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Abstract
Background The financial strain fertility issues cause the dairy cattle industry is substantial, with over $7 billion in 
lost revenue accrued annually due to a relatively low cow conception rate (CCR; 30–43%) for US dairy cows. While 
CCR has been improving through genomic selection, identification of causal mutations would help improve the rate 
of genetic progress with genomic selection and provide a better understanding of infertility. The objectives of this 
study were to: (1) identify genes and gene-sets associated with CCR to the first breeding (CCR1) and the number 
of breedings required to conceive (TBRD) in Holstein cows and (2) identify putative functional variants associated 
with CCR1 and TBRD through a custom genotype-by-sequencing array. The study consisted of 1,032 cows (494 
pregnant to first breeding, 472 pregnant to subsequent [2–20] services, and 66 that never conceived). Cows were 
artificially inseminated, and pregnancy was determined 35d later by rectal palpation of uterine contents. Gene-set 
enrichment analyses with SNP data (GSEA-SNP) were conducted for CCR1 and TBRD with a normalized enrichment 
score (NES) ≥ 3.0 required for significance. Leading edge genes (LEG) and positional candidate genes from this and 26 
additional studies were used to validate 100 loci associated (P < 1 × 10− 5) with cow fertility using a custom sequencing 
genotyping array of putative functional variants (exons, promoters, splice sites, and conserved regions).

Results GSEA-SNP identified 95 gene-sets (1,473 LEG) enriched for CCR1 and 67 gene sets enriched (1,438 LEG) 
for TBRD (NES ≥ 3). Thirty-four gene-sets were shared between CCR1 and TBRD along with 788 LEG. The association 
analysis for TBRD identified three loci: BTA1 at 83 Mb, BTA1 at 145 Mb, and BTA 20 at 46 Mb (P < 1 × 10− 5). The loci 
associated with TBRD contained candidate genes with functions relating to implantation and uterine receptivity. No 
loci were associated with CCR1, however a single locus on BTA1 at 146 Mb trended toward significance with an FDR of 
0.04.

Conclusions The validation of three loci associated with CCR and TBRD in Holsteins can be used to improve fertility 
through genomic selection and provide insight into understanding infertility.
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Background
Revenues from dairy cattle products account for roughly 
21.3% ($41.8 billion) of all animal cash receipts within the 
United States [1]. Worldwide, global revenue attributed 
to milk is expected to amount to $350 billion in 2024 and 
continue to grow in subsequent years [2]. Prior to lacta-
tion and the generation of dairy products, cattle must 
first conceive and maintain the pregnancy through the 
normal gestation period, making fertility critical to dairy 
profitability.

The dairy industry has struggled with fertility for 
decades, with the average cow conception rate (CCR) 
ranging between 30–43% [3–4]. Previous studies have 
estimated the average economic cost of pregnancy loss 
from breeding to day 60 of gestation in dairy cows to 
be $2,333 [5]. This cost is dependent on several factors 
including length of pregnancy, increased chance of cull-
ing, and the cost of rebreeding. To put this on a national 
scale, if 35% of the 9.38 million U.S. cows [6] lost a sin-
gle pregnancy it would result in a cost of greater than 
$7.6 billion dollars to the dairy industry. This illustrates 
the importance of selecting cattle that can conceive and 
maintain pregnancies.

Prior to the early 2000s, genetic selection in the dairy 
industry primarily focused on milk yield or milk com-
ponents [7–8]. Selection for female fertility began with 
the inclusion of daughter pregnancy rate in 2003 [9], and 
expanded to include overall heifer conception rate and 
CCR as well as conception rates to first breeding in 2009 
[10]. Additional fertility measures such as early first calv-
ing (the age at which a heifer calves) were added to selec-
tion indexes in 2019 [11]. 

Since its inclusion in the Council for Dairy Cattle 
Breeding genomic evaluations, cow conception rate to 
the first breeding (CCR1) has improved by 7% points 
reaching 44%, while CCR to any service has improved 
by 6% points reaching 42% [4]. This improvement in 
CCR has been achieved through genomic selection using 
single nucleotide polymorphisms (SNPs) that are in link-
age disequilibrium (LD) with the mutation responsible 
for the phenotype (causal mutation). To date, few casual 
variants are known or used in genomic selection for 
female fertility traits as finding the causal mutation can 
be both time consuming and challenging. The advantages 
to identifying the causal mutations is that the accuracy of 
prediction of fertility will be higher because the predic-
tion is not reliant on the lack of changing LD with suc-
cessive generations of meiotic events or recombination 
differences between breeds. Identifying the causal muta-
tion also offers insights into the molecular mechanism of 
fertility [12]. 

Given the importance of fertility to the dairy industry 
and the lack of characterization of casual mutations asso-
ciated with CCR, the goals of the current study were to: 
(1) identify leading edge genes and gene sets enriched for 
CCR and the number of times a cow was bred to achieve 
a pregnancy (TBRD) using gene set enrichment analysis 
using SNPs (GSEA-SNP) and (2) perform an association 
analysis of loci validated for an association with fertility 
(from at least two independent studies) using a custom 
genotype by sequencing (GBS) panel to identify putative 
causal variants associated with the CCR and TBRD in 
Holstein cows.

Materials and methods
Study population
This study was conducted with the approval of Wash-
ington State University’s Institutional Animal Care 
and Use Committee (#4295) and the authors confirm 
that this study is reported in accordance with ARRIVE 
guidelines. The Holstein study population consisted of 
2,015 Holstein cows sampled from six dairies located 
in central Washington [13]. All dairies provided written 
agreement to participate in the study. No animals were 
euthanized for this study. Whole blood (~ 16 ml) was col-
lected into EDTA tubes from each cow via venipuncture 
of the tail vein. Blood was collected from cows without 
being anesthetized, as approved by the Washington State 
University’s Institutional Animal Care and Use Commit-
tee (#4295). Cows (n = 951) were removed from the study 
if they experienced an inflammatory event or disease 
that could potentially have impacted pregnancy reten-
tion such as: lameness, fever, mastitis, uterine disease, 
spontaneous abortions, dystocia, foot disease, pink eye, 
respiratory disease, and metabolic issues. All cows were 
artificially inseminated (AI) at either observed estrus 
or using timed AI. Pregnancy status was determined at 
35 days post insemination by rectal palpation of uter-
ine contents. Pregnancy status after d35 was not evalu-
ated for the current study, as this study aims to focus on 
early embryonic loss not fetal losses. Animals remaining 
in the study (n = 1064) were genotyped using the Illu-
mina BovineHD Beadchip (San Diego, CA) at Neogen 
Laboratories (Lincoln, NE). Prior to any analysis, samples 
were quality control filtered for duplicates and individual 
call rate (< 90%) with 32 cattle removed. This left a total 
of 1,032 cows for the study: 494 cows that conceived to 
the first service, 472 cows that were bred 2–20 times 
before conceiving, and 66 infertile cows that never con-
ceived after a minimum of 6 AI services (range 6–20 AI 
attempts) [13]. The phenotypes of CCR1 and TBRD were 
used for the GSEA-SNP and the association analysis. 
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Phenotypes were coded as follows: CCR1 using 1 (suc-
cessful conception to first service) and 0 (no conception 
at first service); and TBRD which used a scale from 1 
to 20 depending on the number of inseminations a cow 
received.

