysis complements this previous screen by 
including a much larger dataset of cell lines and types 
(469 cell lines compared to 1 in the previous study). Addi-
tionally, we examined the effect of individual SLC expres-
sion, which severe knockout phenotypes might mask. By 
disregarding structural considerations in our analysis, we 
allow for the emergence of unexpected drug associations. 
However, this approach might lead to predicted drug 
associations not directly related to SLC transport of the 
drug itself, such as the metabolic environment of the cell 
and downstream events of SLC activity. Nevertheless, our 
analysis could aid in characterizing unknown SLC-drug 

interactions. The potential for polymorphisms in SLCs 
within human populations has been demonstrated to be 
a promising angle for personalized medicine [51]; our 
drug interaction results potentially extend this to include 
differences in expression as a method to predict the sen-
sitivity of specific tumors to particular drugs in personal-
ized medicine.

Methods
Workflow overview
Here we present an overview of the workflow, with 
details of each section described in the following sections 
(Fig. 6).

Data acquisition for CCLE2019 dataset
CCLE2019 RNA-Seq and metabolomics data were down-
loaded from the DepMap Portal (depmap.org, CCLE 
2019 omics) as read counts (file “CCLE_RNAseq_genes_
counts_20180929.gct.gz”) and mean concentration levels 
(file “CCLE_metabolomics_20190502.csv”).

Data acquisition for NCI60 dataset
NCI60 RNA-Seq data was derived from alignment and 
normalisation as performed previously [52]. NCI-60 
metabolomics data were downloaded from the NCI DTP 
Data Portal (wiki.nci.nih.gov) as mean concentration lev-
els (file “WEB_DATA_METABOLON.ZIP”).

Fig. 6  Overview of workflow. Illustration of the workflow used for the predictions described in detail in the methods section
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Data acquisition for CCL180 dataset
CCL180 metabolomics data were downloaded from the 
ETH Research Data Collection (https://​doi.​org/https://​doi.​
org/​10.​3929/​ethz-b-​00051​1784) as concentration levels 
and annotations (file “primary analysis (metabolomics)”).

Data acquisition for CRISPR‑Cas9 dependency screen
CRISPR-Cas9 dependency screen dataset was down-
loaded from DepMap portal (depmap.org, DepMap 
Public 23Q2 omics) as gene effect scores (file “CRIS-
PRGeneEffect.csv”).

Data acquisition for drug repurposing screen
Drug repurposing screen dataset was downloaded from 
Cancer Dependency Map Portal (https://​depmap.​org/​
repur​posing), including cell line annotation (file “sec-
ondary-screen-cell-line-info.csv”), treatment metadata 
(“secondary-screen-replicate-collapsed-treatment-info.
csv”) and viability log-fold (“secondary-screen-repli-
cate-collapsed-logfold-change.csv”).

Normalisation, correlation and transformation 
of SLC‑metabolite pairs
Prior to all analysis, RNA-Seq read counts were nor-
malised with Median Ratio Normalisation (MRN) by 
‘DESeq2’ package in R to account for gene expression 
difference across different tissue types and cancer cell 
lines. Normalisation was applied to both CCLE 2019 
and NCI60 raw counts across all cell lines. The data was 
first converted to a DESeqDataSet (dds) object using the 
‘DESeqDataSetFromMatrix()’ function, and the sum of 
gene reads in each cell line was calculated and filtered if 
lower than 10. The resulting dds object was normalised 
by applying ‘estimateSizeFactors()’ function, and the nor-
malised pseudocounts were extracted by ‘counts()’ func-
tion with argument ‘normalized = TRUE’. All subsequent 
analyses used the resulting normalised pseudocounts.

Correlation analysis was applied between CCLE 2019 
pseudocounts and CCLE 2019 metabolomics (“CCLE2019”), 
CCLE 2019 pseudocounts and CCL180 metabolomics 
(“CCL180”), NCI-60 pseudocounts and NCI-60 metabo-
lomics (“NCI60”). Spearman’s correlations were computed 
across mutually overlapping cell lines between pseudocounts 
and metabolite levels using the ‘cor.test()’ function in R with 
argument ‘method = “spearman”’.

The resulting correlation p-values were adjusted for 
each gene using Benjamini–Hochberg Procedure using 
the ‘p.adjust()’ function with ‘method = “BH”’. Correlation 
coefficients (ρ) might not be able to present correlation 
strength accurately across datasets due to differences in 
the distribution of correlation coefficients between differ-
ent metabolites. Therefore, for SLCa and Metabolitez , the 

transformed ρ coefficient ρ̃(a,z) was computed using the 
following formula:

And thus represents the relative correlation strength of 
the pair.

