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Abstract
Background  Few cohorts have study populations large enough to conduct molecular analysis of ex vivo lung tissue 
for genomic analyses. Transcriptome imputation is a non-invasive alternative with many potential applications. We 
present a novel transcriptome-imputation method called the Lung Gene Expression and Network Imputation Engine 
(LungGENIE) that uses principal components from blood gene-expression levels in a linear regression model to predict 
lung tissue-specific gene-expression.

Methods  We use paired blood and lung RNA sequencing data from the Genotype-Tissue Expression (GTEx) 
project to train LungGENIE models. We replicate model performance in a unique dataset, where we generated RNA 
sequencing data from paired lung and blood samples available through the SUNY Upstate Biorepository (SUBR). We 
further demonstrate proof-of-concept application of LungGENIE models in an independent blood RNA sequencing 
data from the Genetic Epidemiology of COPD (COPDGene) study.

Results  We show that LungGENIE prediction accuracies have higher correlation to measured lung tissue expression 
compared to existing cis-expression quantitative trait loci-based methods (median Pearson’s r = 0.25, IQR 0.19–0.32), 
with close to half of the reliably predicted transcripts being replicated in the testing dataset. Finally, we demonstrate 
significant correlation of differential expression results in chronic obstructive pulmonary disease (COPD) from imputed 
lung tissue gene-expression and differential expression results experimentally determined from lung tissue.

Conclusion  Our results demonstrate that LungGENIE provides complementary results to existing expression 
quantitative trait loci-based methods and outperforms direct blood to lung results across internal cross-validation, 
external replication, and proof-of-concept in an independent dataset. Taken together, we establish LungGENIE as a 
tool with many potential applications in the study of lung diseases.
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Introduction
Non-cancerous disorders of the lung, including chronic 
obstructive pulmonary disease (COPD), are associated 
with a significant global burden of morbidity and mor-
tality. While molecular studies of human disease usually 
involve the primarily affected tissues, this is often not 
possible for non-cancerous lung disorders given the lim-
ited and vanishing indications for obtaining lung tissue 
in the clinical setting [1]. Thus, the availability of exvivo 
lung tissue for research purposes is similarly limited to 
relatively few existing study consortia and substantially 
smaller individual study cohorts [2, 3]. In contrast, col-
lection of whole blood for molecular analysis, including 
RNA sequencing (RNAseq), from individuals with non-
cancerous lung disorders is without significant risk [4, 5]. 
Several studies examining non-cancerous lung disorders 
have already generated transcriptomic data from blood 
in sample sizes that are orders of magnitude greater than 
those with data from lung tissue [6–9]. Transcriptome 
imputation of lung gene-expression from measures made 
in blood, therefore, offers an appealing and non-invasive 
alternative to obtaining lung tissue for direct transcrip-
tome analysis.

Several existing software programs that estimate tis-
sue-specific gene-expression, such as TIGAR and PrediX-
can, leverage the effects of expression quantitative trait 
loci (eQTLs) to impute expression of syntenic genes (cis-
eQTLs) [10, 11]. These methods have several strengths, 
including revealing putative mechanisms of single nucle-
otide polymorphisms (SNPs) identified by genome-wide 
association studies and moderate prediction of lung 
tissue-specific expression relative to other tissues. How-
ever, PrediXcan only predicted significant variance (i.e., 
R2 ≥ 0.01) in 7,400 genes in the lung, just a fraction of 
the lung transcriptome. In addition, PrediXcan is further 
limited to only static estimates of gene-expression and 
unable to predict temporal changes in lung tissue-specific 
gene-expression. Aside from the eQTL-based imputation 
methods, there are also cross-tissue transcriptome-impu-
tation methods, including TEEBoT and HYFA, which 
have demonstrated impressive prediction of tissue-spe-
cific expression levels across many tissues [12, 13]. Fol-
lowing TEEBot and HYFA, there is growing interest in 
transcriptome imputation models that leverage peripher-
ally accessible RNAs to predict ‘omic profiles for tissues 
not easily accessible in research participants or were col-
lected in limited quantities by previous studies. However, 
each of these methods has important limitations in their 
development. For instance, TEEBoT models were trained 
on an earlier release of the Genotype-Tissue Expres-
sion (GTEx) Project that had significantly lower sample 
size than the current version 8 release of GTEx. HYFA, 
on the other hand, takes advantage of shared representa-
tions via transfer learning, enabling imputation profiles 

in ‘uncollected’ tissues based on gene expression profiles 
observed in peripheral blood and skin. Given the reliance 
on skin biopsies for HYFA models, this poses pragmatic 
challenges as skin biopsies are not routinely collected in 
the study of lung diseases. Furthermore, the increased 
invasiveness associated with obtaining skin biopsies 
poses challenges for practicality of HYFA models.

