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Abstract
Background Single nucleotide polymorphisms (SNPs) have emerged as the marker of choice in breeding and 
genetics, particularly in non-model organisms such as black pepper (Piper nigrum L.), a globally recognized spice 
crop. This study presents a comprehensive catalog of SNPs in the black pepper genome using data from 30 samples 
obtained from RNA sequencing and restriction site-associated DNA sequencing, retrieved from the Sequence Read 
Archive, and their consequences at the sequence level.

Results Three SNP calling and filtering pipelines, namely BCFtools, Genome Analysis Toolkit (GATK)-soft filtering, 
and GATK-hard filtering, were employed. Results revealed 498,128, 396,003, and 312,153 SNPs respectively identified 
by these pipelines, with 260,026 SNPs commonly detected across all methods. Analysis of SNP distribution across 
the 45 scaffolds of the black pepper genome showed varying densities, with pseudo-chromosomes Pn25 (0.86 
SNPs/kb), Pn8 (0.74 SNPs/kb), and Pn7 (0.72 SNPs/kb) exhibiting the highest densities. Conversely, scaffolds Pn27 to 
Pn43 exhibited minimal SNP distribution, except Pn45. Approximately 34.80% of SNPs exhibited stronger genetic 
linkage (r2 > 0.7). Moreover, SNPs predominately mapped to downstream (≈ 32.54%), upstream (≈ 22.52%), and 
exonic (≈ 16.20%) regions of genes. Transition substitution accounted for the majority (≈ 57.42%) of identified SNPs, 
resulting in an average transition-to-transversion ratio of 1.36. Notably, 56.09% of SNPs were non-synonymous, with a 
significant proportion (≈ 53.59%) being missense mutations. Additionally, 12,491 SNPs with high or moderate impacts 
were identified, particularly in genes associated with secondary metabolism and alkaloid biosynthesis pathways. 
Furthermore, the expression of 675 genes was potentially influenced by local (cis-acting) SNPs, while 554 genes were 
affected by distal (trans-acting) SNPs.

Conclusion The findings of the present study underscore the utility of identified SNPs and their targets, especially 
those impacting important pathways, for future genetic investigations and crop improvement efforts in black pepper. 
The characterization of SNPs in genes related to secondary metabolism and alkaloid biosynthesis highlights their 
potential for targeted breeding aimed at enhancing the yield, quality, and resilience of this economically important 
crop in diverse environmental conditions.
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Background
Black pepper (Piper nigrum L., 2n = 52), known as the 
‘King of Spices’, is one of the most valuable and widely 
used spices in the world and is often referred to as ‘Black 
Gold’ due to its preeminent status in the global spice 
trade. Renowned for its characteristic pungency and fla-
vour, primarily due to the alkaloid piperine and volatile 
oils, black pepper has been a key ingredient in many food 
preparations for thousands of years [1, 2]. In addition to 
its culinary uses, black pepper has been used in tradi-
tional medicine systems for its potential health benefits 
as well as in perfumery, as a natural preservation for food, 
and as an insecticide [3, 4, 5, 6, 7]. These applications are 
attributed to the various qualities and compounds in 
black pepper, which offer potential health benefits and 
functional properties, such as antioxidants, anti-inflam-
matory, and potential anticancer properties [3, 5, 6].

This perennial woody vine, belonging to the family 
Piperaceae, is believed to have originated from the tropi-
cal evergreen forest of the Western Ghats of southern 
India. From there, black pepper was introduced to other 
parts of South and Southeast Asia [8]. Today, it is culti-
vated in many tropical and subtropical regions, including 
Vietnam, Brazil, Sri Lanka, Malaysia, China, and Indone-
sia [1, 9]. According to the Food and Agriculture Organi-
zation of the United Nations data from 2022, the world’s 
total black pepper harvested area was 689,336 hectares, 
accounting for a production of 812,674 tons.

