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Background
Ducks are a significant global poultry species, providing 
essential animal products such as meat, eggs, and feath-
ers. A thorough understanding of the functional genomic 
and transcriptomic sequences, and their regulation in 
complex traits, e.g., disease resistance, reproductive 
capacity, and growth potential, is crucial for improving 
production efficiency. The publication of the pekin duck 
genome in 2020 has facilitated the exploration of the 
genetic basis underlying various duck phenotypes [1]. 
Recently, population resequencing data and high-qual-
ity genomes of meat ducks, egg ducks, and wild ducks, 
generated through de novo assembly, have improved the 
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Abstract
Background Ducks are globally important poultry species and a major source of farm animal products, including 
meat, eggs, and feathers. A thorough understanding of the functional genomic and transcriptomic sequences is 
crucial for improving production efficiency.

Result This study constructed the largest duck mRNA expression atlas among all waterfowl species to date. The 
atlas encompasses 1,257 tissue samples across 30 tissue types, representing all major organ systems. Using advanced 
clustering analysis, we established co-expression network clusters to describe the transcriptional features in the duck 
mRNA expression atlas and, when feasible, assign these features to unique tissue types or pathways. Additionally, 
we identified 27 low-variance, highly expressed housekeeping genes suitable for gene expression experiments. 
Furthermore, in-depth analysis revealed potential sex-biased gene expression patterns within tissues and specific 
gene expression profiles in meat-type and egg-type ducks, providing valuable resources to understand the genetic 
basis of sex differences and particular phenotypes. This research elucidates the biological processes affecting duck 
productivity.

Conclusion This study presents the most extensive gene expression atlas for any waterfowl species to date. These 
findings are of significant value for advancing duck biological research and industrial applications.
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sequencing quality of whole-genome assemblies in poul-
try [2].

In addition to genomic analyses, transcriptomic stud-
ies play a vital role in diverse areas of biological research 
[3]. RNA sequencing (RNA-seq) has revolutionized gene 
expression analysis, transitioning from single-gene stud-
ies to whole-genome analysis, enabling comprehensive 
transcriptome visualization, and reshaping our under-
standing of transcriptionally regulated complex traits [4]. 
Initially, large-scale gene expression mapping projects 
utilized microarray technology to define the transcrip-
tomes of various species [5–9]. In recent years, studies 
have utilized full-length transcript sequencing, such as 
those of the functional annotation of animal genomes 
(FAANG) consortium [10, 11], and farm animal geno-
type-tissue expression (FarmGTEx) projects, including 
chicken [12, 13], cattle [14], pigs [15], and sheep [16]. 
RNA-seq quantification provides comprehensive tran-
scriptome data without prior transcript knowledge, 
making it beneficial for non-model species without high-
quality reference genomes.

Studying gene expression patterns across tissues helps 
elucidate organisms’ evolutionary mechanisms and 
biological functions [17]. In particular, understanding 
varying gene expression across tissues is crucial to under-
standing the genetic foundation of duck breed formation, 
such as egg-laying and meat ducks. Previous transcrip-
tomic studies have documented gene expression maps 
for various livestock and poultry, including chickens [9], 
pigs [5], cattle [18], and sheep [19]. In transcriptome-
wide studies, differentially expressed genes (DEGs) are 
considered potential candidate genes engaged in criti-
cal functions, including growth [20, 21], meat quality 
[22, 23], feather follicle formation [24, 25], and disease 
resistance [26, 27]. Some tissue-specific gene expression 
pattern studies [6, 28–30] provide insights into the rela-
tionships between gene expression, tissues, and organs. 
However, comprehensive studies on global transcriptome 
profiles in ducks are limited. Previous studies on ducks 
have primarily focused on constructing transcriptome 
maps for 16 tissues in Pekin ducks and wild ducks, eluci-
dating transcriptome changes during domestication [31]. 
Currently, there is no publicly available large-scale gene 
expression map for duck tissues. Comprehensive studies 
on the gene expression landscape of different duck tis-
sues are lacking, highlighting the urgent need for large-
scale gene expression profiling to conduct comparative 
analyses of tissue-specific expression patterns in ducks.

This study presents the most extensive gene expres-
sion atlas for any waterfowl species to date, including 
RNA-seq libraries from embryonic, mid, and late devel-
opmental stages, covering all major organ systems. We 
aim to provide a model transcriptome for ducks and gain 
an understanding of the molecular foundation of genes 

and tissue functions. We investigated sex-biased gene 
expression in tissues, specific gene expression in meat 
and egg-laying ducks, and gene expression affecting early 
embryonic development in ducks. Additionally, identify-
ing housekeeping genes of experimental value was a key 
focus of this study. Finally, we employed advanced clus-
tering techniques to establish networks of co-expressed 
genes and identify tissue-specific expression genes. 
These data will provide deeper insights into the biologi-
cal processes underlying complex traits that affect duck 
productivity.