We therefore sought to enhance the existing methods 
and capitalize on the abundance of blood transcriptome 
data in existing study datasets to predict gene-expression 
in the lung solely based on observed peripheral gene-
expression levels. We developed the Lung Gene-Expres-
sion and Network Imputation Engine (LungGENIE) 
using paired lung and blood transcriptomic data from 
GTEx Project. Similar to the Brain Gene-Expression and 
Network Imputation Engine (BrainGENIE), our previ-
ously established algorithm that uses gene-expression 
from blood to impute brain-regional gene-expression 
profiles, LungGENIE fills a critical gap in understanding 
lung molecular dynamics [14]. Notably, obtaining lung 
biopsies poses significant ethical and safety challenges 
akin to brain tissue; thus, these tissues are virtually off-
limits in research participants [15, 16]. This limitation 
impedes our capacity to discover molecular signatures 
associated with pathological or therapeutic effects in the 
lungs of individuals living with chronic, non-cancerous 
lung diseases. Hence, LungGENIE enables profiling of 
lung-specific molecular profiles using minimally invasive 
strategies focusing on peripherally accessible RNA levels. 
Further, we demonstrated replication of the LungGENIE 
models in an independent dataset, using transcriptomic 
data generated from paired lung tissue and blood samples 
available through the SUNY Upstate Medical University 
Biorepository. Finally, we performed differential expres-
sion analyses using lung-tissue gene-expression lev-
els imputed from blood RNAseq data from the Genetic 
Epidemiology of COPD (COPDGene) study and found 
significant overlap of predicted and directly measured 
differential expression in lung tissue in COPD.

Methods
Training and evaluation of LungGENIE
The approach used to train LungGENIE is illustrated 
schematically in Fig. 1.

We trained LungGENIE using paired lung and blood 
samples from GTEx v.8. LungGENIE uses principal com-
ponents of transcriptome-wide gene expression data 
from blood to predict lung tissue-specific gene-expres-
sion levels. We used the coefficient of determination 
(R2) to measure the prediction accuracy of individual 
gene-expression levels from the observed gene-expres-
sion levels in the validation folds. We averaged R2 over 
5 validation folds to estimate LungGENIE predictive 
performance.
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Details regarding tissue collection, library preparation, 
sequencing, and normalization of GTEx data have been 
published previously [17]. We implemented five-fold 
cross-validation to estimate the internal predictive per-
formance of LungGENIE. Paired lung tissue and blood 
transcriptome profiles from individuals in GTEx were 
assigned randomly to each fold. A principal component 
analysis (PCA) was performed on normalized blood tran-
scriptome profiles. We then trained linear regression 
models to predict lung tissue-specific expression levels 
for individual genes using the top 20 principal compo-
nents. The linear regression model used to train LungG-
ENIE was constructed as: Yi ~ β0 + βiXi+…+ε, where Yi 
denotes the level of expression of gene i in the lung, β0 
denotes the intercept, and βiXi denotes the estimated 
regression coefficient multiplied by the value of the ith 
principal component, and ε denotes the error term. The 
top 20 principal components method has been shown 
to have the best performance in BrainGENIE, compared 
to 5, 10, and 40 principal components. Similarly, predic-
tion accuracies for linear regression were greater than 
or equal to elastic net regression. In addition, linear 
regression is computationally less intensive to train. We 
then deployed the trained models in the validation fold 
to estimate the predictive performance. We assessed the 
predictive performance with the coefficient of determi-
nation for observed and predicted per-gene expression 
levels (R2) in the validation fold. We repeated the process 
until each fold was used for validation, and then averaged 
the per-gene prediction over the five validation folds. 

We defined significantly predicted genes as those with a 
cross-validation (CV) R2 ≥ 0.01, adhering to the same cri-
teria first outlined by PrediXcan, and Benjamini-Hoch-
berg false-discovery rate-adjusted p value (FDR) < 0.05.

Replication of LungGENIE
We sought to replicate the LungGENIE models in an 
independent external dataset generated from paired 
lung and blood samples from the SUNY Upstate Biore-
pository (SUBR). The samples were prospectively col-
lected from individuals undergoing thoracic surgery for 
clinical indications to support future research studies. 
In the case of samples obtained during lung cancer sur-
gery, we used samples that were the tissue farthest away 
from the margin. RNA was extracted from whole blood 
using the Monarch Total RNA Miniprep Kit (New Eng-
land Biolabs). RNA was extracted from lung tissue using 
the miRNeasy Mini Kit (Qiagen). RNA quality and quan-
tity was assessed with the RNA 6000 chip on the Agi-
lent 2100 Bioanalyzer. RNA integrity score > 6 was used 
as the threshold of acceptable quality. Samples were 
included in subsequent analysis if they had > 10  million 
reads, > 80% of reads mapped, and XIST and Y chromo-
some expression matching reported sex. For sequencing 
library prep, RNA from blood and lung tissue samples 
was used as input to the Illumina Stranded Total RNA 
Prep with RiboZero Plus. Library size and quantity was 
assessed with the DNA 1000 chip on the Agilent 2100 
Bioanalyzer. RNAseq data were generated on an Illumina 
NextSeq 2000 instrument, with a paired end 2 × 101  bp 

Fig. 1  Protocol for training LungGENIE using paired blood and lung samples from GTEx
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run. Results were saved in FASTQ format for analysis 
[18]. Reads were aligned to the GRCh38 genome using 
TopHat2 and counts were generated using Rsubread with 
the Ensemble gtf [19]. Counts were normalized between 
samples using trimmed mean of M values (TMM).