Despite being an economically and culturally impor-
tant crop, the exploitation of its genetic diversity has 
been relatively limited compared to other crops. Analysis 
of genetic diversity and population structure of crops is 
a prerequisite for designing efficient crop breeding and 
conservation strategies [10, 11]. Previous studies have 
used molecular markers such as random amplified poly-
morphic DNA (RAPD [12, 13, 14]), amplified fragment 
length polymorphism (AFLP [13]), and simple sequence 
repeats (SSRs [15, 16, 17, 18]) to assess the genetic 
diversity of black pepper. In recent years, single nucleo-
tide polymorphism (SNP) markers have become widely 
regarded as the marker of choice for many studies, par-
ticularly those focusing on genetic diversity and popula-
tion structure analysis, marker-trait association studies, 
marker-assisted breeding, and ecological and evolution-
ary analyses. This preference is due to their abundance 
in the genomes, polymorphic nature, and amenability to 
high-throughput detection platforms [19, 20, 21, 22, 23, 
24, 25, 26].

The increasing capacity of next-generation sequenc-
ing (NGS) technologies and advances in bioinformatics 
computing resources have enabled the discovery of SNPs 
through de novo approaches, allowing researchers to 
identify new genetic variants without prior knowledge of 
the genome. Furthermore, these technological advances 

have facilitated the genome-scale discovery of SNPs fea-
sible in various model and nonmodel organisms, includ-
ing plant species [21]. Several approaches are commonly 
used to generate sequence data for large-scale detection 
of variants [27, 28]. Some of these approaches include 
whole genome sequencing, genotyping-by-sequencing 
[29], transcriptome sequencing [30, 31, 32, 33], exome 
sequencing [34], and restriction site-associated DNA 
sequencing (RAD-seq) [35, 36]. These technologies have 
been successfully applied in SNP discovery in crops, both 
with [37] and without reference genome sequences [38].

Over the past years, several software packages have 
been developed for variant calling from NGS data. 
Among these, Genome Analysis Toolkit (GATK) Haplo-
typeCaller [39] and BCFtools mpileup [40] are the most 
widely utilized variant callers. While many studies have 
demonstrated GATK’s outperformance over BCFtools 
when analyzing a large number of samples [27, 41, 42, 
43], several other studies have reported better perfor-
mance from BCFtools [44, 45, 46]. In particular, a recent 
study conducted by Lefouili and Nam in 2022 suggests 
that BCFtools mpileup may be the first choice over 
GATK HaplotypeCaller for non-model studies, particu-
larly in insects, as BCFtools mpileup may result in a lower 
number of false positives than GATK [47]. Additionally, 
variant callers such as FreeBayes [48], SNVer [49], VarD-
ict [50], and VarScan [51] are also used in studies for the 
discovery of SNPs.

The availability of a high-quality reference genome 
for black pepper [52] has enabled scientists to perform 
comparative genomics and gain deeper insights into the 
genetic diversity of this valuable crop. However, there 
remains a lack of information on the frequency, nature, 
and distribution of SNPs in black pepper. Therefore, this 
study aimed to address this gap by analyzing SNP marker 
diversity using publicly available genomic and transcrip-
tomic datasets. The specific objectives were to deter-
mine the distribution of SNPs across the black pepper 
genome, annotate them to assess their potential func-
tional impacts, and exploit gene expression information 
to identify SNP-gene associations.

Materials and methods
Data collection
For the present study, we used previously published 
RNA sequencing (RNA-seq) and RAD-seq datasets 
deposited at the Sequence Read Archive (SRA) data-
base hosted by the National Center for Biotechnology 
Information (NCBI) [53, 54]. Specifically, we included 
14 RAD-seq datasets generated from leaves (BioProject 
PRJNA1035754) and 16 RNA-seq datasets from vari-
ous tissues (BioProject PRJNA529760) of black pepper. 
Detailed information on these datasets is provided in 
Additional file 1. Additionally, the genome assemblies 
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and annotation files of the chromosome-scale reference 
genome of P. nigrum [52] were obtained from the Group 
of Cotton Genetic Improvement (GCGI) at Huazhong 
Agricultural University [55].