Result
Scope of the Duck gene expression atlas dataset
This study includes transcriptome data from 914 duck 
tissue samples (Supplementary Table S1) downloaded 
from the public database (NCBI database and GSA) and 
343 unpublished duck tissue samples (Supplementary 
Table S2). These samples cover 16 different breeds and 
include samples from embryonic, mid, and late-growth 
stages. To maximize transcriptome diversity, the atlas 
includes data from 30 different tissues, selected to pro-
vide a comprehensive overview of organ systems related 
to phenotypic traits such as growth, metabolism, and 
reproduction. Detailed information can be found in 
Supplementary Table S3. After quality filtering, the 
number of reads per sample ranged from 12.7  million 
to 189  million, with mapping rates between 81.3% and 
98.9%, reflecting variability among duck breeds. The 
dataset was generated using various Illumina sequenc-
ing platforms (including HiSeq 2000/2500/4000/6000/× 
TEN, and NovaSeq 6000), and all samples were paired-
end sequenced. We aligned the transcripts to the refer-
ence genome (ZJU1.0) ( h t t p  s : /  / a p i  . n  c b i  . n l  m . n i  h .  g o v  / d a  t 
a s e  t s  / v 2  / g e  n o m e  / a  c c e  s s i  o n / G  C F  _ 0 1 5 4 7 6 3 4 5 . 1 /), result-
ing in the  i d e n t i fi  c a t i o n of 23,512 genes. For each tissue, 
gene expression levels were quantified as Transcripts Per 
Million (TPM) using StringTie [32]. A complete table 
summarizing gene expression levels across all tissues 
(measured in TPM) is provided as Supplementary Table 
S4. This table includes data from both public datasets 
and additional samples generated in this study. Figure 1A 
shows the distribution of gene TPM values across differ-
ent tissues, revealing that 37.92–43.03% of genes exhibit 
very low expression (0 < TPM ≤ 0.1), 18.33–20.52% show 
low expression (0.1 < TPM ≤ 1), 22.12–26.05% have mod-
erate expression (1 < TPM ≤ 10), 30.10–35.28% have rela-
tively high expression (10 < TPM ≤ 100), and 1.21–5.56% 
display high expression (TPM > 100).

To explore global transcriptome patterns and tissue 
similarities, we analyzed the pairwise correlation heat-
map using Spearman correlation across the 30 tissue 
types. The heatmap (Fig. 1B) reveals that skeletal muscle 
and various brain regions exhibit the most distinct global 

https://api.ncbi.nlm.nih.gov/datasets/v2/genome/accession/GCF_015476345.1/
https://api.ncbi.nlm.nih.gov/datasets/v2/genome/accession/GCF_015476345.1/
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expression patterns, similar to findings in human, pig, 
and chicken tissues [33–35]. Tissues that cluster closely 
typically share a common embryonic origin, function, 
or tissue type. For example, neuroectoderm-derived tis-
sues such as the brain, hypothalamus, pituitary gland, 
pineal gland, and retina cluster together, with the thy-
roid gland also showing a high correlation, likely due to 
its role in hormone regulation. Similarly, reproductive 
organs (testis, epididymis, ovaries, and oviducts) and 
immune-related organs (liver, spleen, and lungs) exhibit 
high correlations within their respective clusters. We 
also conducted a principal component analysis (PCA) of 
1,257 samples, which confirmed that tissues with related 
functions share similar global expression patterns. Brain 
region samples, in particular, display unique expression 
patterns, clustering together distinctly (Fig.  1C). These 
findings demonstrate the robustness of aggregating data 

from multiple tissues to create a comprehensive and 
informative gene expression atlas.

Network cluster analysis
The duck tissue gene expression atlas, comprising 1,257 
samples, was analyzed using Graphia Enterprise, a tool 
for visualizing and analyzing network graphs from large 
datasets [36, 37]. We filtered out low and stably expressed 
genes to focus on variable, tissue-specific genes. A pair-
wise Pearson correlation matrix was generated for gene 
expression across samples, applying a correlation thresh-
old of r = 0.75 and an MCL (Markov Cluster Algorithm) 
inflation value of 2.0 to form co-expression clusters. 
The resulting network contained 10,800 nodes (genes) 
and 1.3 million edges (correlations). Clusters were num-
bered by size, with cluster 1 being the largest, compris-
ing 1,241 genes (Supplementary Table S5). The network 
graph (Fig. 2A) features one large component with 8,546 

Fig. 1 Gene expression profile among 30 tissue types. (A) Statistical distribution chart of gene TPM values across different tissue samples. (B) Unbiased 
hierarchical clustering heat map based on Pearsons’s correlation coefficient for all genes. Color intensity indicates the correlation between tissues, red 
indicates a high correlation (1), and blue indicates a low correlation (0.5). (C) The principal component analysis (PCA) plot shows the relation and cluster-
ing of all duck tissue samples. (CNS = central nervous system)
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nodes and 38 smaller components. Clusters 1 to 50, 
ranked by size, were manually annotated (Supplementary 
Table S6). Most co-expression clusters consist of genes 
expressed predominantly in specific tissues, such as the 
liver (cluster 1), ovaries (cluster 2), testis (cluster 4), and 
retina (cluster 6). However, some clusters include genes 
co-expressed across multiple organ systems, reflect-
ing shared biological functions (Fig.  2B). For example, 
the third co-expression cluster, comprising 770 nodes, 
is highly expressed in brain and hypothalamus tissues. 
Additionally, we identified many genes highly expressed 

in the bursa of Fabricius, ovaries, and testis, as well as 
genes expressed explicitly in the sternum and limb bones. 
Scatter plots of gene expression for all mentioned expres-
sion clusters can be found in Supplementary Figure S1.