For this study, only first lactation (first parity) cow 
records were used to ensure the entire study popula-
tion were the same age for comparison. This data was 
collected retrospectively through farm management 
records. The average 305-day milk yields did not differ 
(P = 0.14) across the different phenotypic groups of cattle. 
The average 305-day milk yield for the entire population 
was 28,831 kg, additional milk yield information can be 
found in Supplemental Table 1. Conception rate did not 
differ between AI technicians (P > 0.05) or between ser-
vice sires (P = 0.99) [13]. A total of 435 sires (433 Holstein 
and 2 Angus bulls) were used across all dairies with an 
average conception rate of 26.8% [13]. Most cows that 
failed to conceive to one sire were subsequently rebred to 
a different service sire reducing the risk for a cow to be 
categorized as infertile in the TBRD phenotype due solely 
to a service sire effect. Dairy of origin did have an effect 
on CCR1 and TBRD (P < 1 × 10− 10) and was included as a 
covariate in all analyses.

Gene-set enrichment analysis-SNP
The genotypes from the Illumina BovineHD Beadchip 
(San Diego, CA) at Neogen Laboratories (Lincoln, NE), 
were used to conduct an association analysis to iden-
tify the SNPs that would serve as representatives for the 
genes in the gene sets [13]. A total of 625,093 SNP were 
analyzed and mapped to 21,039 protein-coding genes 
within the ARS-UCD 1.2 genome assembly ( h t t p  s : /  / w w 
w  . a  n i m  a l g  e n o m  e .  o r g  / r e  p o s i  t o  r y /  c a t  t l e /  U M  C _ b o v i n e _ c o 
o r d i n a t e s /). SNPs with the greatest evidence of an  a s s o c 
i a t i o n with CCR1 or TBRD were used as the gene prox-
ies for the GSEA-SNP. One SNP represented each gene 
within a 17 kb region up- and down-stream of the gene. 
This 17  kb region was based on the average haplotype 
block size of a large (n = 4,800) Holstein cattle population 
[13–15] also genotyped with the BovineHD BeadChip 
calculated using the method described by Gabriel et al., 
in 2002 [16]. A single SNP could represent more than one 
gene if it fell within the parameters outlines above. Genes 
were ranked by their significance (P-value) for their asso-
ciation with CCR1 or TBRD from the genome wide asso-
ciation analysis.

The GSEA-SNP was performed following the meth-
ods of Wang et al. (2007) [17] and five gene set databases 
were used: Biocarta (217 gene sets;  h t t p : / / w w w . g e n e c a r t 
a . c o m /     ) , Gene Ontology or GO (3,147 gene sets; http://
www.geneontology.com), Kyoto Encyclopedia of Genes 
and Genomes or KEGG (186 gene sets;  h t t p : / / w w w . g e 
n o m e . j p . k e g g     ) , Protein Analysis Through  E v o l u t i o n a r 

y Relationships or PANTHER (165 gene sets;  h t t p : / / w w 
w . p a n t h e r d b . o r g     ) , and Reactome (674 gene sets;  h t t p : / / 
w w w . r e a c t o m e . o r g     ) . An enrichment score for each gene 
set was computed using the highest value from the run-
ning sum statistics, similar to a weighted Kolmogorov-
Smirnov-like statistic [18]. Each gene set received a 
permuted P-value calculated using 10,000 phenotype-
based permutations in GenABEL in R [19]. To account 
for the varying number of genes within each gene set, a 
normalized enrichment score (NES) was computed, and 
enriched gene sets were those that had an NES ≥ 3.0. For 
enriched gene sets, a list of genes that contributed to the 
peak NES were identified as leading edge genes (LEG).

Genotype by sequencing
Fertility validated loci were identified by comparing 
results from twenty-six studies [13, 15, 20–43] (Table 1), 
as well as the GSEA-SNP from the current study, that 
utilized a range of fertility phenotypes and cattle breeds. 
A locus was defined as SNP associated with fertility that 
were in linkage disequilibrium (LD) with each other (D’ > 
0.75). This D’ threshold was used as it falls within ranges 
previously used to define SNPs within a locus [42]. To 
identify putative causal mutations in the 202 loci vali-
dated by two or more fertility studies, a custom genotyp-
ing array was designed after whole genome sequencing 
was conducted on 24 Holsteins at 10X coverage using 
the Illumina HiSeq X Ten at the University of Missouri 
sequencing core. Sequences of the 202 loci were mapped 
to the ARS-UCD 1.2 reference assembly. There were 
5,102 variants identified within the 202 loci. Variants 
were screened to determine which ones were located in 
regulatory regions (n = 317), exons (n = 633), splice sites 
(n = 22), and evolutionarily conserved regions (n = 392). 
After screening, 1,358 variants within 152 loci were sent 
for probe design at Neogen Laboratories (Lincoln, NE). 
Of the variants identified, 284 variants (21%) failed the 
probe design due to the presence of secondary struc-
tures, high or low GC content, or repetitive motifs of the 
targeted sequence. Probes were successfully designed 
for 713 variants covering both directions and 361 vari-
ants where probes were successfully designed for a single 
direction. This resulted in the creation of a genotyping 
array with 1,787 probes which covered 100 of the 152 loci 
identified across studies. Paired-end 150 bp libraries for 
1,064 cows were prepared and analyzed at Neogen labo-
ratories (Lincoln, NE) following Tecan’s targeted geno-
typing V2 Allegro protocols (Männedorf, Switzerland). 
Sequencing was performed using an Illumina Next-
Seq2000 system (San Diego, CA).

Raw sequencing data was processed to create vari-
ant call format (VCF) files for the association analysis 
(Fig.  1). Raw sequencing reads were assessed for qual-
ity using the FastQC software [44] and adaptors were 

https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates/
https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates/
https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates/
http://www.genecarta.com/
http://www.genecarta.com/
http://www.geneontology.com
http://www.geneontology.com
http://www.genome.jp.kegg
http://www.genome.jp.kegg
http://www.pantherdb.org
http://www.pantherdb.org
http://www.reactome.org
http://www.reactome.org
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trimmed off with Trim Galore and Cutadapt [45, 46]. 
Files were aligned to the ARS-UCD 1.2 reference assem-
bly using bowtie2 [47], and sorted and indexed using 
SAMtools [48]. Variant calling was successful for 1,222 or 

the 1,787 probes using Platypus [49]. The Platypus VCF 
files were then uploaded into SNP and Variation Suite 
(SVS) version 8.9.1 (Golden Helix, Bozeman, MT) for 
analysis. Quality control filtering of SNPs was performed 

Table 1 List of cattle fertility studies used for loci validation
Study1 Phenotype(s)2 Breeds3

Akanno et al. 2015 [31] AFC, PR Crossbred beefCa

Blaschek et al. 2011 [24] Non-compensatory fertility HolsteinUr

Cochran et al. 2013 [27] DPR HolsteinUr

Cole et al. 2011 [25] DPR HolsteinU

Fonseca et al. 2018 [41] Reproduction BrangusU, BrahmanA, Tropical CompositeA

Galliou et al. 2020 [42] HCR1, TBRD HolsteinU

Höglund et al. 2009 [20] AISC, AISH, ICF, IFLC, IFLH, NRRC, NRRH HolsteinN

Höglund et al. 2014 [30] AISC, AISH, FTI, ICF, IFLC, IFLH, NRRC, NRRH HolsteinN, JerseyN, Nordic RedN