As above, we used the coefficient of determination for 
observed and predicted per-gene expression levels (R2) 
as the metric for assessing prediction performance by 
comparing predicted vs. observed expression levels per 
transcript. Replicated models were identified by assess-
ing transcripts that LungGENIE significantly predicted 
in GTEx via cross-validation (R² ≥ 0.01 and FDR ≤ 0.05). 
A two-tailed z-test was performed to compare the Pear-
son’s r correlation between GTEx cross-validation and 
the external SUNY Upstate Biorepository sample. Tran-
scripts exhibiting no significant difference (uncorrected 
p > 0.05) in prediction accuracy between GTEx and 
SUBR, and demonstrating a Pearson’s r ≥ 0.1 in SUBR, 
were deemed replicated. Additionally, among transcripts 
demonstrating replicated prediction accuracy, we com-
puted Pearson’s r correlations to measure the concor-
dance of expression levels of transcripts across blood and 
lung tissue samples within the SUBR.

Concordance with lung disease-related transcriptomic 
signatures
We aimed to assess whether LungGENIE can replicate 
transcriptomic changes associated with COPD in lung 
tissue. Toward this end, we deployed LungGENIE on 
independently collected ex vivo peripheral blood RNA-
seq data generated by the COPDGene study to impute 
lung-specific gene expression profiles for COPD cases 
and unaffected individuals without COPD (n individuals 
with COPD = 2,177, non-COPD comparison individu-
als = 1,783, total = 3,960). Details regarding sample col-
lection and RNA sequencing in COPDGene have been 
previously published [4, 5, 8]. We performed standard 
pre-processing of raw gene counts as follows: remove 
genes with ≤ 1 count per million (CPM) in 100 or more 
participants, log2 transformation and quantile normal-
ization of CPM values, and adjustment for batches using 
ComBat [20]. We excluded participants who were older 
than 70 years at the time of blood-sample collection, as 
this age range exceeded that of the individuals in GTEx 
who were used to train LungGENIE. Using the LungGE-
NIE-generated lung-specific gene-expression data, we 
performed a differential expression analysis, with linear 
regression models that specified expression of each gene 
as a dependent variable and COPD disease status as the 
independent variable, to estimate group-mean differ-
ences in gene expression between COPD cases, defined 
as individuals with a ratio of forced expiration (FEV1) to 
forced vital capacity (FVC) less than 0.7, and non-COPD 
comparison participants, using the R package limma. 

Models were adjusted for sex, age, and percentage of four 
groups of circulating leukocytes (neutrophils, lympho-
cytes, monocytes, and eosinophils) taken from measured 
complete blood counts, as gene expression in blood can 
vary based on white blood cell proportions [21]. Correc-
tions for multiple comparisons were made using the Ben-
jamini-Hochberg false-discovery rate (FDR) procedure. 
We then calculated Pearson’s correlation coefficients of 
log2 fold changes after FDR correction to assess the simi-
larity between the following sets of findings: (1) COPD-
associated gene expression changes directly measured in 
lung tissue, reported by the Lung Tissue Research Con-
sortium (LTRC) and (2) COPD-associated changes in 
gene expression found by LungGENIE [22]. This analysis 
sought to determine whether the transcriptome-wide 
picture of COPD in the lung—captured by the magnitude 
and direction differential expression across all measured 
transcripts—could be replicated in the blood-imputed 
lung transcriptome by LungGENIE. Additionally, we 
compared COPD-associated changes in gene expres-
sion from direct measurements in lung tissue with those 
observed in peripheral blood of COPD patients from 
the COPDGene study. This comparison allowed us to 
determine whether blood-imputed lung transcriptomes 
perform worse, as well as, or better than blood alone in 
capturing COPD-associated changes in gene expression 
found in lung tissue. Finally, we assessed the similarity 
of findings between COPD-associated different expres-
sion changes found in direct measurements of lung tissue 
with those imputed by S-PrediXcan from GWAS sum-
mary statistics obtained from the COPDGene study [23]. 
This comparison helped us to evaluate whether eQTL-
predicted changes perform worse, as well as, or better 
than LungGENIE in recapitulating COPD-associated 
changes in gene expression found in lung tissue. We did 
not evaluate replication for any specific transcript in any 
of these abovementioned comparisons.