Sequence data preprocessing and mapping
After retrieving data, it is essential to assess the quality 
of the reads before proceeding into the mapping. The 
quality of raw sequence reads was assessed using the 
open-source tool, FastQC v0.2.1 [56] with default param-
eters. Adapter sequences were trimmed using the Trim-
momatic [57]. Following quality-control assessment and 
trimming, each sample was mapped to the P. nigrum 
reference genome [52] using the Burrows-Wheeler 
Alignment (BWA [58]). Specifically, we employed the 
BWM-MEM algorithm, which is an efficient seedling 
algorithm, with the option -M to flag shorter split hits 
as secondary. The resulting Sequence Alignment Map 
(SAM) files were converted to Binary Alignment Map 
(BAM) format and sorted by genomic coordinates using 
the SortSam module in the Picard toolkit v3.1.1 [59]. 
Mapping rates were estimated using bamtools [60] to 
evaluate potential bias in mapping. The AddOrRepla-
ceReadGroups module in Picard was employed to modify 
or add read groups to the sorted BAM files. Finally, these 
BAM files were indexed using samtools [61].

Variant calling and filtering
In this study, variant calling was performed using two 
widely used tools: GATK v4.4.0.0 [39] and BCFtools [62]. 
For the GATK pipeline, the P. nigrum reference genome 
sequence was first indexed using samtools. A sequence 
dictionary file (.dict) of the reference genome was created 
using the CreateSequenceDictionary module. The Haplo-
typeCaller function was employed to generate a Genomic 
Variant Call Format (GVCF) file for each sample. These 
GVCF files were then merged into a single file using the 
CombineGVCFs module. Joint genotyping analysis of all 
samples was performed with the GenotypeGVCFs mod-
ule, resulting in a Variant Call Format (VCF) file. SNPs 
were then extracted using the SelectVariants module 
with the following criteria for soft-filtering, hereafter 
referred to as GATK4 (soft-filtering) pipeline: (i) Phred-
scaled P-value for the Fisher’s exact test to detect strand 
bias (FS) > 60.0; (ii) a root mean square of mapping qual-
ity across all samples (MQ) < 40.0. Additionally, hard-
filtering was performed with the following parameters, 
hereafter referred to as GATK4 (hard-filtering) pipe-
line: (i) variant quality by depth (QD) < 2.0; (ii) FS > 60.0; 
(iii) MQ < 40.0; (iv) strand odds ratio (SOR) > 4.0; (v) 
U-based z-approximation from the rank sum test for 
the distance from the end of the reads with the alternate 
allele (MQRankSum) < -12.5; (vi) U-based z-approx-
imation from the rank sum test for mapping qualities 

(ReadPosRankSum) < -8.0. Subsequently, VCFtools 
v0.1.16 [63] was used to retain only SNPs with a minor 
allele frequency (MAF) of ≥ 0.066, ensuring the allele was 
present in at least two individuals.

For the BCFtools pipeline, the mpileup command was 
first used to generate a pileup file summarizing the read 
information at each genomic position. Subsequently, 
the call command was used to call variants/indels from 
the pileup file, resulting in a VCF file. The view com-
mand was then used to extract SNPs. The resulting VCF 
was filtered using the filter command with the following 
criteria: FS > 60.0 and MQ < 40.0. Finally, SNPs with an 
MAF ≥ 0.066 were retained using VCFtools v0.1.16 for 
further analysis. Figure  1 provides an overview of the 
methodology employed in this study for variant calling.

Dendrogram construction
The final filtered VCF files were converted to PHYLIP 
format using PGDSpider v2.1.1.5 [64] to estimate the 
relatedness among the samples. The script ascbias.py 
from the GitHub repository was used to eliminate invari-
ant sites. Maximum likelihood trees were constructed 
for concatenated SNPs using Randomized Axelerated 
Maximum Likelihood (RaxML) v8.2.12. The trees were 
constructed with the general time reversible model of 
nucleotide substitution with the recommended ascer-
tainment bias correction. The best-scoring trees were 
visualized using iTOL (Interactive Tree of Life) [65, 66].