Höglund et al. 2015 [32] AISC, AISH, FTI, ICF, IFLC, IFLH, NRRC, NRRH Nordic RedN

Huang et al. 2010 [21] FR, BR HolsteinU

Iso-Touru et al. 2016 [33] Milk production, AISC, AISH, FTI, ICF, IFLC, IFLH, NRRC, NRRH Nordic RedN

Kiser et al. 2019a [13] CCR1, TBRD HolsteinU

Kiser et al. 2019b [15] HCR1, TBRD HolsteinU

Liu et al. 2017 AFS, AISC, CCR, DO, ICF, IFLC, NRRC HolsteinC, N

Minozzi et al. 2013 [28] CI, DFS, FTI, NRR HolsteinIt

Minten et al. 2013 [29] High vs. Low Fertile Crossbred BeefU

Moore et al. 2016 [34] CI HolsteinA, I, JerseyA

Müller et al. 2017 [38] CTFS, DO, FSTCC, FSTCH, NRRC, NRRH, HolsteinG

Nayeri et al. 2016 [35] CTFS, DO, FSTCH HolsteinCa

Neupane et al. 2017 [39] P28 Angus crossesU

Oliver et al. 2020 [43] HCR1, TBRD Crossbred BeefU

Olsen et al. 2011 [26] NRRC, NRRH Nordic RedN

Ortega et al. 2016 [36] DPR HolsteinU

Ortega et al. 2017 [40] DPR HolsteinU

Pryce et al. 2010 [22] Fertility HolsteinA, JerseyA

Sahana et al. 2010 [23] AISC, AISH, FTI, IFLC, IFLH, ICF, NRRC, NRRH HolsteinN

1The citation number for each study is listed in superscript brackets. 2Traits abbreviated as follows: AFC - age at first calving; AISC - number of inseminations to 
conception in cows; AISH - number of inseminations to conception in heifers; AFS - age at first insemination; BR - blastocyst rate; CCR1 - conception rate to first 
insemination in cows; CI - calving interval; CTFS - days from calving to first insemination; DFS - days to first service; DO - days open; DPR - daughter pregnancy 
rate; FSTCC - days from first service to conception in cows; FSTCH - days from first service to conception in heifers; FR - fertility rate; FTI - fertility index; HCR - 
heifer conception rate; HCR1 - conception rate to first insemination in heifers; ICF - interval (in days) from calving to first insemination; IFLC - days from first to last 
insemination in cows; IFLH - days from first to last insemination in heifers; NRR − 56 day non return rate; NRRC − 56 day non return rate in cows; NRRH − 56 day non 
return rate in heifers; P28- pregnancy success at day 28 post embryo transfer; P42 - pregnancy success within first 42 days of mating; PR - pregnancy rate; TBRD 
- number of times bred to conception. 3Cattle breeds loci were previously identified are listed with the country or region the population was from indicated in 
superscript as follows: Australia - A; Canada - Ca; Chinese - C; Germany - G; Ireland - I; Nordic - N; United States - U; Unreported - Ur

Fig. 1 Processing pipeline for GBS data
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on the 1,222 called variants. SNPs were then removed for 
call rate < 85% (n = 127) or minor allele frequency < 1% 
(n = 80), leaving 1,015 SNPs spanning 100 loci that were 
further analyzed.

Association analysis
Three association analyses were conducted for each 
phenotype (CCR1 and TBRD) using the GBS vari-
ants in conjunction with the Illumina BovineHD 
BeadChip (San Diego, CA) genotypes the cattle were 
originally genotyped on. Given that the model of inher-
itance for cow fertility is unknown, three modes of 
inheritance were analyzed for each phenotype: additive, 
dominant, and recessive. SNPs were considered signifi-
cant if their uncorrected P-value met the Wellcome Trust 
significance threshold of P < 1 × 10− 5 [50]. The associa-
tion analyses were performed using SVS software and an 
efficient mixed-model association expedited (EMMAX) 
model [51]. This model was described in detail pre-
viously [13, 15, 51]. Briefly, the model is described 
by y = Xβ + Zu + ?, y is the n × 1 vector of observed 
phenotypes, X is an n × f matrix of fixed effects (f), β is an 
f × 1 vector containing the fixed effect coefficients, Z is 
an n × t matrix relating the random effects (t) to the phe-
notype, and u is the random effect of the mixed model. 
The model assumes residuals to be independent with an 
identical distribution such that V ar (u) = σ g

2K and 
(?) = σ e

2I , and V ar (y) = σ g
2ZKZ′ + σ e

2I . For 
this study, K is a matrix of pairwise genomic relation-
ships and Z is the identity matrix, I [52]. 

Observed heritability was estimated using a genomic 
best linear unbiased predictor (GBLUP) [53] analysis 
using AI-REML (average information algorithm) [54, 55]. 
While computationally intensive, this method to estimate 
heritability provides a more accurate estimation of heri-
tability when sample size is limited.

Results
Gene-set enrichment analysis-SNP
The GSEA-SNP identified 95 gene sets with NES ≥ 3 
(Supp. Table  2) that were enriched for CCR1. There 
were 1,473 unique LEG across the 95 gene sets, with 2 
LEG, scinderin (SCIN) and villin 1 (VIL1), found in 40 
of the 95 gene sets. Gene sets with greatest evidence 
for enrichment with CCR1 (NES > 4.0) are shown in 
Table 2. For TBRD, 67 gene sets were enriched (NES ≥ 3; 
Supp. Table 3) and 4 gene sets had an NES ≥ 4 (Table 3). 
Two gene sets with NES > 4.0 for TBRD (recruitment of 
mitotic centrosome proteins and complexes; loss of NLP 
from mitotic centrosomes) also were enriched for CCR1 
with NES > 4.0. There were 1,438 unique LEG for TBRD. 
A single LEG, Rac family small GTPase 1 (RAC1), was 
shared in 28 gene sets.

Thirty-four gene sets were enriched in both CCR1 and 
TBRD (Table  4), which included 788 shared LEG. The 
three most commonly shared LEG were twinfilin actin 
binding protein 1 (TWF1) identified in 58 gene sets, 
RAC1 in 59 gene sets and VIL1 in 61 gene sets that con-
tribute to the function of the cytoskeleton.

Many of the shared gene sets can be grouped into cate-
gories based on common functions. These groups include 
gene sets related to cellular component organization and 
structure (n = 17), mitotic cell cycle/mitosis (n = 6), RNA 
and mRNA metabolic processes (n = 3), and signaling 
pathways (n = 3). The remaining five gene sets have func-
tions that do not fall in any of the above-mentioned cat-
egories (Table 4).

Association analyses
There were no SNP associated with CCR1 in any model 
(P < 1 × 10− 5). However, a single locus on BTA1 at 146 Mb 
in the additive model had a false discovery rate (FDR) 
of 0.04, though the P-value did not meet the Wellcome 
Trust significance threshold. The observed heritability for 
this model was 0.19 ± 0.05.