Results
Training of LungGENIE and comparison to PrediXcan
We used paired blood and lung RNAseq data from 347 
individuals from GTEx to train LungGENIE. We identi-
fied 19,304 genes that were significantly predicted by 
LungGENIE (R2 ≥ 0.01 and false-discovery rate adjusted 
p-value < 0.05). The mean cross-validation imputation 
accuracy for significantly imputed genes was Pearson’s 
r = 0.25, with an interquartile range of 0.19 to 0.32. We 
compared the cross-validation prediction accuracies 
between LungGENIE and PrediXcan relative to measured 
gene expression in the lung, restricted only to genes that 
were significantly predicted by both methods (Fig. 2).

Comparison of accuracies of gene-expression predic-
tion between LungGENIE and PrediXcan. Side-by-side 
comparison of correlation of cross-validation predication 
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accuracy and measured lung-tissue gene-expression 
between LungGENIE (left side) and PrediXcan (right 
side).

While PrediXcan-imputed cross-validation predic-
tion accuracy was essentially uncorrelated to measured 
lung tissue gene expression, LungGENIE demonstrated a 
highly significant (but, on average, small) correlation of 
cross-validation prediction accuracy to lung tissue gene 
expression (Fig. 2).

Replication of LungGENIE
We performed bulk RNAseq on paired lung-tissue and 
blood samples from 24 individuals (48 samples) from 
the SUBR. We excluded data from two individuals due 
to poor RNA quality (i.e., RIN < 6), resulting in 22 indi-
viduals and 44 samples included in subsequent analyses 
(Table  1). All samples were obtained from individuals 
with lung cancer, with adenocarcinoma as the predomi-
nant type (59%). The mean age in the cohort was 66.3 
years and a majority of individuals were women (63.6%) 
and non-Hispanic white (90.9%). 54.5% of SUBR indi-
viduals were former smokers while 40.9% were current 

smokers (one individual was a never smoker). The mean 
smoking pack-years for the cohort was 28.4.

We compared the replicability of LungGENIE-imputed 
vs. observed gene-expression levels across four mod-
els, varying by the number of principal components. 
We compared models by number of transcripts reliably 
imputed and mean cross-validation accuracy as well as 
number of replicated transcripts reliably imputed and 
mean validation accuracy. While the number of tran-
scripts reliably imputed and mean CV accuracy improved 
with the number of principal components included in 
the LungGENIE model, the mean validation accuracy 
and number of replicated transcripts were highest with 
the LungGENIE model with 10 PCs (Table  2). We simi-
larly compared correlation of LungGENIE-imputed gene 
expression by number of PCs with observed lung gene 
expression between SUNYBR, GTEx, and the correlation 
of blood vs. lung gene expression (Fig. 3).

Correlation between imputed gene expression and 
observed gene expression was significant for all LungG-
ENIE models in both SUNYBR and GTEx samples, com-
pared to the correlation of blood vs. lung gene expression.

Concordance with lung disease-related transcriptomic 
signatures
Due to the age range of study participants from the train-
ing dataset (GTEx), we excluded samples from individu-
als over the age of 70 from our analyses in COPDGene. 
We therefore retained 2,694 individuals in our down-
stream analysis, including 911 individuals with COPD. 
We imputed lung gene-expression using LungGENIE 
models with 5, 10, 20, and 40 PCs, as well as using S-Pre-
diXcan. After performing differential-expression analysis 
between individuals with COPD and control individuals, 
and correcting for multiple-testing, we compared corre-
lation of differential-expression results (log2 fold changes) 
associated with COPD to our previously published exper-
imentally measured differential-expression results in lung 
tissue from LTRC between individuals with COPD and 
control individuals (Fig. 4).

Table 1  Subject characteristics from SUBR
Characteristic Overall
N 22
Age (years) 66.27 (8.4)
Male (%) 8 (36.4)
Non-Hispanic White (%) 20 (90.9)
Lung cancer subtype (%)
Squamous 5 (22.7)
Adenocarcinoma 13 (59.1)
Carcinoid 1 (4.5)
Other 3 (13.6)
Smoking status (%)
Current 9 (40.9)
Former 12 (54.5)
Never 1 (4.5)
Smoking pack-years 28.44 (15.3)
Data presented as mean (SD) or n (%) for continuous vs. categorical variables

Table 2  Overview of the replicability of prediction accuracy of 
imputed lung vs. observed lung expression levels for transcripts 
imputed by LungGENIE in tissue samples from the SUNY upstate 
biorepository (SUBR)
LungGENIE
(# of PCs)

# of 
transcripts
Imputed in 
SUBR

Mean CV 
accuracy

Mean 
validation 
accuracy

# rep-
licated 
transcripts 
(%)

5 7,971 0.20 0.013 2,713 (34%)
10 12,875 0.25 0.090 6,324 (49%)
20 13,717 0.27 0.065 6,021 (44%)
40 14,038 0.29 0.057 6,227 (44%)
Abbreviations: Principal components (PCs), cross-validation (CV)

Fig. 2  Comparison of LungGENIE to PrediXcan
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We also included the correlation of differential-expres-
sion results from blood gene expression as an additional 
comparison. The LungGENIE model with 5 PCs had the 
highest positive and significant correlation, followed 
sequentially by the LungGENIE model with 10 PCs and 
S-PrediXcan. Conversely, the differential expression 
results from imputed lung gene expression from LungG-
ENIE models with 20 and 40 PCs both had negative cor-
relation with the measured differential expression results, 
similar to the correlation with the differential expression 
results from blood.