Strict co-expression clustering requires each transcript 
to be quantified across multiple conditions to correlate 
strongly with other co-expressed transcripts, indicating 
shared functions or pathways. This method is particularly 
effective for analyzing region-specific gene expression 
within tissues, as demonstrated in gene expression atlases 
of pigs [38], sheep [19], and chickens [35]. Some clusters 

Fig. 2 Interrogation of the underlying expression profiles allows regions of the graph (r = 0.75, MCL = 2.0) to be associated with specific tissues or tissue 
types. (A) A three-dimensional visualization of a Pearson correlation gene-to-gene graph of expression levels derived from RNA-Seq data from analysis of 
all duck tissues. (B) It shows scatter plots of gene expression profiles in the selected cluster (Cluster 3, 8, 28, and 50)
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exhibit strong immune characteristics. For example, 
clusters 11, 16, 18, 22, and 23 contain genes associated 
with immune responses and are specifically expressed 
in the thymus, bursa of Fabricius, lungs, and spleen. For 
instance, genes in clusters 11, 16, and 22 are specifically 
expressed in the thymus, with significantly enriched GO 
terms including immune system process (GO:0002376), 
T-cell differentiation (GO:0030217), and lymphocyte dif-
ferentiation (GO:0030098), among other immune-related 
molecular functions (Fig.  3A; Supplementary Table S7). 
Some highly expressed unannotated genes in these clus-
ters might also play important roles in immunity, such as 
LOC101802873, LOC101802866, LOC101798744, and 
LOC101789908. Additionally, genes in clusters 8 and 34 
are specifically expressed in the bursa of Fabricius and 
reproductive organs (ovaries and testis). GO term analy-
sis of these genes indicates they are involved in processes 
such as the mitotic cell cycle process (GO:1903047), 
chromosome organization (GO:0051276), mitotic cell 
cycle (GO:0000278), and protein-DNA complex assem-
bly (GO:0065004) (Fig. 3B; Supplementary Table S8). This 

result suggests that the ovaries and testis, as reproductive 
organs, undergo rapid cell division and proliferation to 
produce germ cells (ova and sperm). Similarly, the bursa 
of Fabricius, as a primary immune organ, is involved in 
the extensive generation and maturation of B cells dur-
ing early development in birds, which also requires high 
levels of cell division and proliferation [39]. Furthermore, 
this may imply that these tissues may have evolutionarily 
conserved regulatory mechanisms for certain biological 
functions, particularly in cell proliferation and the main-
tenance of genetic information.

The duck gene expression atlas includes libraries from 
early developmental stages. Cluster 28 is the largest co-
expression cluster associated with developmental skeletal 
tissue. The KEGG pathways significantly enriched in this 
cluster include ECM-receptor interaction (P = 0.0002), 
glycosaminoglycan biosynthesis (P = 0.0004), and TGF-β 
signaling pathway (P = 0.0025), all of which are related to 
skeletal development (Supplementary Table S9). Genes 
highly expressed during embryonic stages compared to 
growth stages within cluster 28 include CHST11, IL17D, 

Fig. 3 Functional annotation and details of selected cluster genes. GO term analysis of (A) cluster 11, 16, 22 and (B) cluster 8, 34 (Sankey diagram: The 
nodes on the left represent individual genes; The nodes on the right represent enriched biological pathways; The width of the links between genes 
and processes indicates the contribution of the gene to a particular biological pathways). Genes enriched in (C) cluster 28 and (D) cluster 50 are more 
expressed in the embryonic stage than in the growth stage
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CCN6, CSGALNACT1, and COL27A1 (Fig. 3C). In skel-
etal muscle development, clusters 27 and 50 are signifi-
cantly associated with pathways like calcium signaling 
(P = 0.0055) and myocardial contraction (P = 0.0710), 
which are essential for muscle development and protein 
synthesis (Supplementary Table S10). Similarly, cluster 50 
also contains genes highly expressed during the embry-
onic stage compared to the growth stage, playing a cru-
cial role in embryonic development. These genes include 
PPP1R3A, ZNF106, and TMEM38A (Fig. 3D).