Concordance assessments
Between datasets, only mutually overlapping SLC and 
metabolite terms were assessed. The resulting raw ρ val-
ues for each overlapping SLC and metabolite were taken 
and correlated using the ‘cor.test()’ function in R with 
argument ‘method = “spearman”’.

Benchmarking SLC‑metabolite pairs
Known pair tables (Table  S5, S11) were manually 
extracted from the SLC ontology annotation (Table  S1) 
based on overlapping SLC and metabolite terms across 
datasets. Metabolites or drug molecules listed in the 
known pair tables were shuffled and randomly assigned 
to SLCs that are not known to transport them, while 
keeping the SLC column unchanged, resulting in 100 
simulated random pair tables.

CRISPR‑Cas9 gene dependency screen analysis
CRISPR gene effect data recorded the gene effect score of 
17,931 genes across 1095 cell lines of which there are 625 
overlapping cell lines with CCLE2019 metabolomics, and 
500 genes were annotated to be SLC or SLC-like. In the 
regard of CCLE2019 metabolomics, we transformed the 
metabolite levels in CCLE2019 metabolomics to Z-score 
by tissue to remove the impact from metabolite levels 
that are tissue-specific. For metabolite level Metabolitei 
in Tissuej , the transformed metabolite level M̃(i,j) was 
computed using the following formula:

For analysis, we removed cell lines with positive gene 
effect scores in each SLC, and ranked the cell lines with 
gene effect score in ascending order. The highest and low-
est 20% of cell lines were matched to CCLE2019 metab-
olomics, and the levels of every metabolite in these cell 
lines were compared using Wilcoxon’s test, with p-value 
adjusted for multiple comparison. The analysis resulted 
in a table contain SLC-metabolite pairs that discuss the 
possible metabolite difference when the particular SLC is 
targeted.

ρ̃(a,z) =
ρ(a,z) −

−

ρ(z)

σ|ρ(z)|

M̃(i,j) =
M(i,j) −Mj

σMj

https://doi.org/
https://doi.org/10.3929/ethz-b-000511784
https://doi.org/10.3929/ethz-b-000511784
https://depmap.org/repurposing
https://depmap.org/repurposing
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Metabolite adjacency
The metabolite adjacency table (Table S8) was generated 
from human KEGG pathways using the ‘MetaboSignal’ 
package in R [53]. Specifically, all human metabolic path-
ways were extracted and subsetted using ‘MS_getPath-
Ids()’ function with argument ‘organism_code = “hsa”’. 
The reaction network was built based on metabolic 
pathways using ‘MS_reactionNetwork()’ function. Sub-
sequently, node distances were calculated using ‘MS_
nodeBW()’ function with argument ‘node = “out”’ and 
‘normalized = TRUE’.

Confidence score
Before the addition of CRISPR loss-of-function 
screen and metabolite adjacency, for any pair i 
( SLCi −Metabolitei ), the confidence score was com-
puted as follow:

where CCLE2019i , NCI60i , CCL180i are the sub-scores 
rewarded for performance of pair i in each dataset; a 
is the weight parameter for correlation outcomes (see 
Method Optimisation).

When CRISPR loss-of-function screen and metabolite 
adjacency were added, for any pair i ( SLCi −Metabolitei ), 
the confidence score is computed as follows:

where GeneDepi , and Adjacencyi are the sub-scores 
rewarded for performance of pair i in gene dependency 
analysis and metabolite adjacency; b and c are optimised 
weight parameters (see Method Optimisation) used to 
add weight to sub-scores.

The sub-score in each category is calculated based on 
its respective threshold of discovery ( ToD , derived as 
optimised, see method Optimisation), and how well the 
value performance ( Vi ) is compared to the distribution of 
values in the known set ( Vk ). If Vi < ToD , a sub-score of 
0 is assigned. If Vi ≥ ToD , Vi is compared to the distribu-
tion of Vk for score assignment. Specifically, a set of quan-
tiles ( Qk ) are derived from the distribution of Vk from the 
0th percentile (minimum, qk0 ) to the 100th percentile 
(maximum, qk10 ), with increments of 10% and the mini-
mum of Vk ( qk0 ) being set to the value of ToD:

Next, we find the index of the interval ( j ) in the array 
Qk where Vi would fall (i.e. j is taken when the condition 
qkj−1 ≤ Vi < qkj holds true), and assigned it as sub-score:

Confidencei = a · (CCLE2019i + NCI60i + CCL180i)

Confidencei = a · (CCLE2019i + NCI60i + CCL180i)

+ b · GeneDepi + c · Adjacencyi

Qk = {qk0, qk1, qk2, qk3, . . . , qk10}, qk0 = ToD

Subscorei = j|qkj−1 ≤ Vi < qkj

As a result, values in Qk will be assigned a score 
between 1 ( qk0 ≤ Vi < qk1 ), and 11 ( Vi = qk10 , which 
satisfies the condition qk10 ≤ Vi < qk11 ). Since Qk only 
represents the distribution of known set, any Vi outside 
of the known set and satisfies Vi ≥ qk10 will be capped 
at 11. Subsequently, Subscorei will be an integer ranging 
from 0 to 11, according to which interval the value in this 
category falls. In R, Qk is derived by ‘quantile()’ with argu-
ment ‘probs = seq(0, 1, 0.1)’, and Subscorei is derived by 
‘findInterval()’.

For analysis of correlation outcomes in cell panels and 
metabolite adjacency, Vi represents the transformed 
ρ for pair i in the respective set, and Qk represents the 
collection of transformed ρ for pairs in known pairs 
table. For the gene dependency screen, Vi represents the 
log10-transformed Wilcoxon’s adjusted p-value for pair 
i , and Qk represents the collection of log10-transformed 
Wilcoxon’s adjusted p-value for pairs in known pairs 
table.

For any pair i ( SLCi −Metabolitei ), Adjacencyi is cal-
culated as the sum of sub-scores of all the correlations 
from SLCi to metabolite that’s adjacent (i.e. within 2 
units of adjacency) to Metabolitei and better than the 
ToD (adjacent metabolites to Metabolitei are denoted as 
Adj(Mi)1,Adj(Mi)2, . . . ,Adj(Mi)n):

where sub-score is calculated based on ToD in cell pan-
els ( ToD ) and in adjacency ( ToD′ ) that’s been optimised 
beforehand (see Method Optimisation):

Take a pair, SLCi − Glutamate (any SLC to compound 
glutamate) as an example. The compound glutamate 
(KEGG ID: C00025) can link to 70 metabolites in the 
adjacency matrix, and 10 of them are within 2 steps of 
conversion and were measured in at least one metabo-
lomics in cell panels. Therefore, 10 sub-scores will be 
derived from the 10 correlations between SLCi and 10 
metabolites adjacent to glutamate, and Adjacency for the 
pair SLCi − Glutamate is calculated as the sum of these 
10 sub-scores. We took caution to calculate adjacency 
for molecules that participate in extremely large num-
ber of reactions (such as ATP), and we made sure only 
direct conversions in their biosynthesis pathway were 
considered.

Adjacencyi =

n
∑

n=1

Subscore(Adj(Mi)n)

Qk = {qk0, qk1, qk2, qk3, . . . , qk10}, qk0 = ToD

Subscorei =







0, ifVi < ToD′
0.5, if ToD′ < Vi ≤ ToD

j|qkj−1 ≤ Vi < qj , ifVi > ToD
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Optimisation
The value of parameters in the confidence score calcula-
tion will affect the final score calculated for pairs. For any 
given value of parameter, we generated the final score, 
and surveyed the score distribution as we recorded the 
fraction of pairs left when we increase the score cutoffs 
(i.e. only pairs with scores higher than the score cutoff 
will be regarded as confident pairs). We define a param-
eter is optmised if the given parameter maximised the 
mean fractional difference across cutoff between score 
assigned to pairs in known set (fraction of true positive) 
and in simulated set by benchmarking (fraction of false 
positive).

In cell panel (NCI60, CCLE2019, CCL180), the param-
eter a was given the value 3, and values of ToD were 
optimised in each dataset. A ToD of 0 means the pair 
( SLCi −Metabolitei ) will only be considered for sub-
score calculation if the pair has a transformed ρ higher 
than 0 (i.e. the mean of absolute raw ρ of all SLC correlat-
ing to Metabolitei ); A ToD of 1.0 means the threshold of 
consideration is increased to a standard deviation higher 
than mean. ToD and weight parameter b of CRISPR, ToD′ 
and weight parameter c of Adjacency were optimised 
individually following the same process. Table 1 demon-
strates the parameter we used to calculate the final confi-
dence score:

Here, we present an example pair, SLC35B1 – glu-
tamate, of how confidence score was calculated in full 
(Table 2).