The TBRD association analysis identified 4 SNP (3 loci), 
two on BTA1 and one on BTA20 in the additive model 
(P < 1 × 10− 5; Table 5). The locus on BTA1 at 146 Mb that 
was associated with TBRD was the same locus in the 
additive model of CCR1 that trended toward significance 
(FDR = 0.04). This locus contained a synonymous variant 
within disco interacting protein 2 homolog A (DIP2A). 
The other locus on BTA1 was located at 83 Mb. The two 
SNP within this locus were a missense and a synonymous 
variant within the first exon of ENSBTAG00000032217. 
This missense mutation (rs110205198), which results in 
an amino acid change from cysteine to serine, was fur-
ther examined to determine if there were any predicted 
detrimental effects caused by the amino acid substitution. 
This was done using the sequencing homology-based 
tool SIFT (sorts intolerant from tolerant) which predicts 
if substitutions of amino acids could result in a pheno-
typic effect of the protein through a change in its struc-
ture with values ranging from 0 (intolerable change) to 1 
(tolerated change) [56]. The predicted damage score for 
the amino acid substitution caused by this mutation was 
only 0.9 (with low confidence) indicating the substitution 
is likely tolerated. However, the low confidence warning 
indicates that there was not enough diversity between the 
sequences to accurately predict altered protein function 
[56]. The locus on BTA20 contained a variant within a 
CNV (nsv810323). No SNP were associated with TRBD 
in the dominant or recessive models and observed herita-
bility for TBRD was 0.18 ± 0.05.

The significant GBS SNP were then evaluated for LD 
with the original SNP that were used to create the custom 
assay. When compared to the original nine SNP used in 



Page 6 of 13Kiser et al. BMC Genomics          (2025) 26:174 

Gene Setsa # Genes
(# LEG)b

NESc Leading Edge Genesd

Cell Cycle, Mitotic 
(R-HSA-69278)

300 (93) 5.08 RAD21, PAFAH1B1, CEP290, CLIP1, RBL2, TUBB4B, CENPH, CCNB1, CDK6, CCNE2, CEP250, CENPJ, CASC5, PRIM2, 
KNTC1, CDK1, YWHAE, CLASP1, BTRC, CDC14A, SDCCAG8, CDK7, CDKN2A, CDKN2B, CEP41, CCNA2, NUF2, KIF23, 
PSMA4, PSMB8, PSMB9, MCM7, MCM3, MCM2, UBE2C, OFD1, RPA3, KIF2B, NUP133, AHCTF1, PRKAR2B, NUDC, 
PRIM1, TYMS, ALMS1, CENPT, ANAPC5, CEP72, CEP70, CUL1, DHFR, ANAPC7, SKA1, AKAP9, NINL, PRKACA, STAG2, 
CDC45, CCNE1, PLK1, PSMD11, DYRK1A, CDT1, PSMB7, ITGB3BP, MAD1L1, NUMA1, INCENP, CEP135, RBL1, FBXO5, 
PPP2R5E, ANAPC10, DCTN1, Sect. 13, PSMB10, CDC7, PTTG1, BUB1B, CENPP, BUB1, PSMA2, LIN52, PSME1, PSME2, 
TUBGCP3, FGFR1OP, PSMB2, PPP2R2A, PSMC1, RB1, YWHAG, CCND2

Cell Cycle 
(R-HSA-1640170)

364 (126) 4.87 RAD21, PAFAH1B1, CEP290, CLIP1, RBL2, TUBB4B, CENPH, CCNB1, CDK6, RFWD2, SYNE2, H2AFX, CCNE2, CEP250, 
CENPJ, CASC5, PRIM2, KNTC1, CDK1, YWHAE, CLASP1, BTRC, CDC14A, SDCCAG8, CDK7, CDKN2A, CDKN2B, CEP41, 
CCNA2, NUF2, RUVBL1, KIF23, PSMA4, POT1, PSMB8, PSMB9, MCM7, MCM3, ATR, MCM2, UBE2C, OFD1, HIST1H4D, 
RPA3, KIF2B, NUP133, AHCTF1, PRKAR2B, SYNE1, NUDC, PRIM1, TYMS, ALMS1, CENPT, ANAPC5, CEP72, CEP70, CUL1, 
FKBP6, DHFR, ANAPC7, SKA1, HIST1H2BN, SMC1B, AKAP9, NINL, PRKACA, STAG2, CDC45, CCNE1, PLK1, PSMD11, 
DYRK1A, MIS18A, RAD1, CDT1, PSMB7, ITGB3BP, MAD1L1, NUMA1, INCENP, HUS1, CEP135, RBL1, FBXO5, PPP2R5E, 
ANAPC10, DCTN1, Sect. 13, PSMB10, CDC7, PTTG1, BUB1B, CENPP, BUB1, PSMA2, LIN52, PSME1, PSME2, TUBGCP3, 
FGFR1OP, PSMB2, PPP2R2A, PSMC1, RB1, YWHAG, CCND2, HIST1H2BI, REC8, CEP76, HJURP, CHEK2, HIST1H2BJ, 
PSMC6, HIST3H2BB, RSF1, GINS4, MCM8, ORC2, PCNT, LIN54, ANAPC1, PSMC2, HIST1H2BB, ANAPC2, SSNA1

Protein Polymeriza-
tion (GO:0051258)

79 (21) 4.81 TWF1, TUBB4B, ARFIP2, TUBA8, CAPZA2, F2, SCIN, WASF1, SLAIN2, ANG, VIL1, CAPZB, TMSB4, RASA1, SNCA, ARPIN, 
ARPC1A, UBE2C, RAC1, WASL, ARPC5

Recruitment of 
Mitotic Centro-
some Proteins and 
Complexes
(R-HSA-380270)

62 (22) 4.77 PAFAH1B1, CEP290, TUBB4B, CCNB1, CEP250, CENPJ, CDK1, YWHAE, CLASP1, SDCCAG8, CEP41, OFD1, PRKAR2B, 
ALMS1, CEP72, CEP70, AKAP9, NINL, PRKACA, PLK1, NUMA1, CEP135

Mitotic G2-G2/M 
phases
(R-HSA-453274)

76 (24) 4.74 PAFAH1B1, CEP290, TUBB4B, CCNB1, CEP250, CENPJ, CDK1, YWHAE, CLASP1, SDCCAG8, CDK7, CEP41, CCNA2, 
OFD1, PRKAR2B, ALMS1, CEP72, CEP70, AKAP9, NINL, PRKACA, PLK1, NUMA1, CEP135

Loss of NLP 
From Mitotic 
Centrosomes 
(R-HSA-380259)

55 (20) 4.68 PAFAH1B1, CEP290, TUBB4B, CEP250, CENPJ, CDK1, YWHAE, CLASP1, SDCCAG8, CEP41, OFD1, PRKAR2B, ALMS1, 
CEP72, CEP70, AKAP9, NINL, PRKACA, PLK1, CEP135

Cellular Compo-
nent Disassembly 
(GO:0022411)

81 (20) 4.64 TWF1, DPP4, MICAL3, CCNB1, GABARAPL1, MMP13, CAPZA2, SCIN, VIL1, CAPZB, ENDOG, FOXL2, BAX, KIF2B, FIS1, 
NAPB, STMN1, DSTN, SBDS, MTRF1L