Housekeeping genes
Housekeeping genes (HKGs) are defined as genes with 
conserved expression across all tissues, essential for 
maintaining fundamental biological processes and cellu-
lar functions (e.g., cellular transport) [40]. We identified 
1,088 HKGs with an average TPM value greater than 100 
across all tissues (Supplementary Table S11). By calculat-
ing the coefficient of variation (CV) for these genes, we 
determined that the first quartile was 0.58, and the third 
quartile was 1.07. Based on these CV thresholds, HKGs 
were classified into low-variation (n = 272), medium-
variation (n = 544), and high-variation (n = 272) catego-
ries (Fig. 4A). To investigate the roles of HKGs in tissue 
development, we performed GO functional enrichment 
analysis on these categories (Fig.  4B; Supplementary 
Table S12). Low-variation HKGs are primarily involved 
in translation initiation, protein synthesis, and cellular 
metabolism, while medium-variation HKGs are associ-
ated with intracellular transport, localization and dis-
tribution. High-variation HKGs are mainly linked to 
metabolic processes and cellular structure organization, 
consistent with findings in cattle studies [18]. We visu-
alized the expression of five common HKGs (GAPDH, 
ACTB, HPRT1, GUSB, B2M) and the five HKGs with the 
lowest CVs (EEF2, RPL24, RPL7, RPL21, RPL26L1) across 
tissues (Fig.  4C), finding that common HKGs tend to 
have relatively high CVs. For example, GAPDH exhibits 
significantly higher expression in skeletal muscle than in 
other tissues. Among the low-variation HKGs, we iden-
tified 27 genes with TPM > 1000 (13% of low-variation 
HKGs) (Fig. 4A; Supplementary Table S13). Remarkably, 
85% of these genes belong to the RP (Ribosomal Proteins, 
RPs) gene family, and 7.5% belong to the EEF (Eukaryotic 
Elongation Factors, EEFs) gene family, making them valu-
able candidate reference genes for gene expression exper-
iments (Fig. 4D).

Sex-biased gene expression in ducks
Sex-biased genes are classified into female-biased genes 
and male-biased genes. Genes with FDR < 0.05 and 
log2FC > 1 are defined as female-biased genes, whereas 
those with FDR < 0.05 and log2FC < -1 are defined as 
male-biased genes. To detect sex-biased gene expression 

across 8 tissues (Pectoralis muscle (13 males vs. 13 
females), thymus gland (29 males vs. 6 females), hypo-
thalamus (10 males vs. 10 females), pituitary (6 males 
vs. 6 females), liver (13 males vs. 13 females), bursa of 
Fabricius (28 males vs. 6 females), sternum (13 males 
vs. 5 females), and gonad (20 males vs. 34 females)) in 
ducks, DESeq2 was used with a global false discovery rate 
(FDR) of 5%. The differential expression of each tissue 
is shown in Supplementary Figure S2. In the sex-biased 
genes identified across these tissues, the gonad, pituitary, 
and hypothalamus exhibited the most pronounced sex 
differences, with 11,074, 6,295, and 5,250 differentially 
expressed genes, respectively (Fig.  5A). Notably, in the 
pituitary and hypothalamus, the number of male-biased 
genes (n = 5,299 and 4,137) significantly exceeded that of 
female-biased genes (n = 995 and 1,124). Moreover, the 
results indicated that most sex-biased genes across these 
tissues were located on autosomes (Fig. 5B). KEGG path-
way enrichment analysis of genes with at least 5-fold sex-
biased expression in one or more tissues revealed that 
female-biased genes were primarily enriched in meta-
bolic pathways, such as lipid metabolic processes (sphin-
golipid metabolism, PPAR signaling pathway, terpenoid 
backbone biosynthesis) and amino acid metabolism (phe-
nylalanine metabolism, tyrosine metabolism, cysteine, 
and methionine metabolism). In contrast, male-biased 
genes were mainly enriched in pathways related to tis-
sue development, including skeletal system development, 
muscle tissue development, and connective tissue devel-
opment (Supplementary Table S14; Supplementary Fig-
ure S3).

Ducks have no global chromosomal dosage compensa-
tion (males ZZ, females ZW) [41]. It has been observed 
that Z-linked genes show higher expression in males than 
in females, indicating a dosage effect [42–44]. However, 
in birds, this gene dosage effect on sex chromosomes is 
typically incomplete [45, 46]. In this study, we analyze 
the F: M ratio (sex-biased expression of autosomal and 
Z-linked genes) and the Z(Z): AA ratio (relative expres-
sion of Z-linked genes to autosomal genes). To verify 
incomplete dosage compensation in ducks, we compared 
the log2 F: M (female: male) ratios of autosomal genes 
with those on the Z chromosome. In these eight tis-
sues, the log2 F: M ratio for autosomal genes was close 
to 0. In contrast, the log2 F: M ratios for Z-linked genes 
in five tissues showed significant male bias. For example, 
compared to females, the expression levels in males were 
1.69-fold higher in the pituitary gland, 2.1-fold higher in 
the hypothalamus, 1.8-fold higher in the sternum, 1.2-
fold higher in the thymus, and 1.28 -fold higher in the 
bursa of Fabricius. Additionally, we found no significant 
dosage effect of Z-linked gene expression in the pecto-
ralis muscle, liver, and gonad (Fig. 5C). This finding sug-
gests that Z-linked genes in the pituitary, hypothalamus, 
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sternum, thymus gland, and bursa of Fabricius are not 
well balanced and compensated between males and 
females, supporting a dosage effect between the sexes.

