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Abstract
Understanding the mechanisms of early clearance of Mycobacterium tuberculosis (Mtb) may illuminate new 
therapeutic strategies for tuberculosis (TB). We previously found genetic, epigenetic, and transcriptomic signatures 
associated with resistance (resister, RSTR) to tuberculin skin test (TST)/interferon gamma release assay (IGRA) 
conversion among highly exposed TB contacts. We hypothesized that integration of these datasets with multi-
omic latent factor methods would detect pathways differentiating RSTR patients from those with asymptomatic 
TB infection (TBI, also known as latent TB infection or LTBI) that were not detected in individual dataset analyses. 
We pre-filtered and scaled features with the largest change between TBI and RSTR groups for 126 patients with 
data in at least two of five data modalities: single nucleotide polymorphisms (SNP), monocyte RNAseq (baseline 
and Mtb-stimulated conditions), and monocyte epigenetics (methylation and ATAC-seq). Using multiomic latent 
factor analysis (MOFA), we generated ten latent factors on the subset of 33 patients with all five datasets available, 
four of which differed by RSTR status (FDR < 0.1). Factor 4 showed the greatest difference between RSTR and TBI 
groups (FDR < 0.001). Three additional latent factor integration methods also distinguished the RSTR and TBI groups 
and identified overlapping features with MOFA. Using pathway analysis and a cluster-based enrichment method, 
we identified functions associated with latent factors and found that MOFA Factors 2–4 include functions related 
to cell-cell adhesion, cell shape, and multicellular structure development. In summary, latent variable integration 
methods uncovered signatures associated with resistance to TST/IGRA conversion that were not detected by 
individual dataset analyses and included pathways associated with cellular interactions and multicellular structures.
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Introduction
Tuberculosis (TB) is a leading cause of global mortality 
including 1.3  million deaths among 10.6  million cases 
reported in 2022 [1]. Following heavy exposure to Myco-
bacterium tuberculosis (Mtb), a range of outcomes occurs 
including TB disease, asymptomatic or latent TB infec-
tion (TBI) defined clinically as a positive tuberculin skin 
test (TST) or IFNγ release assay (IGRA), and resistance 
to TST/IGRA conversion (RSTR) that may represent 
clearance of infection through IFNγ-independent mecha-
nisms [2–4].

Immunologic and genetic mechanisms of resistance to 
Mtb infection following close contact have been investi-
gated in several cohorts [3, 5–8] including a long-term 
household contacts study in Uganda [2, 4], a country 
with a high incidence of Mtb infection [9]. Genetic [10, 
11], epigenetic [12], and transcriptional [13, 14] signa-
tures differentiating TBI and RSTR subjects have been 
described in monocyte-derived data from this cohort, 
pointing to several possible mechanisms of resistance 
within the inflammatory response including TNF 
responses [11, 13] and lipid metabolism [12, 14]. How-
ever, there is little agreement across these data modali-
ties in terms of specific genes or pathways that might be 
investigated as potential therapeutic targets. An inte-
grated analysis of these datasets may help to further 
identify pathways and features that differentiate TBI and 
RSTR subjects, generating new lines of inquiry for inves-
tigation into the mechanisms underlying resistance to 
Mtb infection [15, 16].

In this work, we utilize several multi-omic latent vari-
able integration methods to identify driving sources of 
variation across data modalities. The primary integration 
method used is MOFA+, an unsupervised factor analysis 
method [17]. MOFA + and similar integrative computa-
tional methods can provide mechanistic insights above 
and beyond traditional -omic data analyses by revealing 
functional pathways whose regulation may span across 
more than one step in the cascade from chromosome to 
protein or metabolite. These methods have aided in novel 
biomarker identification, classification of disease sub-
types, and discovery of candidate drug targets in various 
diseases with complex mechanisms [18, 19]. By integrat-
ing genetics with monocyte-derived methylation, chro-
matin accessibility, and transcriptomic datasets from the 
Uganda resister cohort, we explored mechanisms of resis-
tance to TST/IGRA conversion that were not detected in 
the previous analyses of each independent dataset.

Methods
Cohort
Patients with culture-positive pulmonary tuberculosis 
(TB) were recruited as part of the Kawempe Commu-
nity Health Study from 2002 to 2012 in Kampala, Uganda 

[4]. All participants were at least 15 years old at the time 
of retracing, HIV-negative, and gave written, informed 
consent, approved by the institutional review boards of 
their associated institutions. Household contacts of index 
TB cases were then enrolled and followed for 2 years by 
tuberculin skin tests (TST). A subset of TST-negative 
and matched TST-positive individuals were retraced 
from 2014 to 2017 and re-assessed by TST as well as 
IFNγ release assays (IGRA) for an additional 2 years [2]. 
Latent tuberculosis infection (TBI) was defined as indi-
viduals with fully concordant positive TST and IGRA 
tests. Resisters (RSTR) were defined as concordant nega-
tive TST and IGRA. Previously generated data include 
genetic association studies with single nucleotide poly-
morphisms (SNPs) [11], as well as chromatin accessibility 
(ATAC-seq) [12], methylation [12], and transcriptional 
responses (RNA-seq) [13, 14] in monocytes.