Discussion
In the present study, we introduce a computational 
method, called LungGENIE, that can be used to pre-
dict lung gene-expression levels using gene expression 
from peripheral blood. We further show that, across 
internal cross-validation, external replication, and 

proof-of-concept demonstration in an independent data-
set, LungGENIE outperforms direct comparison of blood 
to lung results, and may augment results from existing 
gene-expression imputation methods, including Pre-
diXcan. Specifically, we find that, for concordance with 
COPD differential expression results measured from lung 
tissue, the LungGENIE model with 5 PCs had the best 
performance.

The quest for developing non-invasive methods of esti-
mating tissue-specific gene expression is ongoing, and 
particularly relevant for advancing the study of chronic, 
non-cancerous lung diseases. For example, the question 
of obtaining lung tissue for aid in diagnosis of intersti-
tial lung diseases (ILD) remains fraught [24]. The most 
recent international society guidelines give no recom-
mendation, for or against, the use of a genomic classifier, 
generated using whole transcriptome RNAseq data from 
lung/bronchial tissue obtained via transbronchial biopsy 

Fig. 3  Comparison of correlation between imputed vs. observed gene expression in SUBR and GTEx across LungGENIE models
Box-and-whisker plots showing the concordance between observed lung gene expression compared with LungGENIE-imputed transcripts and directly 
observed transcript levels in blood. The red and blue distributions depict the concordance of expression levels between blood vs. lung tissues, and be-
tween LungGENIE-imputed vs. lung tissues, respectively, within the SUBR dataset. These distributions specifically pertain to transcripts that demonstrated 
significant replication compared to cross-validation performance. The green distribution depicts the corresponding accuracy of LungGENIE derived from 
5-fold cross-validation within GTEx. Asterisks (*) denote FDR-adjusted statistically significant differences in group means based on pairwise t-tests. Grey 
points depict transcripts that were beyond the interquartile range of each group.
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to elucidate the diagnosis of IPF in ILDs of unknown 
type [1]. Part of the reason for the committee’s hesitancy 
was due to the concerns inherent to performing trans-
bronchial biopsies, which have up to a 30% complication 
rate [25, 26]. LungGENIE, therefore, has the potential 
to bridge this important gap by obviating the need for 
lung tissue by imputing the data necessary to employ the 
genomic classifier and help clarify the diagnosis in undif-
ferentiated ILDs.

In contrast, the diagnosis of COPD is made through an 
assessment of lung physiology with spirometry, and an 
emerging role of qualitative and quantitative chest CT 
imaging, without any role for lung-tissue histopathologic 
or genomic analysis [27]. However, there is substantial 
clinical heterogeneity observed in COPD that suggests 
subtypes of disease with important pathobiological dif-
ferences [28]. For instance, eosinophilic COPD has been 
shown to be an important treatable trait, where admin-
istration of a monoclonal antibody against the interleu-
kin-4 receptor leads to a clinically relevant reduction 
in the rate of COPD exacerbations in individuals with 
COPD and a high level of circulating eosinophils [29, 30]. 
Other than eosinophilic COPD, however, there are few 

subtypes of COPD with clear differences in underlying 
pathobiology (i.e., endotypes) based on insights from the 
peripheral blood. On the other hand, we have previously 
shown that while individuals with COPD who are het-
erozygous for the SERPINA1 Z allele have no differences 
in blood gene expression, there are subtle differences 
in lung-tissue gene expression that could be relevant to 
the observed clinical and radiographic differences [31]. 
Thus, broader application of LungGENIE on blood gene-
expression data from individuals with COPD could be 
used to identify additional subtypes and potentially treat-
able traits.

There have been other tissue-specific gene expres-
sion tools that have been published in the last few years 
[12, 13]. Our method bears some similarities, includ-
ing the use of GTEx as the primary dataset used to train 
our models as well as using the principal components of 
blood gene expression to estimate tissue-specific gene 
expression. However, our method stands out in sev-
eral ways. First, the previous method leveraging PCA 
from blood gene expression, TEEBoT, used an older and 
smaller version of GTEx (v.6). LungGENIE models were 
trained using GTEx v.8, which includes a larger sample 