Furthermore, the Z (Z): AA ratio analysis showed 
that the expression of Z-linked genes was significantly 
higher than that of autosomal genes in the male pituitary 
(P = 4.6e − 12, Wilcoxon rank-sum test), male hypothala-
mus (P = 2.22e − 16), male bursa of Fabricius (P = 5.1e-16), 
male liver (P = 6.8e-08), and male gonads (P = 9.2e-10). In 
contrast, our results confirmed that the expression differ-
ences between Z-linked and autosomal genes in these tis-
sues were relatively lower in females (Fig. 5D). Combining 

these results, we identified tissues with an F: M ratio less 
than 0 and significant differences in the Z(Z): AA ratio 
as the pituitary, hypothalamus, and bursa of Fabricius. 
Intersecting the male-biased genes in these three tissues, 
we identified 11 Z-chromosome dosage effect genes: 
KIAA1958, LOC119714541, LOC101791319, REM1, 
LOC119714512, LOC113840422, LOC101793244, CER1, 
LOC113840306, LOC113840423, and LOC113840287 
(Fig. 5E).

Fig. 4 The expression pattern and hierarchical clustering of 1088 HKGs across 30 duck tissues. (A) The HKGs are variably expressed, and only 25% are 
constantly expressed. Among those constant HK genes, only 13% are highly expressed with TPM larger than 100. (B) GO Enrichment Analysis of House-
keeping Genes with High, medium, and low CV (Top 10). (C) Expression of the Top 5 HKGs with the Lowest CV and 5 Common HKGs of Variation Across 
Various Tissues (CV = Coefficients of Variation). (D) Proportion of genes in 27 HKGs
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Differential gene expression between meat ducks and 
laying ducks
Domestic ducks originated from the mallard (Anas 
platyrhynchos) over 2,000 years ago [47–49]. Over the 
past century, domestic ducks have been selectively bred 

into egg-laying, meat, and dual-purpose types to meet 
the high demand for eggs and meat. Domestication 
and subsequent selective breeding have rapidly evolved 
phenotypes and production traits [50]. Phenotypic dif-
ferences between populations can result from genetic 

Fig. 5 Expression patterns of sex-biased genes in ducks. (A) The distribution of sex-specific genes in the eight tissues (female-biased genes in red; Blue 
for the male-bias genes) (B) The location of the distribution ratio of differentially expressed genes (green as autosomal gene number proportion; Orange 
is the ratio of sex chromosome genes) (C) Fold-change map (***indicates P ≤ 0.001; **indicates 0.001 < P ≤ 0.01; *indicates 0.01 < P ≤ 0.05; n.s. indicates 
P > 0.05) and (D) zither map of the duck Z chromosome for pituitary, hypothalamus, sternum, thymus gland, bursa of Fabricius, pectoralis muscle, liver and 
gonads. (E) Venn diagram of Z chromosome of dose-effect genes in the bursa of Fabricius, pituitary, and hypothalamus
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changes affecting the function and expression of gene 
products [51]. However, the genetic basis underlying the 
significant differences between laying and meat ducks 
remains unclear. Therefore, in this study, we compared 
gene expression across tissues between laying and meat 
ducks to explore the genetic changes underlying these 
differences.

The distribution of differentially expressed genes 
(DEGs) (|log2FC| > 1) between laying ducks (Jinding, Sha-
oxing, and Gaoyou) and meat ducks (Peking and Cherry 
Valley) across various tissues (liver (13 laying ducks vs. 13 
meat ducks), pectoralis muscle (3 laying ducks vs. 3 meat 
ducks), ovary (9 laying ducks vs. 9 meat ducks), pituitary 
gland (12 laying ducks vs. 12 meat ducks), hypothalamus 
(10 laying ducks vs. 12 meat ducks)) is shown in Fig. 6A. 
Excluding the liver (n = 4358), the pectoralis muscle 
(n = 3741) and pituitary (n = 3246) exhibited the highest 
number of DEGs. Furthermore, functional enrichment 
analysis revealed that the DEGs with higher expression 
in laying ducks compared to meat ducks (log2FC > 4; 

n = 992) were enriched in biological processes related to 
hormone metabolic processes (GO:0042445), regulation 
of hormone levels (GO:0010817) among others (Fig. 6B). 
This indicates an upregulation of gene expression in 
hormone regulation, neurodevelopment, and metabolic 
processes, possibly related to laying ducks’ reproductive 
and hormonal regulation needs. In contrast, the DEGs 
with higher expression in meat ducks compared to lay-
ing ducks (log2FC < -4; n = 630) were enriched in biologi-
cal processes such as kidney development (GO:0001822), 
T cell activation (GO:0002286), and liver development 
(GO:0001889) among others (Fig. 6C). This indicates an 
upregulation of gene expression involved in organ devel-
opment, immune response, and gene regulation, which 
may be related to meat ducks’ growth, immune, and met-
abolic needs. To better understand tissue-specific DEGs, 
we performed a comparative analysis across the five tis-
sues (Fig. 6D). The results showed that 27 common DEGs 
are shared among these five tissues.