Kinship
Genotypes were determined using the Illumina MEGAEX 
array containing 2  million single nucleotide polymor-
phism (SNP) probes or Infinium OmniExpress Bead-
Chip containing 710,000 probes as previously reported 
[11]. SNPs were filtered for minor allele frequency 
(MAF > 0.05), call rate (> 0.95), Hardy-Weinberg Equi-
librium (P < 1 × 10− 6), and linkage disequilibrium (LD 
R2 < 0.1 in 50  bp windows with a 5  bp slide) in PLINK2 
[20]. This yielded 63,812 filtered SNPs for kinship calcu-
lation. Pairwise kinship was calculated using the robust 
King method for identity-by-descent (IBD, SNPRelate 
v1.22.0) [21] and a genetic relationship matrix (GRM, 
GENESIS v2.18.0 [22]).

Data preprocessing
To examine integrated profiles that distinguish RSTR and 
TBI clinical groups with MOFA, we selected five previ-
ously published datasets: monocyte RNA-seq [13, 14] 
(media condition and Mtb-stimulated), monocyte meth-
ylation [12] (media condition), monocyte ATAC-seq 
[12] (media condition), and SNPs [11]. The study design 
including data processing and analysis is summarized 
in Fig.  1. Collectively, these SNPs, methylation probes, 
ATAC-seq peaks, and RNA-seq genes are referred to 
as features for integration. Features not annotated to a 
known gene (GRCh38) [23] were omitted. In the meth-
ylation data, outliers > 4 SD from the overall mean were 
rescaled to 4 SD. In the continuous datasets (RNA-seq 
[media and Mtb-stimulated], ATAC-seq, methylation), 
log2 fold changes were calculated for RSTR vs. TBI across 
the 126-patient dataset including patients with at least 2 
data modalities. For ordinal SNP data, fold changes in 
minor allele frequencies were calculated by for RSTR/
TBI. For the larger datasets (features > 1 × 105), the top 
1% of features with the greatest absolute log2 fold change 
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were selected for downstream analysis (SNPs = 6609, 
methylation = 5349). For the smaller datasets (fea-
tures < 1 × 105), the features in the top 10% by greatest 
absolute log2 fold change were selected (RNA-seq = 1398, 
ATAC-seq = 2466). Subjects missing any of the five inte-
grated datasets were omitted in integrative analyses. This 
resulted in 33 subjects and 1.7 × 104 total features for 
integration. Data completeness for the full cohort of 126 
patients is summarized in Supplemental Fig. 1.

MOFA implementation
MOFA infers a set of latent factors to capture sources 
of variability across and within data modalities with dif-
ferent underlying data structures and distributions [17]. 
Factor generation in MOFA is unsupervised and results 
in matrices of factor loadings by feature for each of the 
integrated datasets, as well as factor loadings by sub-
ject. From the 5 datasets filtered from 33 subjects, ten 
latent factors were generated using the MOFA + package 
[17] in R v4.2.3 [24] using default parameters apart from 
scale_views being set to TRUE to allow for the different 
datasets to be scaled to equal variance and the function-
internal random seed being set to improve reproducibil-
ity. RSTR and TBI MOFA factor values were compared 
using a mixed effects models corrected for age, sex, and 
genetic kinship in kimma [25]. Functional annotation was 
performed on factors that differed between RSTR and 
TBI (FDR < 0.2). Data sets that explained > 5% of variance 
on a factor were considered for functional characteriza-
tion of that factor. The top five features by MOFA weight 
in each dataset were subjected to hypergeometric enrich-
ment against MSigDB databases [26] as described below.

Additional latent variable integration methods
To reduce the feature lists to more specifically char-
acterize functions represented by MOFA factors, an 
overlap analysis was performed with several alternative 
multi-omic latent variable integration methods. Three 
non-MOFA methods were implemented. The first was a 
multiblock unsupervised partial-least-squares analysis 
performed using the mixOmics::block.pls function in 
the canonical mode with Mtb-stimulated RNA-seq des-
ignated as the response dataset [27]. The design matrix 
included zeroes on the diagonal and 0.1 on the off-diag-
onal; two latent variables were generated. Like MOFA, 
this is an unsupervised method that generates latent 
factors naïve to sample group. Second, a multiblock par-
tial-least-squares discriminant analysis was performed 
with the same structure of the design matrix using the 
mixOmics::block.plsda function to generate two latent 
variables [27]. This is a supervised method that creates 
factors that best separate TBI and RSTR groups. Lastly, 
the unsupervised, graph-based method iClusterPlus was 
used to generate three latent variables with the function 

Fig. 1  Data processing and analysis workflow for multi-omics integration 
in the Uganda RSTR cohort. This analysis consisted of four major parts: (1) 
input feature selection, (2) creation of the MOFA factors, (3) comparison 
of top-weighted features on significant factors with those from other la-
tent variable integration methods and selection of features highlighted 
by MOFA and at least two additional methods, (4) and factor annotation 
based on functional enrichment of those reduced feature lists and sum-
mary of enrichment results by gene set clustering. Created in ​h​t​t​p​s​:​/​/​B​i​o​
R​e​n​d​e​r​.​c​o​m​​​​​​​​
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iClusterBayes [28, 29]. Model tuning was performed 
using the function tune.iClusterBayes, and the final 
model was built with default parameters for the Mar-
kov Chain Monte Carlo sampling apart from: number of 
burn-in iterations set to 18,000, number of draws set to 
12,000, and prior gamma probability set to 0.5 for all five 
input datasets.