Fig. 4  Concordance between COPD-related differential expression results from imputed lung gene expression with experimentally measured differential 
expression from lung tissue
The concordance, measured by Pearson’s correlation coefficients, between COPD-related differential gene expression (DGE) log2 fold changes detected in 
peripheral blood and those inferred by LungGENIE and S-PrediXcan, was compared to DGE signals derived from lung tissue RNAseq from the Lung Tissue 
Research Consortium. Asterisks (*) depict correlations that reached a statistical significance threshold of FDR p < 0.05.
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size (TEEBoT 217 lung samples, no independent replica-
tion vs. LungGENIE 347 lung samples, 24 lung samples 
in replication). This led to an increase in the number 
of imputed transcripts (TEEBoT 12,820 imputed tran-
scripts vs. LungGENIE 14,038 imputed transcripts in the 
replication dataset). Second, we were able to integrate 
an independent dataset of paired lung and blood gene-
expression data to externally replicate our models. To our 
knowledge, the paired lung and blood gene-expression 
data from the SUNY Upstate Biorepository represent the 
only existing dataset of its kind outside of GTEx. Exist-
ing datasets, including LTRC, have paired lung and blood 
samples but only have gene-expression data from one tis-
sue (in the case of LTRC, only lung tissue RNAseq data 
are available). The ability to demonstrate replication of 
the performance of our models in an independent data-
set is a unique attribute of LungGENIE compared to all 
other lung tissue-specific gene-expression imputation 
tools. Third, by validating LungGENIE in blood gene-
expression data from a large, national cohort enriched for 
individuals with COPD, we were able to show the imme-
diate impact that LungGENIE can have on studies using 
transcriptomic data to better understanding chronic lung 
diseases.

Despite these strengths, we must acknowledge that our 
study has limitations. First, while LungGENIE models 
significantly predicted a majority of the transcriptome, a 
non-negligible portion of the transcriptome was not reli-
ably imputed. This highlights the importance of LungGE-
NIE as a tool to be used in parallel with other imputation 
tools to capture the entire transcriptome, or as much of it 
as possible. Future iterations of LungGENIE may include 
SNP data to better account for cis-eQTL effects, which 
may improve the portion of the transcriptome that is reli-
ably imputed. Next, we were unable to incorporate lon-
gitudinal blood gene-expression, which can potentially 
be mapped onto states of risk, illness, treatment, and 
potentially recovery. The addition of serially collected 
gene-expression data may also improve prediction of 
transcriptomic states in the lung related to disease [9]. 
Although gene expression trajectories have been mapped 
onto eQTLs, these relationships remain unexplored in 
the context of the lung transcriptome. Until such insights 
are provided, predictions from transcriptome-imputation 
methods based on genetic data will merely reflect static 
gene expression profiles [32]. Finally, our replication 
dataset was an order of magnitude smaller than the train-
ing dataset, which limits our statistical power to detect 
reliably replicated predicted genes. We aim to continue 
to refine LungGENIE by incorporating additional paired 
lung and blood sequencing samples in our bioreposi-
tory to expand our dataset and integrating additional 
novel methods, including artificial intelligence, single 

cell transcriptomics, and RNA sequencing from multiple 
time points.

LungGENIE has several strengths compared to meth-
ods with a similar goal and demonstrates these strengths 
across a unique combination of datasets. We intend 
LungGENIE to complement the existing array of genetic-
based imputation methods. There are several potential 
future applications of LungGENIE, including modeling 
the response to environmental insults and potential new 
therapies as well as lung-related trajectories across mul-
tiple timepoints in an individual’s lifetime.

Supplementary Information
The online version contains supplementary material available at ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​​1​1​8​6​​/​s​​1​2​8​6​4​-​0​2​5​-​1​1​4​1​2​-​4.

Supplementary Material 1

Acknowledgements
This work was supported by NHLBI grants U01 HL089897 and U01 HL089856 
and by NIH contract 75N92023D00011. The COPDGene study (NCT00608764) 
has also been supported by the COPD Foundation through contributions 
made to an Industry Advisory Committee that has included AstraZeneca, 
Bayer Pharmaceuticals, Boehringer-Ingelheim, Genentech, GlaxoSmithKline, 
Novartis, Pfizer, and Sunovion.

Author contributions
Concept and design– AJG, SJG, JLH; Data collection– AJG, LPC, MAA, JW, 
FAM; Data analysis– AJG, LPC, SP, AAM, MM, FAM, CPH, SJG, JLH; Statistical 
support– AJG, SJG, JLH; All authors were responsible for critical revision of the 
manuscript for important intellectual content.

Funding
AJG is supported by K08HL168205 and 2022 SUNY Upstate Department 
of Medicine Research Grant. MM is supported by K08HL159318. CPH is 
supported by R01HL166231. SJG is supported by R21MH126494 and 
R01AG064955. JLH is supported by R21MH126494, R01NS128535 and 2020 
NARSAD Young Investigator Award.

Data availability
Data from GTEx are publicly available. Data from SUBR will be available upon 
request following a one-year embargo period after publication. Data from 
COPDGene are available to the scientific committee through the Database 
of Genotypes and Phenotypes (dbGaP) through the National Center for 
Biotechnology Information.The source code and training data for LungGENIE 
can be accessed online (https:​​​//gith​ub.​com/h​es​sJ/LungGENIE).