Macromolecular 
Complex Assembly 
(GO:0065003)

372 (84) 4.47 TWF1, SRSF1, TUBB4B, CNOT7, HES1, SF3A1, H1FOO, CENPH, CHMP4A, DPAGT1, CAMK2D, KCTD1, SAMHD1, 
VAMP4, ARFIP2, RAD51, SRR, TUBA8, SLC6A4, CAPZA2, TBCA, OAT, F2, FECH, SCIN, WASF1, SLAIN2, ANG, VIL1, 
PEX5, VWF, STRAP, EIF6, COX7A2L, CAPZB, SNAP29, MGST1, TMSB4, RASA1, IGF1R, GEMIN8, LRRC6, NAP1L1, CBR4, 
SNCA, NUDT21, ARPIN, COX19, ARPC1A, ASF1A, UBE2C, NLRC4, NDUFAF6, MICU1, CLU, BAX, LMO4, RAC1, CAT, 
WASL, ARPC5, FIS1, NAPB, PRPF19, CYBA, SBDS, DRC1, LONP1, ARPC3, TARBP2, PDCL, IL5, H4, HIST1H1A, ATP6V0A2, 
PSMD11, RDX, ARL6, MIS18A, FAS, LUC7L3, KCTD5, SAR1A, MIF

Signaling by NGF 
(R-HAS-9031628)

207(80) 4.42 NTRK2, SOS2, APH1B, RAP1A, PRKCE, ADCY2, ADCY5, ATF1, VAV3, MAPK8, AKT3, MYD88, SORCS3, CDK1, AKAP13, 
ADAM17, YWHAE, MCF2, TIAM2, CAMK4, TIAM1, PRKCI, FOXO3, ADCY1, DUSP6, FGD2, ADCY9, SQSTM1, FGD4, ABR, 
PIK3R1, NR4A1, ITSN1, PDPK1, OBSCN, RALB, MEF2A, PDE1A, AP2A1, PRKAR2A, RAC1, RPS6KA3, CHUK, KIDINS220, 
AP2B1, PRKAR2B, FURIN, ADCYAP1R1, PIK3CB, RASGRF2, ARHGEF3, SRC, ARHGAP4, MAPKAP1, PHLPP1, SHC3, 
CASP9, FGD3, LINGO1, ARHGEF6, PRKACA, MAP2K5, ITPR3, ADCY8, ADCY7, ITGB3BP, MEF2C, TRIO, FOXO1, PLCG1, 
AKT1S1, MTOR, PIK3CA, CLTC, CLTA, RIPK2, ADCY3, TRAF6, PRKAR1B, APH1A

Protein Com-
plex Assembly 
(GO:0065003)

303 (73) 4.38 TWF1, TUBB4B, HES1, H1FOO, CENPH, CHMP4A, DPAGT1, CAMK2D, KCTD1, SAMHD1, VAMP4, ARFIP2, RAD51, SRR, 
TUBA8, SLC6A4, CAPZA2, TBCA, OAT, F2, SCIN, WASF1, SLAIN2, ANG, VIL1, PEX5, VWF, COX7A2L, CAPZB, SNAP29, 
MGST1, TMSB4, RASA1, IGF1R, LRRC6, NAP1L1, CBR4, SNCA, NUDT21, ARPIN, COX19, ARPC1A, ASF1A, UBE2C, 
NLRC4, NDUFAF6, MICU1, CLU, BAX, LMO4, RAC1, CAT, WASL, ARPC5, FIS1, NAPB, CYBA, DRC1, LONP1, ARPC3, PDCL, 
IL5, H4, HIST1H1A, ATP6V0A2, PSMD11, RDX, ARL6, MIS18A, FAS, KCTD5, SAR1A, MIF

Regulation of 
RNA Splicing 
(GO:0043484)

33 (13) 4.31 SRSF1, SF3A1, RBFOX1, CLK3, SNW1, HNRNPF, SNRNP70, PIK3R1, RBM22, CELF3, RBFOX2, PRPF19, NSRP1

Actin Filament 
Polymerization 
(GO:0030041)

48 (15) 4.29 TWF1, ARFIP2, CAPZA2, SCIN, WASF1, ANG, VIL1, CAPZB, TMSB4, RASA1, ARPIN, ARPC1A, RAC1, WASL, ARPC5

Table 2 Gene set enrichment analysis– single nucleotide polymorphism results for conception rate to first service (CCR1) in Holstein 
cows
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to create the custom assay, the two GBS SNP in the locus 
on BTA1 at 84 Mb were in LD with only two of the origi-
nal SNP (D’ > 0.75). The other significant GBS SNP on 
BTA1 at 146 Mb was in LD with one of the two original 
SNPs (D’ = 0.80), while the GBS SNP on BTA20 at 46 Mb 
was in high LD with both of the original SNP used to cre-
ate the custom assay. The high level of LD with the origi-
nal markers for the loci on BTA1 @146 Mb and BTA20 at 
46 Mb suggests that progress can be made using the SNP 
on the currently available BeadChip. However, it should 
be noted that the two GBS SNP from the locus on BTA1 
@84 Mb are only in LD with two of the nine original SNP 
indicting that the new GBS markers would be more use-
ful for selection of fertility in cattle.

Loci associated with fertility in this study were com-
pared to loci reported by Kiser et al. (2019a) [13] using 
only SNPs on the Illumina BovineHD BeadChip to deter-
mine if the GBS markers were helpful in further defining 
the validated CCR1 and TBRD loci. None of the three 
loci from the current studies were associated with fertil-
ity in Kiser et al. 2019a [13], meaning they were associ-
ated with cow fertility for the first time within the current 

analyses and could provide functional targets for further 
analysis to identify putative causal mutations. Originally, 
these loci were identified in two or more of the external 
fertility analyses investigated [15, 20, 30, 42] and associ-
ated with heifer fertility instead of cow fertility.

Discussion
Most of the enriched gene sets have functions that fit 
within the organization of cellular components. These 
gene sets contain genes that are expressed within mac-
romolecular complexes of the cell [57]. Gene Ontology’s 
cellular component designation characterizes genes 
whose molecular function occurs within a cellular com-
partment of the cell such as the plasma membrane or 
the cytoskeleton. The three most identified leading edge 
genes for CCR1 and TBRD (villin 1 (VIL1), RAC1, and 
TWF1) were present within the gene sets in the orga-
nization of cellular components as they control differ-
ent aspects of the cytoskeleton [58–60]. VIL1 is often 
expressed on cell borders to help maintain their shape 
and their adhesion with other cells [61]. and its expres-
sion is also used as a marker for cells that have undergone 

Gene Setsa # Genes
(# LEG)b

NESc Leading Edge Genesd

Actin Polym-
erization or 
Depolymerization 
(GO:0008154)

58 (17) 4.27 TWF1, MICAL3, ARFIP2, CAPZA2, SCIN, WASF1, ANG, VIL1, CAPZB, TMSB4, RASA1, ARPIN, ARPC1A, RAC1, WASL, 
ARPC5, DSTN

Cilium Morphogen-
esis (GO:0060271)