Multi-method feature selection
Models were generated with kimma to compare 
mixOmics and iClusterPlus latent factors by TBI/RSTR 
sample group with sex, age, and kinship correction [25]. 
The most extreme 10% of features on each of the sig-
nificant latent variables (FDR < 0.2) from each of the five 
datasets were selected to look for overlap with the top 
MOFA features on RSTR significant factors.

Top MOFA features were selected from datasets 
explaining at least 5% of variance on factors that signifi-
cantly differed in RSTR and TBI. A proportion of the 
most extreme features were selected equal to (0.25 * Pd), 
where Pd is the proportion of variance explained by the 
dataset on that factor. Features were selected from this 
reduced MOFA feature list that also occurred in the 
extreme feature list for at least two out of three of the 
non-MOFA integration methods (Fig. 1). The gene anno-
tations associated with these overlapping features were 
subjected to hypergeometric enrichment using MSigDB 
as described below.

Comparison with individual data set analyses
MOFA reduced feature lists for each factor were com-
pared to results from the individual analyses of the 
integrated datasets. For RNA-seq data, expression was 
modeled with respect to Mtb stimulation (media-only 
and Mtb-stimulated) and RSTR status. Features signifi-
cant for the interaction term (Mtb: RSTR) of that model 
(FDR < 0.2) were selected for comparison with the MOFA 
reduced feature lists [13]. For the ATAC-seq data, the two 
peaks that differed (FDR < 0.2) between TBI and RSTR 
were used [12]. Methylation was assessed both as differ-
entially methylated probes and probes within differen-
tially methylated regions previously defined by DMRcate. 
For this analysis, methylation features significant under 
either scheme were included (FDR < 0.2) [12]. SNPs from 
the reduced feature lists were queried from the GWAS 
dataset and compared with the 40 SNPs that passed the 
5 × 10− 5 significance threshold for that analysis [11].

Functional enrichment
Hypergeometric enrichment of protein-coding genes in 
top-weighted MOFA feature lists and gene lists gener-
ated in the overlap analysis were performed using the 
SEARchways package in R [30]. For MOFA Factors 1 
and 2, the flexEnrich function was used. For MOFA 

Factors 3 and 4, there were a number of features with 
more than one gene annotation, necessitating the use 
of the iterEnrich function to account for annotation of 
features to multiple HGNC symbols with random sub-
sampling. Enrichment was tested against the Hallmark 
[26], C2 curated gene sets (Canonical Processes), and 
C5 gene ontology gene sets (Biological Processes) [31, 
32] databases from the Molecular Signatures Database. 
In all cases, a minimum overlap threshold of three was 
imposed between the query and pathway gene lists. Addi-
tionally, within each analysis the minimum gene set size 
considered was 10, and the maximum was three standard 
deviations over the mean gene set size for each database 
(Hallmark = 386.6, C2 CP = 361.7, C5 GO: BP = 786.2).

In order to summarize pathway enrichment results, 
significant gene sets (FDR < 0.2) were subjected to hier-
archical clustering based on the overlap coefficient [33] 
calculated on pathway gene membership. Clusters were 
generated using a tree-cut height of 0.8. Cluster annota-
tion was based on a combination of the largest gene set 
within each cluster and word cloud diagrams built on 
member gene set names and descriptions [34].

Results
To identify new biologic signatures that distinguish 
RSTR and TBI phenotypes, we integrated five data sets 
previously generated from monocytes from household 
contacts of Mtb cases in Uganda (media-only and Mtb-
stimulated RNAseq [13, 14], ATACseq [12], methylation 
[12], SNPs [11], Fig. 1). Data from 18 RSTR (mean age 23 
at sample collection) and 15 TBI cases (mean age 21.5 at 
sample collection) were used in this integrated analysis 
(Table 1). Multi-omic factor analysis was applied, creat-
ing latent factors that describe axes of heterogeneity that 
can span across input data modalities. Once these factors 
were identified, features with the high absolute weight on 
the factors were used to relate them to etiology.

Dataset selection and preprocessing
While factor analysis allows for integration of differ-
ing data modalities with variable sizes, performance is 
improved through upstream feature selection. Here, we 
apply a semi-supervised approach to better balance data 
set size and enrich for RSTR/TBI signal. The total num-
ber of raw features across all five datasets was 1,526,259 
with 1,250,370 annotated to known genes. Seven meth-
ylation values fell > 4SD from the mean of all methylation 
data and were rescaled. Data was pre-filtered to the fea-
tures with the largest difference between TBI and RSTR 
groups per dataset for 126 patients with data in at least 
two of the five data modalities. The final dataset con-
tained 1,398 genes for each of the media-only and Mtb-
stimulated RNA-seq datasets, 5,349 methylation probes, 
2,466 ATAC-seq peaks, and 6,609 SNPs for a total of 
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17,220 features across all data types (Table 2). MOFA fac-
tors were then generated on the subset of patients with 
all five datasets available (Table 2, n = 33).