Declarations

Ethics approval and consent to participate
This study was approved by the SUNY Upstate Institutional Review Board 
(approval #387215-47) and all patients provided written informed consent. 
The COPDGene study was approved by the Mass General Brigham 
Institutional Review Board (approval #2007P000554) and all patients provided 
written informed consent.

Consent for publication
Not applicable.

Competing interests
AJG has received consulting fees from TDA Research, Inc. AAM has received 
consulting fees from Kinevant Sciences and fees for lectures from the France 
Foundation. MM has received consulting fees from 2ndMD, TheaHealth, 
TriNetX, Verona Pharmaceuticals, and Sanofi, payment for expert case 
review, and fees for lectures from the American and New York State Thoracic 

https://doi.org/10.1186/s12864-025-11412-4
https://doi.org/10.1186/s12864-025-11412-4


Page 9 of 9Ghosh et al. BMC Genomics          (2025) 26:227 

Societies. CPH has received grant support from the Alpha-1 Foundation, 
Bayer, Boehringer-Ingelheim, and Vertex Pharmaceuticals, and consulting fees 
from Apogee Therapeutics, Chiesi, Ono Pharma, Sanofi, Takeda, and Verona 
Pharmaceuticals. JLH has received grant support from the CNY Community 
Foundation and fees for lectures from the Schizophrenia International 
Research Society.

Received: 25 October 2024 / Accepted: 27 February 2025

References
1.	 Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, et al. 

Idiopathic pulmonary fibrosis (an Update) and progressive pulmonary fibrosis 
in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir 
Crit Care Med. 2022;205:e18–47.

2.	 Yang IV, Pedersen BS, Rabinovich E, Hennessy CE, Davidson EJ, Murphy E, 
et al. Relationship of DNA methylation and gene expression in idiopathic 
pulmonary fibrosis. Am J Respir Crit Care Med. 2014;190:1263–72.

3.	 Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A, Sit RV, et al. A molecu-
lar cell atlas of the human lung from single-cell RNA sequencing. Nature. 
2020;587:619–25.

4.	 Parker MM, Chase RP, Lamb A, Reyes A, Saferali A, Yun JH, et al. RNA sequenc-
ing identifies novel non-coding RNA and exon-specific effects associated 
with cigarette smoking. BMC Med Genomics. 2017;10:58.

5.	 Morrow JD, Chase RP, Parker MM, Glass K, Seo M, Divo M, et al. RNA-sequenc-
ing across three matched tissues reveals shared and tissue-specific gene 
expression and pathway signatures of COPD. Respir Res. 2019;20:65.

6.	 Herazo-Maya JD, Noth I, Duncan SR, Kim S, Ma S-F, Tseng GC et al. Peripheral 
blood mononuclear cell gene expression profiles predict poor outcome in 
idiopathic pulmonary fibrosis. Sci Transl Med. 2013;5.

7.	 Singh D, Fox SM, Tal-Singer R, Bates S, Riley JH, Celli B. Altered gene expres-
sion in blood and sputum in COPD frequent exacerbators in the ECLIPSE 
cohort. PLoS ONE. 2014;9:e107381.

8.	 Ghosh AJ, Saferali A, Lee S, Chase R, Moll M, Morrow J, et al. Blood RNA 
sequencing shows overlapping gene expression across COPD phenotype 
domains. Thorax. 2022;77:115–22.

9.	 Huang Y, Oldham JM, Ma S-F, Unterman A, Liao S-Y, Barros AJ, et al. Blood 
transcriptomics predicts progression of pulmonary fibrosis and associated 
natural killer cells. Am J Respir Crit Care Med. 2021;204:197–208.

10.	 Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll 
RJ, et al. A gene-based association method for mapping traits using reference 
transcriptome data. Nat Genet. 2015;47:1091–8.

11.	 Nagpal S, Meng X, Epstein MP, Tsoi LC, Patrick M, Gibson G, et al. TIGAR: an 
improved bayesian tool for transcriptomic data imputation enhances gene 
mapping of complex traits. Am J Hum Genet. 2019;105:258–66.

12.	 Basu M, Wang K, Ruppin E, Hannenhalli S. Predicting tissue-specific gene 
expression from whole blood transcriptome. Sci Adv. 2021;7.

13.	 Viñas R, Joshi CK, Georgiev D, Lin P, Dumitrascu B, Gamazon ER, et al. Hyper-
graph factorization for multi-tissue gene expression imputation. Nat Mach 
Intell. 2023;5:739–53.

14.	 Hess JL, Quinn TP, Zhang C, Hearn GC, Chen S, Beveridge NJ, et al. BrainGENIE: 
the brain gene expression and network imputation engine. Transl Psychiatry. 
2023;13:98.