Fig. 6 Differentially expressed genes between egg-type and meat-type ducks. (A) The number of differentially expressed genes in the five tissues (red 
indicates genes highly expressed in laying ducks, blue indicates genes highly expressed in meat ducks). KEGG enrichment plot of highly expressed genes 
(B) in egg-type ducks and (C) in meat-type ducks. (D) Venn diagram shows the shared and unique differentially expressed genes among the hypothala-
mus, ovary, pituitary, pectoralis muscle, and liver tissues between meat and laying ducks. (Hyp = hypothalamus, Pit = pituitary, PM = pectoralis muscle)
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Discussion
A comprehensive tissue transcript survey reveals the 
biological roles and regulatory mechanisms of genetic 
variants underlying complex traits [52]. Gene expression 
analysis has shown that transcriptome variations con-
tribute to phenotypic diversity among species [53]. How-
ever, ducks have lacked such comprehensive studies. This 
study generated the first extensive duck transcriptome 
atlas, encompassing 1,257 samples from 30 tissue types 
across 10 organ systems (e.g., neuroendocrine, immune). 
By investigating and comparing transcriptome profiles 
across these tissues, we aim to enhance our understand-
ing of how gene expression variability influences pheno-
typic diversity.

This study integrates data from various sources. To 
minimize potential biases introduced by different data 
origins, we applied a unified quality control and analysis 
workflow to all RNA-seq data. Specifically, low-quality 
reads were filtered using the FASTX Toolkit with consis-
tent parameters, and all reads were aligned to the same 
reference genome (ZJU1.0) using Hisat2 with standard-
ized settings. Gene expression levels for all samples were 
normalized to TPM values using StringTie. However, this 
study has some limitations. While TPM normalization 
reduces the impact of sequencing depth, it may not com-
pletely eliminate biases and could affect low-expression 
genes [54]. Nonetheless, this has minimal impact on our 
study, as the focus is primarily on highly expressed genes.

Analyzing tissue-specific gene expression patterns is 
essential for elucidating the relationships between gene 
expression, tissues, and organs. We employed Graphia 
[36] for network clustering analysis on the gene expres-
sion atlas in duck tissues. Genes highly expressed in spe-
cific tissues and exhibiting consistent expression patterns 
formed distinct clusters. Detailed examination of these 
clusters can provide important biological insights. For 
instance, Cluster 11 and 16, which are highly expressed in 
the thymus, are related to the innate immune response. 
The unannotated gene LOC101802873, highly expressed 
in the thymus (cluster 16), may encode a T-cell receptor-
associated transmembrane adaptor protein that regulates 
T-cell signaling. Another example is Cluster 23, where 
functional annotation revealed that the genes within the 
cluster also play roles in immune response processes. The 
significantly enriched KEGG pathways include Influenza 
A (P = 1.68 × 10− 5), RIG-I-like receptor signaling path-
way (P = 0.0025), and Herpes simplex infection (HSV-1) 
(P = 8.11 × 10− 3), all of which are related to viral infec-
tion pathways. Manual annotation of unannotated genes 
within this cluster identified PARP12 (LOC101802866), 
PARP14 (LOC101798744), and LOC101789908. Related 
studies have shown that in wild ducks infected with 
the influenza A virus, the expression levels of PARP12 
(LOC101802866 and LOC101796889) and PARP14 

(LOC101789908) are upregulated in the lungs and ileum 
[55]. Moreover, the duck gene expression atlas dataset 
includes multiple libraries from early developmental 
stages. For example, the development skeletal co-expres-
sion cluster is Cluster 28, which is related to skeletal 
development. We observed that genes enriched in Cluster 
28 with higher expression during embryonic stages com-
pared to growth stages include CHST11, IL17D, CCN6, 
CSGALNACT1, and COL27A1. Studies have shown that 
these genes regulate embryonic cartilage development 
in animals, and their absence can lead to cartilage dys-
plasia or even embryonic lethality, indicating their cru-
cial roles in the growth and development of embryonic 
skeletal structures [56–63]. Regarding the development 
of skeletal muscles, Cluster 50 is of interest, which is 
related to muscle contraction development and protein 
synthesis. Genes enriched in this cluster with higher 
expression during embryonic stages than growth stages 
include PPP1R3A, ZNF106, and TMEM38A. TMEM38A 
is a member of the transmembrane protein family, and 
related studies have shown it plays an important role in 
the growth and development of bovine embryos [64].

Housekeeping genes (HKGs) are broadly expressed 
across tissues, essential for basic cellular functions, and 
serve as reliable experimental controls [65]. This study 
identified 1,088 HKGs, including 27 with high expres-
sion levels suitable for use as experimental controls. The 
ribosomal protein gene family, responsible for the large 
ribosomal subunit and protein synthesis within cells, 
constituted the largest proportion [66–68]. Related stud-
ies also suggest that the RP gene family can be used as 
reference genes [69]. Common HKGs (GAPDH, ACTB, 
HPRT1, GUSB, B2M) were expressed across all duck tis-
sues at varying levels, consistent with previous reports 
[70, 71]. We also obtained a list of HKGs that maintain 
basic cell functions and energy metabolism (e.g., transla-
tional initiation, protein synthesis, and cellular substance 
metabolism).