MOFA latent factors distinguish RSTR and TBI groups
To enrich for signal, features from each dataset were 
pre-filtered to those with the greatest fold-change differ-
ence between TBI and RSTR. Using this filtered feature 
list, we generated ten latent factors in MOFA (Supple-
mental Figs. 2 & 3), four of which were different between 
TBI and RSTR (Fig. 2, Supplemental Table 1, FDR < 0.1). 
Variance on Factor 1 was primarily explained by fea-
tures from the two RNA-seq datasets, Factor 2 from the 
ATAC-seq dataset, and Factor 3 from the methylation 

and SNP datasets. In contrast, Factor 4 better integrated 
the input datasets, with > 5% variance explained by each 
of the SNP, methylation, Mtb-stimulated RNA-seq, and 
ATAC-seq datasets. Strikingly, Factor 4 showed near per-
fect discrimination between RSTR and TBI groups, with 
the TBI group associated with negative values on the fac-
tor and the RSTR group with positive values on the fac-
tor (FDR < 0.001). Together, these analyses suggest that 
MOFA identified factors which differentiate the RSTR 
and TBI groups with features from multiple datasets, 
thus providing opportunities for novel insights beyond 
individual data set analyses (Supplemental Figs. 4 & 5).

Overlap analysis with additional latent variable integration 
methods
We next validated MOFA findings using alternative data 
integration methods. Three additional data integra-
tions were performed including both unsupervised and 
supervised approaches: two methods from the mixOmics 
package yielded two latent variables each, and the iClus-
terPlus package yielded three latent variables (Supple-
mental Fig. 6). All four latent variables generated by the 
mixOmics methods and two of three generated in iClus-
terPlus significantly differed between TBI and RSTR 
groups (FDR < 0.1, Supplemental Table 1). High-weighted 
features on each MOFA factor were selected proportional 
to the size and dataset contribution to total variance for 
each modality explaining > 5% of variance on the factor. 
High-importance features on the latent factors gener-
ated in the non-MOFA methods were also compiled by 
selecting features with the top 10% absolute value on 
each significant latent variable, and features implicated 
in MOFA and at least two of the three additional meth-
ods were selected for functional enrichment (Table  3, 
Supplemental Tables 2 & 3). This overlap-based feature 
selection resulted in 111, 94, 379, and 307 unique HGNC 
gene symbols for Factors 1 through 4, respectively (Sup-
plemental Table 4). These reduced lists represent features 
whose relationship to RSTR status is robust to data inte-
gration method and thus, more likely to provide repro-
ducible biological insights.

Table 1  Demographic data and group membership of subjects 
in input datasets

TBI RSTR p-valueA

N subjects 15 18
Median Age at Enrollment (IQR) 15 (8.5) 12.5 (7.5) 0.277
Median Age at Sample Collection 
(IQR)

23 (4) 21.5 (7.5) 0.293

Sex, % Male (n/N) 66% 
(10/15)

39% 
(7/18)

0.215

Median BMI (IQR)B 23.6 (4.0) 21.2 (6.6) 0.546
Median Exposure Score at Enrollment 
(IQR)

6 (1.5) 6 (1.0) 0.690

BCG scar, % Yes (n/N)B 60% 
(9/15)

61% 
(11/18)

0.981

% HIV+ 0 0
Relatedness Within Phenotype

Mean 3° 
or Closer 
Per Person 
(SD)

0.53 
(0.52)

0.33 
(0.49)

0.263

Mean 1° 
or Closer 
Per Person 
(SD)

0.13 
(0.35)

0 (0) 0.126

A P-values calculated by Wilcoxon rank-sum tests for continuous variables and 
Pearson’s chi-squared tests for categorical variables
B NA values were present in these variables. For BMI, the one NA value was in the 
RSTR group and was excluded from summary statistics. In % BCG scar, the 9 NA 
values across groups (RSTR = 5, TBI = 4) were treated as a third group in addition 
to “Yes” and “No” for the statistical test

Table 2  Summary of features used in data integration
Category Dataset Number of features 

passing dataset QC
Number of features 
annotated to a known 
gene

Percent of features se-
lected in preprocessing

Number of 
features in 
integrated 
dataset

Media-only RNA-seq 1.4 × 104 1.4 × 104 10% 1398
Methylation 7.3 × 105 5.2 × 105 1% 5349
ATAC-seq 4.2 × 104 2.5 × 104 10% 2466

Mtb-stimulated RNA-seq 1.4 × 104 1.4 × 104 10% 1398
Host-dependent SNP 7.3 × 105 6.7 × 105 1% 6609

Total 1.5 × 106 1.3 × 106 1.7 × 104



Page 6 of 14Cox et al. BMC Genomics          (2025) 26:265 

Table 3  Summary of select high-weight MOFA features with high loadings on latent variables generated in at least two out of three 
alternative data integration methods
MOFA factor Dataset (% variance explained 

on factor)
Number of select MOFA 
features

Number of features also identified 
in 2/3 non-MOFA methods (%)

Number 
of unique 
protein coding 
HGNC symbols

Factor 1 RNA Mtb (50%) 177 41 (23%) 40
RNA media (48%) 169 84 (50%) 83
Total (98%) 346 113 (32%) 111