46 (8) 4.24 CEP290, ASAP1, IFT46, IFT43, TTLL1, C7H5ORF30, CEP41, LRRC6

Protein Com-
plex Biogenesis 
(GO:0070271)

306 (73) 4.23 TWF1, TUBB4B, HES1, H1FOO, CENPH, CHMP4A, DPAGT1, CAMK2D, KCTD1, SAMHD1, VAMP4, ARFIP2, RAD51, SRR, 
TUBA8, SLC6A4, CAPZA2, TBCA, OAT, F2, SCIN, WASF1, SLAIN2, ANG, VIL1, PEX5, VWF, COX7A2L, CAPZB, SNAP29, 
MGST1, TMSB4, RASA1, IGF1R, LRRC6, NAP1L1, CBR4, SNCA, NUDT21, ARPIN, COX19, ARPC1A, ASF1A, UBE2C, 
NLRC4, NDUFAF6, MICU1, CLU, BAX, LMO4, RAC1, CAT, WASL, ARPC5, FIS1, NAPB, CYBA, DRC1, LONP1, ARPC3, PDCL, 
IL5, H4, HIST1H1A, ATP6V0A2, PSMD11, RDX, ARL6, MIS18A, FAS, KCTD5, SAR1A, MIF

Macromolecular 
Complex Binding 
(GO:0044877)

297 (97) 4.13 PAFAH1B1, RAP1A, H1FOO, PPARGC1A, CENPH, GABARAPL1, MMP13, MUM1, SLC6A4, YWHAE, PLS1, MYO10, F2, 
STRN3, COLEC12, SCIN, WASF1, SEC61A2, MYB, HMGB4, TDRD3, GNAO1, VIL1, VWF, EIF6, PRKCB, CAPZB, GNAI1, 
TFAM, POLR3A, IGF1R, SEC61A1, DNAJC2, HMGN4, PIK3R1, USH1C, PDGFA, MEF2A, ARPC1A, ASF1A, PRIMPOL, 
LMO2, MYO1D, NANOG, MTA3, CCNT1, TNNC1, MTM1, KIF2B, MSR1, MEN1, KDM8, ZNHIT1, PPIH, SCARB1, SBDS, 
NR5A1, CDC5L, SPARC, PLAC8, ARPC3, MSH2, SKA1, RNF169, FBLN5, RNF20, HIST1H1A, THBS4, GNAT3, ITGB6, PLK1, 
BAP1, RBPJ, ANKRD54, CETN1, FOXP1, KCTD5, MEF2C, FSCN2, UHRF1, MCMBP, HMGN3, GNB1, ERMN, GNAT1, 
REEP4, MAP1LC3B, ASPN, CITED2, AAK1, TMOD1, ITGB1, ARPC1B, URI1, PPARG, SPDL1, MYL12A

Cellular Protein 
Complex Disassem-
bly (GO:0032984)

40 (13) 4.06 TWF1, MICAL3, CCNB1, CAPZA2, SCIN, VIL1, CAPZB, KIF2B, NAPB, STMN1, DSTN, SBDS, MTRF1L

Cellular Mac-
romolecular 
Complex Assembly 
(GO:0006461)

245 (55) 4.06 TWF1, SRSF1, TUBB4B, CNOT7, SF3A1, H1FOO, CENPH, VAMP4, ARFIP2, TUBA8, CAPZA2, TBCA, F2, SCIN, WASF1, 
SLAIN2, ANG, VIL1, STRAP, EIF6, COX7A2L, CAPZB, SNAP29, TMSB4, RASA1, GEMIN8, LRRC6, NAP1L1, SNCA, ARPIN, 
COX19, ARPC1A, ASF1A, UBE2C, NDUFAF6, RAC1, WASL, ARPC5, NAPB, PRPF19, CYBA, SBDS, DRC1, LONP1, ARPC3, 
TARBP2, H4, HIST1H1A, ATP6V0A2, PSMD11, RDX, ARL6, MIS18A, LUC7L3, SAR1A

Regulation of 
Actin Filament 
Polymerization 
(GO:0030833)

44 (6) 4.03 TWF1, CAPZA2, SCIN, VIL1, CAPZB, TMSB4

a Accession code for each gene set is in parentheses: Reactome– R; Gene Ontology– GO. b Total number of genes included in a gene set, with the number of leading 
edge genes (LEG) listed in parentheses. c Normalized enrichment score (NES) for each gene set, calculated by Kolmogorov-Smirnov-like statistics. d Leading edge 
gene identified by each gene set, listed in order of significance and identified by gene symbols as listed in the National Center for Biotechnology Information gene 
database ( h t t p  s : /  / w w w  . n  c b i  . n l  m . n i  h .  g o v / g e n e /; accessed: 9 January, 2022)

Table 2 (continued) 

https://www.ncbi.nlm.nih.gov/gene/
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the epithelial-to-mesenchymal transition, which is 
important for normal female reproductive organ func-
tion [62]. Similarly, RAC1 is involved with uterine cell 
remodeling. A deficiency of RAC1 expression in mice 
during the peri-implantation period impairs the func-
tion of the luminal epithelia reducing uterine receptiv-
ity [63]. Additional, several cattle studies have identified 
associations between several p21 activated kinases genes, 
which are regulated by RAC1, and fertility traits such as 
conception rate and pregnancy rate in Holsteins [25, 64]. 
Twinfilin Actin Binding Protein 1 is a highly conserved 
actin binding protein that regulates the assembly of the 
cytoskeleton through the binding of actin monomers 
[65]. While its function in cattle fertility is not character-
ized, in mice TWF1 was the most common isoform of 
twinfilin in embryos as well as in non-muscle cell types 
within adults [65]. In general, the cytoskeleton plays an 
important role in all cells and is considered to have three 
overarching functions: (1) organizing the contents within 
a cell, (2) enabling the cell to move and change shape, and 
(3) connecting cells to their external environments [66]. 

Prior to blastocyst implantation, changes to the actin 
cytoskeleton of uterine epithelial cells can result in a loss 
of cell polarity [67, 68]. The loss of cell polarity can result 
in actin cytoskeleton disorganization leading to abnor-
mal endometrial receptivity and implantation failure. 

In women, this failure influences the plasma membrane 
transformation period during the mid-secretory phase of 
the menstrual cycle [69]. In mice, cytoskeleton disorgani-
zation negatively impacts embryo development prior to 
implantation [70]. 

The second largest functional category of enriched gene 
sets is related to mitosis and the cell cycle. Mitotic cell 
division is an essential process for sustaining life. In the 
uterus, successful regulation of mitosis is important for 
fertility for the developing uterus, placenta, and embryo. 
Dysregulation of mitotic cell division leads to defects in 
uterine receptivity through alterations to stromal pro-
liferation [71, 72] which could play a role in recurrent 
implantation failure in women [73]. During mitosis, cen-
trosomes play a crucial role in the formation of the spin-
dle assembly [74]. During reproduction, centrosomes are 
susceptible to rearrangements and changes to their com-
plex structure can result in aneuploidy, mis-segregation 
of chromosomes, and destabilization of chromosomal 
integrity [75, 76]. Issues with centrosomes and their com-
ponents can also result in oocyte abnormalities. Wang et 
al. (2001) [76] found that a main indicator of oocyte qual-
ity and thus chances of successful fertilization was cen-
trosome integrity and its impact on spindle integrity.