Example confidence score calculation demonstrating 
the final output scores.

Calculating from cell panels, the pair SLC35B1 – 
glutamate has a confidence score of 18, inclusion of 

gene dependency will give the pair the total score of 
26. Glutamate has 10 derivatives found within 2 steps 
of conversions, of which 2 fall in 80% ≤ Vi < 90% 
in NCI60; 2 fall in 80% ≤ Vi < 90% in CCLE2019; 
1 falls in ToD′(0.2) < Vi ≤ ToD(1.0) , and 1 falls in 
90% ≤ Vi < 100% in CCL180. All the rest are either not 
measured in the respective dataset, or Vi < ToD′ . As a 
result, the adjacency score will be:

The final confidence score therefore is the sum of cell 
panels (18), gene dependency (8), and metabolite adja-
cency (46.5), resulting 72.5.

Partitioning, training and testing
In order to further test how our algorithm performed we 
partitioned 667 pairs in the known pair table (Table S5) 
randomly into a training set (466/667, 70% of all pairs) 
and a testing set (201/667, 30% of all pairs). We per-
formed optimisation on the training set, and report the 
confidence score calculated with optimised parame-
ters in the testing set. This process was repeated for 10 
iterations.

Drug prediction algorithm
The drug repurposing panel records 1448 active drugs in 
8 doses against 581 cell lines, of which 569 overlap with 
CCLE2019 transcriptomics. To interrogate the dose 
response between SLCi and Drugi , we ranked the cell 
lines in the CCLE2019 transcriptomics dataset according 
to the expression level of SLCi in descending order, and 
labelled the first and last 20% of cell lines as “high expres-
sion” and “low expression” accordingly. The labelled cell 
lines were matched back to the drug repurposing panel 
to extract the cellular viability post Drugi treatment in 
8 log10 transformed doses (−3.21, −2.61, −2.01, −1.40, 
−0.81, −0.20, 0.40, 1.00). We captured the shape informa-
tion of the dose response, as we fitted local polynomial 
regression models to the two curves (“high expression” 
and “low expression”), and predicted 421 data points from 
−3.21 to 1.00, incremented by 0.01 with ‘predict()’ func-
tion. The curves were compared with a paired t-test. The 
resulting p-value and mean differences were recorded.

[(2× 9)+ (2× 9)+ (0.5+ 10)] = 46.5

Table 1  Confidence score parameters

Parameters as described in the text are indicated for the different datasets

Dataset ToD Parameter ToD′ Parameter

NCI60 0.0 a = 3.0 0.1 c = 1.0

CCLE2019 0.0 0.1

CCL180 1.0 0.2

CRISPR 0.16 b = 1.0 / /

Table 2  Confidence score calculation for SLC35B1 and glutamate (Cell panels and gene dependency

NCI60 CCLE2019 CCL180 GeneDep(−log10)

Transformed ρ −0.97 0.96 0.019 9.7× 10
−5(4.01)

Percentile Vi < ToD(0.0) 50% ≤ Vi < 60% Vi < ToD(1.0) 70% ≤ Vi < 80%

Score 0 6 0 8

Weighted Score 0 6× 3 = 18 0 8× 1 = 8

Confidence Score 0+ 18+ 0 = 18 8
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We assessed the dose effect by calculating the pair-
wise difference between predicted data points of the two 
curves, and correlated the difference with the dose using 
Spearman’s correlation. The resulted p-value and abso-
lute Spearman’s ρ were recorded.

To yield predictions, we calculated two drug-specific 
significance thresholds. For every Drugi , we randomly 
picked 20% of the cell lines (93) and recorded their 
resulted p-value and mean differences. The resulting 100 
p-values were -log10 transformed (-log10 transformed 
p-value), and the difference between absolute values 
of the two were calculated (absolute mean difference). 
We derived the standard deviation and mean from both 
-log10 transformed p-value and absolute mean differ-
ence, and set them as the null expectation. For any pair 
SLCi − Drugi , only when both its -log10(p-value) and 
absolute mean differences are higher than the null expec-
tation, will it be considered as “predicted”.

ROC and PR AUC​
In this study, predictive power of the algorithm or pre-
dictors were measured with Area-under-curve (AUC) of 
Receiver-operating characteristic (ROC) and Precision-
Recall (PR) curves. For both ROC and PR curves, AUC 
was calculated following the trapezoidal rule.
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