Factor 2 ATAC-seq (98%) 605 132 (22%) 94
Factor 3 Methylation (91%) 1198 372 (31%) 345

SNP (6%) 94 77 (82%) 35
Total (97%) 1292 449 (35%) 379

Factor 4 SNP (59%) 973 334 (34%) 173
Methylation (19%) 249 114 (46%) 106
RNA Mtb (11%) 40 22 (55%) 20
ATAC-seq (7%) 41 13 (32%) 11
Total (96%) 1303 483 (37%) 307

Fig. 2  Four MOFA factors differ between RSTR and TBI. (A) The variance explained by each dataset on each of the first four latent factors generated in 
MOFA. Bar colors represent the input dataset (ATAC-seq = coral, methylation = green, media-only RNA-seq = turquoise, Mtb-stimulated RNA-seq = blue, 
SNP = fuschia). (B) Sample weights on the first four MOFA factors were tested for RSTR vs. TBI using a linear mixed effects model corrected for age, sex and 
genetic kinship (FDR < 0.1). Black squares indicate groupwise means

 



Page 7 of 14Cox et al. BMC Genomics          (2025) 26:265 

Agreement with individual analysis of integrated datasets
To assess the extent of agreement between the individual 
analyses of these data and the high-importance features 
identified with MOFA, the reduced feature lists were 
compared with the individual analyses dataset results 
(Fig. 3, Supplemental Table 5). Two genes in the reduced 
Factor 1 MOFA feature list (NLRP3, IFNG) and five genes 
in the reduced Factor 4 feature list (FCAR, IRF1, IRF8, 
MXD1, SECTM1) were also among the genes found to 
be significant for the interaction between Mtb stimula-
tion and TBI/RSTR status in the previous RNA-seq only 
analysis(13). For Factor 4, five methylation probes in the 
MOFA reduced feature list were also implicated in the 
individual analyses of the methylation dataset. One of 
these probes was annotated to a region with 13 overlap-
ping protocadherin genes, and another was annotated to 
two nearest genes (AC006077.3 and PCBD2). The other 
three were annotated to BRDT, ABLIM1, and PKD1L2. 
Overall, these results suggest that some lead findings 

from individual datasets were retained in the MOFA 
analysis, but that we are also able to identify novel signa-
tures through the integration.

MOFA factors are enriched for numerous and diverse 
functional pathways
We used pathway analysis to assess whether features 
within the MOFA factors were associated with biologic 
processes. Hypergeometric enrichment revealed hun-
dreds of significantly enriched gene sets across the four 
factors, with many sharing common themes. Across Hall-
mark, canonical pathway, and gene ontology databases, 
there were 597, 44, 180, and 183 significantly enriched 
gene sets for Factors 1 through 4, respectively (FDR < 0.2, 
Supplemental Table 6, Supplemental Fig. 7).

Significantly enriched gene sets were subjected to 
hierarchical clustering using the overlap coefficient to 
generate clusters of gene sets with similar gene member-
ship (FDR < 0.2, Supplemental Table 7) and compared 

Fig. 3  Features shared between MOFA reduced feature lists and results of individual analyses. Common features between reduced MOFA feature lists 
for Factors 1–4 (green) and significant features from individual analyses of the integrated datasets (purple; SNP: P < 5e-5; methylation: FDR < 0.2 in either 
probe list or list of probes in differentially methylated regions; ATAC-seq & RNA-seq: FDR < 0.2). Where there are overlapping features (orange), the unique 
HGNC symbols for the features are provided. In the case of methylation probes, some probes were annotated to more than one nearest gene. Inner circle 
color indicates the MOFA factor
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to clusters generated in GO terms using the commonly 
employed semantic similarity method (Supplemental 
Fig. 8, used by the rrvgo package [35]). The clusters gen-
erated on the overlap coefficient were thematically very 
similar to those generated on semantic similarity. How-
ever, our overlap coefficient method allowed for clus-
tering beyond GO to include Hallmark and canonical 
pathways as well.

The media-only and Mtb-stimulated RNA-seq data-
sets contributed roughly equally to the list of features 
used in the Factor 1 enrichment. The largest cluster in 
the Factor 1 enrichment, Cluster F1-6, consisted of 136 
gene sets primarily related to immune function (Supple-
mental Table 6). This cluster included the GO interferon 
gamma production pathway, which relates to the clini-
cal definition of TBI vs. RSTR. The six genes overlapping 
between this gene set and the MOFA reduced feature list 
(CD2, CD3E, CD96, GATA3, KLRK1, and NLRP6) were 
contributed by ten unique features from the media-only 
and Mtb-stimulated RNA seq datasets. In all cases, and 
in the case of IFN-γ itself, expression of these genes was 
higher in the TBI subjects relative to the RSTR subjects 
(Fig. 4). Cluster F1-1 (36 gene sets) also related primar-
ily to immune function, particularly to T-cell activation 
and inflammatory responses. Thus, Factor 1 appears to 
represent well described immune signatures of TB and 
provides several potential gene-level targets for further 
investigation.