Three gene sets (Neurotrophin Signaling Pathway, 
Notch Signaling Pathway, and Signaling by Neurotrophin 

Table 3 Gene set enrichment analysis– single nucleotide polymorphism results for number of breeding services required to conceive 
(TBRD) in Holstein cows
Gene Setsa # Genes

(# LEG)b
NESc Leading Edge Genesd

Recruitment of mitotic 
centrosome proteins and 
complexes
(R-HSA-380270)

62 (13) 4.327 TUBB4B, CEP290, PAFAH1B1, YWHAE, CEP250, CCNB1, CDK1, CENPJ, PLK1, CSNK1D, SDCCAG8, CLASP1, 
PRKAR2B

Loss of NLP from 
mitotic centrosomes 
(R-HSA-380259)

55 (12) 4.293 TUBB4B, CEP290, PAFAH1B1, YWHAE, CEP250, CDK1, CENPJ, PLK1, CSNK1D, SDCCAG8, CLASP1, PRKAR2B

Cellular component as-
sembly (GO:0022607)

515 
(173)

4.08 NDOR1, TUBB4B, TWF1, SF3A1, SRSF1, RAP1A, HES1, SAMHD1, IFT46, H1FOO, CAMK2D, KCTD1, SNAP29, 
CNOT7, CENPH, SERPINF2, SLC6A4, CHMP4A, EIF6, DPAGT1, CAPZA2, TMSB4, COX7A2L, WASF1, TUBA8, 
NRXN3, UBE2C, ASF1A, GABARAPL1, ANG, PRPF19, MYO10, NUDT21, TMEM231, FECH, MEF2A, SLAIN2, 
VAMP4, RASA1, ATPAF2, CSRP3, NDUFAF6, GTPBP8, MGST1, RAC2, TMEM216, CSNK1D, RAD51, SRR, CYBA, 
MAP1LC3A, PEX5, CRTC2, ATP6V0D1, ARPC3, OGFOD1, ITGB1BP1, ARPC5L, TTLL1, LSM14A, KCTD19, FBLN5, 
COX19, VIL1, TBCA, IL5, LUC7L3, SNAP25, KCTD5, ATL1, PDCL, STRAP, PSMD11, BIRC5, PPP1R16B, VWF, ARFIP2, 
SRPX2, GAP43, LMO4, NAPB, KCNB2, RAP1B, CAV1, CDC42EP2, SHMT1, SLU7, MPP7, CAPZB, ATP6V0A2, 
GPM6A, CEP41, MEF2C, F2, MIS18A, IGF1R, UPK1A, MAPT, LCMT1, PRKACA, PSMG2, PSMD9, RAPGEF2, ARPIN, 
IFT20, CAT, EIF3G, CAPN3, EMP2, CLSTN3, FOXP1, NDUFS4, DRC1, KCTD18, SPICE1, ACTG1, ATG3, UBE2S, 
PICK1, APP, TBCD, GRB7, WASL, CCDC151, TBC1D7, ATP6V1D, FIS1, ARPC1A, SNRPE, KIT, CAND1, S100A10, 
PAK1, TMEM138, DDX39B, CLGN, TCAP, RAC1, APOA1, NAP1L1, RDX, HAUS1, NAP1L4, COX15, SAR1A, COG4, 
SCO2, MCIDAS, F2RL1, MMS19, DBNL, USO1, ATG5, TUBB2B, CHAF1A, TARBP2, SFRP1, DCXR, COL17A1, LONP1, 
NASP, KCNJ2, SNCA, SLC39A12, BRIX1, CFL2, NDUFAF4, PRKAR1A, MFAP4, SNRPF, VDAC2, SLC2A1, GEMIN8

Regulation of RNA 
splicing
(GO:0043484)

33 (9) 4.062 SF3A1, SRSF1, RBFOX1, HNRNPF, PRPF19, PIK3R1, CLK3, NSRP1, SNW1

a Accession code for each gene set is in parentheses: Reactome– R; Gene Ontology– GO. b Total number of genes included in a gene set, with the number of leading 
edge genes (LEG) listed in parentheses. c Normalized enrichment score (NES) for each gene set, calculated by Kolmogorov-Smirnov-like statistics. d Leading edge 
gene identified by each gene set, listed in order of significance and identified by gene symbols as listed in the National Center for Biotechnology Information gene 
database ( h t t p  s : /  / w w w  . n  c b i  . n l  m . n i  h .  g o v / g e n e /; accessed: 9 January, 2022)

https://www.ncbi.nlm.nih.gov/gene/
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Table 4 List of gene sets enriched for both cow conception rate at first service (CCR1) and the number of breeding services required 
for conception (TBRD)
Functional
Category

Gene seta NES b

CCR1 TBRD
Cellular Component Organization Actin cytoskeleton organization (GO:0030036) 3.055 3.32

Actin filament based process (GO:0030029) 3.101 3.245
Cellular component assembly (GO:0022607) 3.34 4.08
Cellular component biogenesis (GO:0044085) 3.261 3.626
Cellular localization (GO:0051641) 3.765 3.083
Cellular macromolecular complex assembly (GO:0065003) 4.055 3.434
Cellular macromolecule localization (GO:0070727) 3.031 3.146
Cellular protein complex assembly (GO:0065003) 3.932 3.35
Cytoskeleton organization (GO:0007010) 3.331 3.183
Gap junction (K - hsa04540) 3.966 3.5
Macromolecular complex assembly (GO:0065003) 4.472 3.967
Macromolecular complex binding (GO:0044877) 4.131 3.348
Macromolecular complex subunit organization (GO:0043933) 3.261 3.785
Macromolecule localization (GO:0033036) 3.051 3.057
Organelle localization (GO:0051640) 3.509 3.15
Protein complex assembly (GO:0065003) 4.384 3.633
Protein complex biogenesis (GO:0070271) 4.234 3.488

Mitotic Cell Cycle Cell cycle (R-HSA-1640170) 4.869 3.414
Cell Cycle, Mitotic (R-HSA-69278) 5.077 3.831
Cell division (GO:0051301) 3.092 3.649
Loss of NLP from mitotic centrosomes (R-HSA-380259) 4.676 4.293
Mitotic G2-G2/M phases (R-HSA-453274) 4.744 3.523
Recruitment of mitotic centrosome proteins and complexes (R-HSA-380270) 4.769 4.327

RNA & mRNA Metabolic Processes Regulation of mRNA metabolic process (GO:1903311) 3.423 3.318
Regulation of mRNA processing (GO:0050684) 3.411 3.222
Regulation of RNA splicing (GO:0043484) 4.311 4.062

Signaling Pathways Neurotrophin signaling pathway (K - hsa04722) 3.749 3.293
Notch signaling pathway (P00045) 3.139 3.629
Signaling by NGF (R-HSA-187037) 4.423 3.208

Other Cilium morphogenesis (GO:0060271) 4.236 3.237
Positive regulation of lipid biosynthetic process (GO:0046889) 3.281 3.112
Protein polymerization (GO:0051258) 4.806 3.422
Retinol metabolism (K - map00830) 3.503 3.537
Transmembrane transport of small molecules
(R-HSA-382551)