Sex-specific differences in gene expression have been 
reported in human [72], mice [73], cattle [74], pigs [75] 
and chicken [35]. While some studies have examined 
these differences in ducks, the genetic basis remains 
incomplete. Therefore, this study compares gene expres-
sion between male and female ducks in eight tissues: 
pectoralis muscle, liver, pituitary gland, hypothalamus, 
gonads, thymus gland, and bursa of Fabricius. KEGG 
pathway enrichment analysis revealed that female-biased 
genes are enriched in metabolic pathways, such as lipid 
and amino acid metabolism, while male-biased genes 
are enriched in pathways related to tissue development, 
including skeletal, muscle, and connective tissue develop-
ment. This is consistent with studies on sex-biased genes 
in sheep and chickens [19, 35], which may reflect the 
intrinsic differences between sexes in allocating resources 
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for growth or reproduction. Additionally, we focused on 
some highly expressed genes identified as potential reg-
ulators for establishing sexual identity (Supplementary 
Table S15). LHX9, a LIM homeobox gene family member, 
plays a crucial role in animal embryonic development. 
In chickens, the LHX9 motif is enriched only in female-
biased DARs. POMC encodes pro-opiomelanocortin, and 
studies in chickens have indicated that POMC methyla-
tion patterns and gene expression are associated with sex 
differences [76]. Some sex-differentially expressed genes 
identified in this study have been analyzed in previous 
research, but we discovered many novel sex-differentially 
expressed genes, providing clues for further analysis of 
sex differences in ducks. Furthermore, ducks (ZZ males, 
ZW females) lack global chromosome dosage compen-
sation, with studies showing higher expression levels of 
male Z-linked genes than females, indicating a dosage 
effect [41–44]. By utilizing the F: M ratio and the Z (Z): 
AA ratio for further analysis, we identified three tissues—
pituitary gland, hypothalamus, and bursa of Fabricius—
that showed significant differences with F: M < 0 and 
Z (Z): AA ratios. By intersecting the male-biased genes 
in these tissues, we identified 11 Z chromosome dosage 
effect genes.

The genetic basis for the differences between laying 
and meat ducks remains unclear. By comparing differen-
tially expressed genes in the liver, ovary, breast muscle, 
hypothalamus, and pituitary tissues of laying and meat 
ducks, we found that laying duck-biased genes are pri-
marily involved in hormone metabolism and regulation 
processes, while meat duck-biased genes are associated 
with tissue growth processes. By intersecting the differ-
entially expressed genes in the five tissues, 27 genes were 
differentially expressed in all five tissues. Among them, 
the expression levels of the FGA and FGB genes in the 
ovary, breast muscle, hypothalamus, and pituitary were 
biased towards egg ducks (Supplementary Table S16). 
FGA and FGB are critical during blastocyst implanta-
tion and embryo transfer following in vitro fertilization 
[77, 78]. Studies have confirmed the association between 
genetic variants in FGA (rs6050) and FGB (rs1800790) 
and pregnancy outcomes [79]. Therefore, the FGA and 
FGB genes may be related to the reproductive capac-
ity of ducks. Additionally, the expression levels of the 
SOCS3 gene in the breast muscle, liver, hypothalamus, 
and pituitary were biased toward meat ducks. SOCS3 is 
a SOCS (Suppressor of Cytokine Signaling) protein fam-
ily member. Studies have shown that SOCS3 overexpres-
sion enhances the mRNA expression of genes related to 
muscle maturation and hypertrophy [80]. Similarly, dur-
ing the embryonic development of Pekin ducks, SOCS3 
has been identified to be associated with muscle develop-
ment and fat deposition [81]. These results suggest that 

the SOCS3 gene may be crucial in developing skeletal 
muscle in meat ducks.

Conclusion
This study assembled the most extensive duck transcrip-
tome collection to date, representing core tissues across 
all major organ systems. By applying network cluster-
ing and correlation analysis, we validated known gene 
expression-function relationships and identified can-
didate genes involved in immune response, embryonic 
skeletal development, and muscle growth. We also pro-
vided new insights into sex-biased gene expression and 
identified genes associated with phenotypic differences 
between laying and meat ducks. Finally, we identified 
27 low-variation, highly expressed housekeeping genes, 
with the RP gene family being the most represented. This 
transcriptome map is a valuable resource for understand-
ing duck biology and establishes a robust foundation for 
using ducks as animal models in industrial and research 
applications. However, this study has some limitations, 
such as the potential bias introduced by differences in 
sample sources, and the biological functions of the candi-
date genes require further validation. Future research can 
supplement the current findings through experimental 
validation and broader species coverage.

Materials and methods
RNA-seq dataset collection
The publicly accessible datasets utilized in this study are 
listed in Supplementary Table S1. These datasets, acces-
sible through the Sequence Read Archive (SRA) and 
Genome Sequence Archive (GSA), provide the raw data 
for our analysis. The SRA, available via the National Cen-
ter for Biotechnology Information (NCBI), stores the 
data in binary format, which can be converted to FASTQ 
files using the fast-dump tool from the SRA Toolkit ( h t t 
p  s : /  / t r a  c e  . n c  b i .  n l m .  n i  h . g  o v /  T r a c  e s  / s r a / ? v i e w = s o f t w a r e). 
Additionally, this study includes 343 samples collected by 
the Waterfowl Research Group of Sichuan Agricultural 
University, which have not yet been deposited in pub-
lic databases. These samples represent six duck breeds: 
Nonghua Ma duck, Nonghua White duck, Huaifu Meat 
duck, Cherry Valley duck, Sichuan Ma duck, and Jian 
Chang duck, with ages ranging from 56 to 300 days. Tis-
sue samples include the hypothalamus, pineal gland, 
retina, bursa of Fabricius, thymus, liver, ovary, oviduct, 
follicle, eggshell gland, testis, sternum, pectoral muscle, 
and web.