In contrast, Factors 2 through 4 contained signals less 
well-described in TB disease. The largest clusters in Fac-
tors 2 and 3 included those related to cell-cell adhesion 
(F2-2, F2-4, F3-1) and cytoskeletal processes (F2-2, F3-2). 
Factor 4 had multiple enrichment themes with clusters 
containing at least 5 gene sets summarized in Table 4 and 
the member gene sets for the four largest clusters dis-
played in Fig. 5. The largest cluster, Cluster F4-4 (21 gene 
sets), as well as Clusters F4-30 (9 gene sets) and F4-20 
(8 gene sets) contained gene sets with functions related 
to signal transduction, particularly G-protein signaling. 
Clusters F4-26 (14 gene sets) and F4-5 (9 gene sets) con-
tained pathways related to cell-cell adhesion, similar to 
Factors 2 and 3. Cluster F4-7 related to cell morphogene-
sis, and Cluster F4-8 related to structure- and tissue-level 
developmental pathways (both 13 gene sets). Thus, Fac-
tor 4 represents several distinct but potentially interact-
ing biological processes with implications in infectious 
disease.

A handful of genes were highly prevalent (in > 50% of 
sets) within more than one gene set cluster for Factor 4. 
SRC had > 50% prevalence in five of these largest clusters. 
Three genes were prevalent in three of the summarized 
clusters (VAV2, GNA12, EPHB2) and four were in at least 
two clusters (HCK, BLK, DSCAM, PRKCZ) (Table  5). 
Taken together, these results suggest that MOFA Factors 
2–4 are representing somewhat overlapping biological 

Fig. 4  Expression of IFNγ-related genes is greater in TBI than RSTR. Features in the Factor 1 reduced MOFA feature list belonging to the GO IFNγ produc-
tion pathway are shown, in addition to IFNγ itself. IFNγ and NLRP6 are represented in the reduced feature list as part of the the Mtb-stimulated RNAseq 
dataset. KLRK1 is contributed by the both the Mtb-stimulated and media-only RNA-seq datasets, and CD2, CD3E, CD96, and GATA3 are contributed by 
the media-only RNA-seq dataset. For all features in both datasets, expression in greater in TBI than RSTR (FDR < 0.1). Group differences tested by ANOVA; 
black squares represent groupwise means
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functions, primarily related to cell-cell adhesion, cell 
shape, and development of multicellular structures.

Discussion
Mechanisms of resistance to Mycobacterium tuberculo-
sis infection are not well understood. MOFA integration 
of SNP [11], methylation [12], chromatin accessibility 
[12], and transcriptomic datasets [13, 14] derived from a 
Uganda resister cohort reveals four nascent factors that 
differentiate subjects based on TST/IGRA status follow-
ing TB exposure. High-importance features on Factor 1 
were primarily enriched for pathways related to immune 
function, particularly inflammation, T cell responses, and 
interferon gamma responses. Factor 4 nearly perfectly 
discriminates RSTR from TBI subjects and has meaning-
ful contribution from four of the five integrated datasets. 
This factor was enriched for several pathways related to 
cell-cell adhesion, cell morphogenesis, and development 
of multicellular structures. Enrichments on Factors 2 
and 3 showed similar themes, with top pathways relat-
ing to cell-cell adhesion and cytoskeletal processes. With 
this integrated dataset, the rigorous selection of impor-
tant features through multi-integration overlap, and the 
functional enrichments performed on those features, our 
study provides a resource for hypothesis generation and 
a point of comparison for future investigations on the 
molecular mechanisms of Mtb resistance.

The two largest gene set clusters on Factor 1 were 
related to immune function, including pathways related 
to interferon gamma production. The Factor 1 MOFA 
reduced feature list was enriched for pathways including 
interferon gamma production, adaptive immune cell sur-
face receptor production [36–39], regulation of NK cell 
surface receptors [39] involved in creating the immune 

synapse, and T cell differentiation [40–42]. Expression 
of genes within these pathways was higher in TBI rela-
tive to RSTR subjects in either or both of the RNA-seq 
datasets. Given that Factor 1 is weighted for the two 
transcriptomic datasets, it is likely this factor captures 
groupwise differences in expression of immune pathways 
in response to Mtb, particularly expression of adhesion 
molecules on adaptive immune cells. The definition of 
the RSTR phenotype is lack of TST/IGRA conversion fol-
lowing Mtb exposure, so this factor probably describes 
sources of variance in the canonical response that defines 
the clinical phenotype.

Factors 2, 3, and 4 contained functional enrichment 
of pathways related to cell adhesion, multicellular struc-
tures, and signaling. One possible interpretation of these 
results points to a relationship between Mtb resistance 
and cell-cell interactions such as in the early stages of 
the formation of the granuloma, a multicellular structure 
created through the aggregation and adhesion of immune 
cells which surround Mtb. This complex and dynamic 
structure is a hallmark pathologic feature of TB and rep-
resents the interface of host-pathogen interactions that 
define the outcome of host protection or progression of 
infection [43–46]. Crucial to the early formation of this 
structure is the implementation of an epithelialization 
program involving recruitment of macrophages, changes 
in cell shape, and cell-cell adhesion [43]. Additionally, a 
number of genes with a known role in early granuloma 
formation appear in the Factor 4 reduced MOFA feature 
list. SLC11A1 has been identified as one of seven genes 
with increased expression in TB granulomas relative to 
those formed in sarcoidosis, a non-infectious granulo-
matous disease [44]. This gene encodes a divalent cat-
ion transporter involved in macrophage activation and 