15.	 Ghosh AJ, Moll M, Shrestha S, Poli S, Glatt SJ, Goldberg HJ, et al. Leveraging 
blood-based transcriptomics to detect acute cellular rejection in lung trans-
plant. JHLT Open. 2024;4:100081.

16.	 Pue CA, Pacht ER. Complications of fiberoptic bronchoscopy at a university 
hospital. Chest. 1995;107:430–2.

17.	 Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. Nat Genet. 
2013;45:580–5. The Genotype-Tissue Expression (GTEx) project.

18.	 de Sena Brandine G, Smith AD. Falco: high-speed FastQC emulation for qual-
ity control of sequencing data. F1000Res. 2021;8:1874.

19.	 Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and 
better for alignment and quantification of RNA sequencing reads. Nucleic 
Acids Res. 2019;47:e47–47.

20.	 Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The < tt > sva package for 
removing batch effects and other unwanted variation in high-throughput 
experiments. Bioinformatics. 2012;28:882–3.

21.	 Whitney AR, Diehn M, Popper SJ, Alizadeh AA, Boldrick JC, Relman DA, et al. 
Individuality and variation in gene expression patterns in human blood. Proc 
Natl Acad Sci. 2003;100:1896–901.

22.	 Ghosh AJ, Hobbs BD, Yun JH, Saferali A, Moll M, Xu Z, et al. Lung tissue shows 
divergent gene expression between chronic obstructive pulmonary disease 
and idiopathic pulmonary fibrosis. Respir Res. 2022;23:97.

23.	 Hobbs BD, de Jong K, Lamontagne M, Bossé Y, Shrine N, Artigas MS, et 
al. Genetic loci associated with chronic obstructive pulmonary disease 
overlap with loci for lung function and pulmonary fibrosis. Nat Genet. 
2017;49:426–32.

24.	 Raghu G, Remy-Jardin M, Myers J, Richeldi L, Wilson KC. The 2018 diagnosis of 
idiopathic pulmonary fibrosis guidelines: surgical lung biopsy for radiologi-
cal pattern of probable usual interstitial pneumonia is not mandatory. Am J 
Respir Crit Care Med. 2019;200:1089–92.

25.	 Aburto M, Pérez- Izquierdo J, Agirre U, Barredo I, Echevarria-Uraga JJ, Arm-
endariz K, et al. Complications and hospital admission in the following 90 
days after lung cryobiopsy performed in interstitial lung disease. Respir Med. 
2020;165:105934.

26.	 Troy LK, Grainge C, Corte TJ, Williamson JP, Vallely MP, Cooper WA, et al. Diag-
nostic accuracy of transbronchial lung cryobiopsy for interstitial lung disease 
diagnosis (COLDICE): a prospective, comparative study. Lancet Respir Med. 
2020;8:171–81.

27.	 Lowe KE, Regan EA, Anzueto A, Austin E, Austin JHM, Beaty TH, et al. COPD-
Gene® 2019: redefining the diagnosis of chronic obstructive pulmonary dis-
ease. Chronic Obstr Pulmonary Diseases: J COPD Foundation. 2019;6:384–99.

28.	 Gregory A, Xu Z, Pratte K, Lee S, Liu C, Chase R, et al. Clustering-based COPD 
subtypes have distinct longitudinal outcomes and multi-omics biomarkers. 
BMJ Open Respir Res. 2022;9:e001182.

29.	 Yun JH, Lamb A, Chase R, Singh D, Parker MM, Saferali A, et al. Blood eosino-
phil count thresholds and exacerbations in patients with chronic obstructive 
pulmonary disease. J Allergy Clin Immunol. 2018;141:2037–e204710.

30.	 Bhatt SP, Rabe KF, Hanania NA, Vogelmeier CF, Cole J, Bafadhel M, et al. Dupi-
lumab for COPD with type 2 inflammation indicated by eosinophil counts. N 
Engl J Med. 2023;389:205–14.

31.	 Ghosh AJ, Hobbs BD, Moll M, Saferali A, Boueiz A, Yun JH, et al. Alpha-1 anti-
trypsin MZ heterozygosity is an endotype of chronic obstructive pulmonary 
disease. Am J Respir Crit Care Med. 2022;205:313–23.

32.	 Strober BJ, Elorbany R, Rhodes K, Krishnan N, Tayeb K, Battle A et al. Dynamic 
genetic regulation of gene expression during cellular differentiation. Science 
(1979). 2019;364:1287–90.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	﻿﻿LungGENIE﻿: the lung gene-expression and network imputation engine
	﻿Abstract
	﻿Introduction
	﻿Methods
	﻿Training and evaluation of ﻿L﻿﻿ung﻿﻿GENIE﻿
	﻿Replication of ﻿LungGENIE﻿
	﻿Concordance with lung disease-related transcriptomic signatures

	﻿Results
	﻿Training of ﻿LungGENIE﻿ and comparison to ﻿PrediXcan﻿