Raw data processing
Low-quality reads were filtered using the FASTX Tool-
kit (v0.0.13). Specifically, the fastq_quality_filter tool 
was employed to remove reads where more than 20% of 
bases had a quality score below 20. After filtering, the 

https://trace.ncbi.nlm.nih.gov/Traces/sra/?view=software
https://trace.ncbi.nlm.nih.gov/Traces/sra/?view=software
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remaining high-quality reads were aligned to the refer-
ence genome ZJU1.0 ( h t t p  s : /  / w w w  . n  c b i  . n l  m . n i  h .  g o v  / a 
s  s e m b  l y  / G C F _ 0 1 5 4 7 6 3 4 5 . 1) using Hisat2 (v2.1.0). To 
enhance alignment accuracy, the parameters --known-
splicesite-infile and --pen-noncansplice were used to 
prioritize the alignment of known splice sites [82]. The 
aligned data were processed with Samtools. StringTie 
calculates the expression level of each transcript based 
on the RNA-Seq alignment results and quantitatively 
outputs the transcript in TPM format [32]. The merged 
transcripts were compared with the reference annotation 
ZJU1.0 ( h t t p  s : /  / w w w  . n  c b i  . n l  m . n i  h .  g o v  / a s  s e m b  l y  / G C F _ 
0 1 5 4 7 6 3 4 5 . 1) using the gffcompare tool (v0.10.1,  h t t p  s : /  
/ c c b  . j  h u .  e d u  / s o f  t w  a r e  / s t  r i n g  t i  e / g ff  c o m p a r e . s h t m l) [83]. 
Gene expression levels were quantified in transcripts 
per million (TPM) for most analyses. For differential 
expression analysis (DEG), raw read counts were used. 
In addition, log-transformed TPM values were applied 
for Principal Component Analysis (PCA) and sample-to-
sample correlation analyses to ensure normal-like data 
distribution and improve interpretability.

Network clustering analysis and functional annotation
Duck tissue gene expression profiles were clustered using 
Graphia [36]. The Pearson correlation matrix retained 
only relationships with 𝑟≥0.75, forming a network graph 
where nodes (genes) were connected by edges (correla-
tions above the threshold). The Markov Clustering Algo-
rithm (MCL) with an inflation value of 2.0 was employed 
to interpret the network’s structure. Genes exhibiting 
strong co-expression patterns were assumed to share 
related functions [19]. Gene Ontology (GO) functional 
analysis of the genes within each co-expression cluster 
was performed using the online tool KOBAS 3.0  (   h t t p : / 
/ w w w . b i o i n f o     ) .  

Identification of housekeeping genes
Related studies showed housekeeping genes (HKGs) 
exhibit constitutive expression across all or most tissues 
[40]. To assess the expression variation of HKGs in the 
duck expression profile, we calculated the coefficient of 
variation (CV) for each gene, a method commonly used 
in similar studies [18, 70]. CV is defined as the ratio of 
the standard deviation to the mean (CV = σ/µ), where 
σ represents the standard deviation and µ the mean 
expression level across tissues. We classified HKGs into 
low (CV ≤ 0.58), medium (0.58 < CV ≤ 1.07), and high 
(1.07 < CV) variation expression categories, and per-
formed GO enrichment analysis for each category. 
Among the low variation HKGs, those with an average 
expression of TPM > 1000 across all duck tissues were 
identified as candidate reference HKGs.

Differential expression analysis
The DESeq2 package in R (v3.5.1) was used to convert 
read counts to counts per million (CPM) and to iden-
tify differentially expressed genes (DEGs) using the 
Wald test. Significance thresholds were set at FDR < 0.05 
and|log2FC| > 1.

Data visualization
Data visualization was conducted in R (v4.2.3) with 
RStudio, primarily using ggplot2 (v3.3.6) package, along 
with pheatmap (v1.0.12), ggpubr (v0.4.0), and tidygraph 
(v1.2.0). Figures were assembled and annotated in Adobe 
Illustrator (Adobe Inc., San Jose, USA).

Statistical analysis
Data analysis was performed using SPSS software (ver-
sion 20.0, SPSS Inc., Chicago, IL) and Microsoft Excel 
(Microsoft Corporation, Redmond, WA, USA) for orga-
nizing, processing, and analyzing the dataset. ANOVA 
analysis among different groups was done using SPSS 
software. Differences at P < 0.05 were considered signifi-
cant. Graphs were created using GraphPad Prism (ver-
sion 8.0.2) and R (version 4.2.3).
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