Table 4  Summary of hypergeometric enrichment of select features on factor 4 (FDR < 0.2, clusters with > 4 gene sets)
Cluster N gene 

sets
Cluster description Genes in > 50% of gene sets median 

k/K
me-
dian 
FDR

F4-4 21 Signal transduction SRC, BLK, HCK 0.078 0.123
F4-26 14 Cell-cell adhesion & cell cycle SRC, VAV2 0.053 0.107
F4-7 13 Cell morphogenesis EPHB2, CNTN4, DSCAM 0.041 0.148
F4-8 13 Structure & tissue-level development BMP5, CHD7 0.059 0.165
F4-3 10 Innate immune response HCK, SRC, FCN1 0.073 0.163
F4-5 9 Cell-cell adhesion CDH18, CDH5, DSCAM, SLITRK1 0.039 0.162
F4-30 9 Signal transduction GNA15, SRC, GNA12 0.067 0.079
F4-20 8 GTPase signaling, especially Ras-family 

signaling
ARHGEF18, ARHGEF3, VAV2, CDC42EP4, GNA12 0.050 0.140

F4-13 7 Epithelial cell differentiation ALOX15B, AQP3, REG3G, ZBED2, HEY2, PALLD, PLEC, ST14 0.049 0.148
F4-19 6 Protein localization to plasma membrane DPP10, EPHA3, EPHB2, SPTBN1, GBP1, NHLRC1, PRKCZ 0.049 0.167
F4-6 5 Immune cell activation PRKCZ, BCL6, IRF1, RSAD2, EBI3, PRKCQ 0.044 0.194
F4-12 5 Smooth muscle contraction GUCY1A1, GUCY1A2 0.056 0.151
F4-14 5 Hemostasis SRC, ADRA2B, BLK, PRKCQ, TXK, VAV2, EPHB2, GNA12, 

JMJD1C, ST3GAL4
0.044 0.156

F4-15 5 Synaptic signaling SYT10 0.054 0.169
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Fig. 5  Significantly enriched gene sets in the largest clusters on Factor 4. Gene set names and sizes, and accompanying statistics for the four largest 
clusters of significantly enriched gene sets (FDR < 0.2) from hypergeometric testing of the Factor 4 reduced feature list. Colored boxes indicate cluster 
membership from the four largest gene set clusters generated via hierarchical clustering on the overlap coefficient
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has been implicated in TB pathogenesis in mouse and 
human studies [44, 47–49]. The highest weighted feature 
on the Factor 4 reduced feature list was a SNP annotated 
to DSCAM. This gene encodes a cell adhesion molecule 
expressed in the fetal brain. While the mechanism is not 
known, this gene has been previously associated with 
TB susceptibility [50]. Several other SNPs in the reduced 
feature list for this factor were annotated to the tyro-
sine kinase-coding gene SRC. SRC and related tyrosine 
kinases (including BLK, HCK) have been investigated 
as possible drug targets for TB treatment [51] and have 
been specifically implicated in the regulation of granu-
loma formation [52]. VAV2 encodes a guanine nucleotide 
exchange factor involved in cytoskeletal rearrangement. 
Granulomas are classically observed at later stages of 
disease pathogenesis when biopsy samples are obtained 
from individuals presenting with signs or symptoms of 
TB. Histopathology data from those who resist TST/
IGRA conversion are not available to assess whether 

there are granuloma-equivalents or other types of mul-
ticellular structures. Taken together, these results point 
to possible differences in multicellular structures, early 
granuloma formation, or recruitment of cells to inflam-
matory foci in differentiating RSTR and TBI subjects.

Biologic interpretation of these MOFA feature lists 
proved challenging due to the high number of enriched 
pathways. Hypergeometric enrichment of the reduced 
MOFA feature lists resulted in hundreds of significantly 
overrepresented gene sets across the four factors. To 
summarize, identify, and interpret major themes from 
these results, we developed madRich: a method for 
cross-database gene set clustering and annotation using 
hierarchical clustering on the overlap coefficient(34). 
Other packages exist for clustering output from pathway 
analyses, but these often rely on network-based methods 
which may be slower, more computationally demanding 
to implement, and more difficult to interpret [53, 54]. For 
all methods, an underlying distance metric is required to 

Table 5  Genes with high prevalence across more than one large gene set cluster in factor 4
Gene Clusters Dataset Feature ID MOFA Weight Groupwise StatisticsA P-value