3.43 3.23

a Accession code for each gene set is in parentheses: Reactome– R; Gene Ontology– GO; Protein Analysis Through Evolutionary Relationships– P; Kyoto Encyclopedia 
for Genes and Genomes - K. b Normalized enrichment score (NES) for each gene set for CCR1 and TBRD

Table 5 Single nucleotide polymorphisms associated with cow fertility using GBS variants
BTA (Mb)a # SNP in Locus Phenotypeb Modelc GBS

P-Value
Region Feature(s)d

1 (83.7) 2 CCR1
TBRD

Add
Add

0.04*
2.10 × 10− 11

ENSBTAG00000032217

1 (146.1) 1 TBRD Add 2.23 × 10− 08 DIP2A
20 (46.0) 1 TBRD Add 1.82 × 10− 06 nsv810323
a Chromosome location of the locus followed by the location of the locus in megabases (Mb) as denoted in the ARS-UCD 1.2 reference genome assembly ( h t t p s :   /  / w w  
w .  a n i  m a l g  e n o  m  e  . o   r g / r  e p o  s i  t o  r  y / c  a t  t  l e  /  U M C _ b o  v i n e _ c o o r d i n a t e s /; accessed 5 September 2023). b Cow conception rate to first service (CCR1); Number of breeding 
services required to achieve conception (TBRD). c Inheritance model: additive (Add), dominant (Dom), recessive (Rec). d Genomic feature that the locus/SNP are 
located within: gene, regulatory regions, copy number variants (CNVs), conserved regions. *FDR < 0.05

https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates/
https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates/
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Growth Factors [NGF]) in the signaling pathway category 
are involved in cellular proliferation and differentiation. 
Previous studies have found that NGF can increase cell 
proliferation through Notch signaling [77], and that the 
inhibition of Notch Signaling can result in the downregu-
lation of NGF during acute inflammatory responses [78]. 
In addition to their nervous system roles, NGF and Notch 
Signaling function in ovulation [79] and pregnancy estab-
lishment [80], respectively. After systemic injection with 
NGF, luteinizing hormone and progesterone increase to 
aid in ovulation as well as establish and maintain preg-
nancy in llamas [79] and dairy cattle [81]. This increased 
expression of fertility hormones is suggested to increase 
uterine receptivity and reproductive efficiency. Notch 
Signaling has a broad role in female fertility from prena-
tal development, the estrus cycle, implantation and preg-
nancy [80]. Within the female reproductive tract, Notch 
Signaling activation is influenced by progesterone levels 
and has a role in pre-implantation angiogenesis by influ-
encing the vasculature of the endothelial cells [80, 82]. 
Additionally, inhibition of Notch Signaling within the 
endometrium has been linked to repeated implantation 
failure, endometriosis, and polycystic ovary syndrome 
which cause infertility in women [83]. 

Gene sets enriched for CCR1 and TBRD that are 
related to RNA and mRNA (Table 4) could have several 
different influences on uterine receptivity and pregnancy 
maintenance. For example, some RNA and mRNAs are 
known to influence uterine receptivity during implan-
tation through the regulation of Wnt signaling [84]. In 
humans, a meta-analysis on genes that were differentially 
expressed during embryo implantation and/or the endo-
metrium identified 39 mRNA genes as uterine receptiv-
ity markers for uterine receptivity [85]. These genes have 
functions related to the immune response, exosomes, 
and the complement cascade pathway during successful 
pregnancies [85]. Alternative splicing of RNA and mRNA 
can also influence uterine receptivity. In mice, alternative 
splicing of epithelial splicing regulatory protein 1 (Esrp1) 
is associated with fertility, whereas Esrp1knockout 
female mice are infertile. Female Esrp1−/− mice present 
with smaller ovaries and have impaired ovulation [86]. In 
humans, alternative splicing helps regulate gene expres-
sion within the myometrium to maintain quiescence 
throughout gestation [87]. Proteins involved in alter-
native splicing regulation like SF2/ASF and hnRNPA1 
upregulate the production of certain GTP-binding pro-
tein isoforms during pregnancy leading to elevated 
cAMP levels and myometrial quiescence [88–89]. Altera-
tions to RNA and mRNA processing and splicing have 
the potential to alter uterine receptivity and ultimately 
pregnancy success.

The association analyses identified 3 loci associated 
with CCR (P < 1 × 10− 5) from the 100 loci GBS panel. 

Two of the associated loci contained genes. Disco Inter-
acting Protein 2 Homolog A (DIP2A) has potential 
functions in uterine receptivity while the function of 
ENSBTAG00000032217 is currently uncharacterized. 
However, ENSBTAG00000032217 is an ortholog to L-lac-
tate dehydrogenase which is an enzyme that catalyzes the 
conversion of pyruvate to lactate as it converts NAD+ to 
NADH to produce energy in nearly all living cells. Previ-
ous work in mice has shown that DIP2A is expressed in 
the endometrium [90], and in bovine conceptuses dur-
ing pregnancy recognition [91]. The DIP2A protein is 
also a receptor for follistatin which is essential for uterine 
receptivity [92, 93]. A successful pregnancy hinges on the 
ability of the embryo to implant into the endometrium. 
Further functional analyses are needed to determine how 
and if the variants identified in this study might influence 
uterine receptivity, implantation, and ultimately concep-
tion rate in dairy cows.

The observed heritability estimates from this study 
were moderate (CCR1 0.19 ± 0.05; TBRD 0.18 ± 0.05). 
When compared to the original heritability estimates cal-
culated by Kiser et al. (2019a) [13] based on genome wide 
association analysis using 625,093 SNPs (0.56 ± 0.06 for 
CCR1 and 0.42 ± 0.07 for TBRD), the estimates from the 
current study were lower but similar to the heritability 
reported by others [94–97]. However, the current study 
heritability estimates confirm that significant improve-
ment in fertility can be achieved by selecting for fertility 
traits. As one might expect, when the genetic correlation 
between CCR1 and TBRD was calculated it results in a 
genetic correlation of -1. This indicates that as the num-
ber of breedings needed to result in pregnancy increases, 
the conception rate to the first service decreases. Iden-
tifying variants and genes that are associated with 
both traits will help improve overall fertility within the 
industry.

The gene-sets, leading edge genes from the GSEA-SNP, 
the positional candidate genes, and the putative func-
tional variants from the association study have potential 
roles in uterine receptivity and embryo implantation. 
Of the two loci that harbor positional candidate genes, 
one missense variant was located within the currently 
uncharacterized ENSBTAG00000032217, while two 
synonymous mutations were found within DIP2A and 
ENSBTAG00000032217. While the one missense vari-
ant is not thought to impact the function of the ENS-
BTAG00000032217 protein, additional investigation is 
needed to confirm this due to the low confidence warn-
ing in the SIFT prediction.

Exploring putative causal mutations by genotyping 
through sequencing aided in defining the loci associated 
with fertility in dairy cattle. These results have practical 
implications in genomic selection as they could be incor-
porated into current commercial genotyping panels to 
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facilitate genomic predicted transmitting abilities. This 
improvement in fertility would help alleviate financial 
losses dairy producers incur from failed pregnancies and 
increase their efficiency and profitability.
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