TBI RSTR
SRC F4-4, F4-26, F4-3, F4-30, F4-14 SNP rs12329503 0.529 00:12 00:04 0.003

01:03 01:11
02:00 02:03

rs6018088 0.493 00:10 00:04 0.011
01:05 01:08
02:00 02:06

rs6018148 0.465 00:10 00:04 0.018
01:05 01:10
02:00 02:04

rs6018257 0.662 00:12 00:04 0.002
01:01 01:10
02:01 02:04

HCK F4-4, F4-3 SNP rs4561724 0.459 00:09 00:03 0.025
01:06 01:13
02:00 02:02

BLK F4-4, F4-14 SNP rs2248932 0.558 00:07 00:04 0.037
01:08 01:08
02:00 02:06

DSCAM F4-7, F4-5 SNP rs1012854 0.964 00:08 00:01 < 0.001
01:07 01:07
02:00 02:10

rs11700509 0.677 00:08 00:02 0.031
01:04 01:10
02:03 02:06

PRKCZ F4-19, F4-6 SNP rs2803310 0.597 00:10 00:02 0.002
01:05 01:10
02:00 02:06

VAV2 F4-26, F4-20, F4-14 Methylation cg21223341 -0.293 4.015 ± 0.122 3.554 ± 0.154 0.029
EPHB2 F4-7, F4-19, F4-14 Methylation cg13102231 -0.237 2.759 ± 0.101 2.767 ± 0.170 0.97
GNA12 F4-30, F4-20, F4-14 ATAC-seq ID_chr7_2742848_2743374 -0.112 2.152 ± 0.236 0.834 ± 0.233 < 0.001
A Groupwise summary statistics are calculated as count by genotype for SNP data and means ± SE for all other data types. P-values represent chi-squared tests for 
SNP features and ANOVAs for other data types
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generate a useful clustering result. Some methods make 
use of sematic similarity as a distance metric, which 
performs very well in hierarchically-structured refer-
ence databases as seen in Gene Ontology gene sets [35, 
55]. However, this metric cannot be used to summarize 
enrichment results from non-GO reference databases 
or results concatenated from enrichments against more 
than one database. Another commonly used metric for 
sparse binary clustering is Jaccard similarity [54, 56], but 
this metric performs poorly on gene set data, because it 
punishes highly disparate set sizes, even if the smaller set 
is entirely nested within the larger. Instead, we utilized 
the overlap coefficient in our clustering algorithm. The 
overlap coefficient is the proportion of shared elements 
between two sets divided by the size of the smaller set. 
Clustering on this coefficient will result in better group-
ing of child gene sets with parents relative to the Jac-
card coefficient in the case of hierarchical databases and 
allows compositionally similar gene sets to be grouped 
across databases. For our largest gene set clusters on Fac-
tor 4, madRich clustering of GO terms overlapped largely 
with rrvgo clustering, with madRich combining some 
rrvgo clusters (like rrvgo “wound healing” and “regula-
tion of body fluid levels” combined into madRich “hemo-
stasis”) and splitting others (like rrvgo “ear development” 
and “heart trabercula development” being split between 
madRich “structure and tissue development” and “cell 
morphogenesis”). But largely, the same themes emerged 
from the study of both sets of gene set clusters from the 
Factor 4 enrichment result. One advantage of rrvgo is the 
automation of cluster annotation. But as with the rrvgo 
cluster specifically annotated to “ear development,” which 
contains several multicellular structural morphogenesis 
pathways not exclusive to the ear, manual curation of 
these annotations is often necessary. Provided that some 
prefiltering is done to remove very large, broad gene sets, 
hierarchical clustering on the overlap coefficient is an 
effective way to summarize a complex enrichment result 
and glean relevant biological insights and has advantages 
over rrvgo, a commonly used alternative.

There are several limitations to the current work. First, 
the small sample size of 33 individuals is small and limits 
power. Although MOFA can interpolate missing datas-
ets, these results are highly skewed when entire datasets 
are missing as opposed to individual features within an 
otherwise complete dataset. Additionally, the other inte-
gration methods used in the selection of top features do 
not allow for the interpolation of entire missing datasets 
for a subject. For these reasons, we decided to focus on 
the subset of subjects with complete data across the five 
integrated input datasets. Future work could investigate 
the extent to which these findings are generalizable to 
the full Uganda resister cohort or other TB cohorts. Sec-
ond, when selecting top features for comparison across 

integration methods and downstream functional enrich-
ment, cutoffs are imposed that are necessarily arbitrary. 
We selected cutoffs to include enough features to have 
an interpretable enrichment across all four significant 
factors and to have a reasonable contribution of features 
from the smaller RNA-seq and ATAC-seq datasets in 
comparison to the larger methylation and genetic data-
sets. We mitigated the arbitrary nature of this feature 
selection by using generous statistical cutoffs for the 
MOFA feature lists coupled with assessment with mul-
tiple integration methods. Finally, because of the differ-
ent underlying data structures, the biologic directionality 
of relationships between clinical groups and functionally 
enriched gene sets are difficult to ascertain.

In summary, multi-omic factor analysis identified four 
latent variables with significant relationships to RSTR 
status. Feature lists derived from these variables showed 
functional enrichment for hundreds of gene sets across 
commonly used gene set databases including insights 
not derived from the individual datasets. We also pro-
vided a method of summarizing, visualizing, and anno-
tating complex, cross-database functional enrichment 
results. In the future, comparisons might be drawn from 
-omics datasets from other populations with high Mtb 
transmission risk, either individual or integrated across 
modalities. These could include the modalities explored 
here, or additional protein-resolution data types such as 
proteomics or phosphoproteomics. Investigation of new 
modalities such as metabolomics could provide valida-
tionvia orthogonal platforms. Additionally, the individ-
ual features identified in our multi-integration approach 
could be validated with experimental investigations to 
understand mechanisms of disease resistance or provide 
biomarkers to predictors of disease.
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