Variant annotations
Filtered SNPs discovered by the three pipelines (GATK 
(soft-filtering), GATK (hard-filtering), and BCFtools) 
were annotated using SnpEff v5.2 [67]. To annotate SNPs, 
a custom database was created for black pepper using 
the following files retrieved from the Hu et al. 2019 [52]: 
“Piper_nigrum.cds”, “Piper_nigrum.pep”, “Piper_nigrum.
genome.fa”, and “Piper_nigrum.gff3”. The final VCF files 
were then annotated using this custom database. Nor-
malized transcript levels of black pepper genes across 
different tissues and genes associated with alkaloid and 
secondary metabolism pathways were retrieved from Hu 
et al. 2019 [52].

Linkage disequilibrium (LD) analysis
To evaluate pairwise LD between SNPs, we calcu-
lated pairwise correlation coefficient (r²) values for bi-
allelic SNPs using PLINK (v1.9) [68]. A sliding window 
approach was applied, specifying a window size of 100 kb 
(--ld-window-kb 100) and a maximum of 10 SNPs per 
window (--ld-window 10). The resulting r² values were 
plotted against the physical distances between SNPs (in 
kilobases) to assess the LD decay. A locally estimated 
scatterplot smoothing (LOESS) curve was fitted to the 
data using the geom_smooth function in the R package 
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ggplot2 [69] to visualize the LD decay pattern across the 
chromosomes. The half-LD decay distance, defined as the 
physical distance at which the maximum observed aver-
age r² value decays to 50%, was calculated to estimate the 
extent of LD decay [70, 71, 72]. In addition, the percent-
age of variant pairs below the threshold of r² < 0.2 was 
calculated for each chromosome using outputs from 
PLINK.

Expression quantitative trait loci (eQTL) analysis
Normalized gene expression data for various devel-
opmental stages of black pepper (SRR8816492, 
SRR8816486, SRR8816469, SRR8816470, SRR8816488, 
SRR8816489, SRR8816484, SRR8816485, SRR8816471, 
SRR8816472, SRR8816474, SRR8816475, SRR8816477, 
SRR8816478, SRR8816480, and SRR8816482) were 
retrieved from the MagnoliidsGDB [73, 74]. Genes with 
nonzero FPKM (Fragments Per Kilobase of transcript 

per Million mapped reads) values in more than 50% of 
the accessions with a variance greater than 0.05 were 
retained for the eQTL analysis.

To select independent SNPs, we pruned SNPs exhibit-
ing high LD using a sliding window of 50 SNPs, a step size 
of 5 SNPs, and an r² threshold of 0.5. eQTL analysis was 
performed using the Matrix eQTL software (v2.3) [75] to 
assess the associations between genetic variants and gene 
expression levels. Both cis- and trans-eQTLs were anal-
ysed, with significant thresholds set at 10− 5 for cis-eQTLs 
and 10–12 for trans-eQTLs. A cis-distance (cisDist) of 106 
base pairs was used to define cis-eQTLs [76].

Functional annotation of SNP-associated genes was 
performed using the Functional Analysis module of 
OmicsBox 3.4 [77, 78]. In brief, protein sequences of 
target genes were aligned with the NCBI non-redun-
dant protein database using BLASTP. InterProScan was 
subsequently performed to identify functional protein 

Fig. 1 Overview of the methodology for variant calling in Piper nigurm
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domains. Mapping and annotation of Gene Ontology 
(GO) terms were performed using Blast2GO with default 
settings (an E-value < 10− 6 and annotation cut-off = 55). 
The resulting annotations were classified into three main 
groups: biological processes, molecular function, and cel-
lular components.

Results
Quality-control assessment and read mapping
The use of high-quality reads is essential for the iden-
tification of true variants. In this study, we processed 
30 datasets of paired-end sequence reads derived from 
RNA-seq and RAD-seq.  After quality assessment using 
FastQC and trimming low-quality ends of sequence 
reads, we retained a total of 1,261,178,896 reads. These 
reads were then mapped to the black pepper reference 
genome, yielding mapping rates ranging from 81.84 to 
98.81%, with an average mapping rate of 95.06% (Table 1).

Variant calling
For variant calling, we utilized two tools, GATK4 and 
BCFtools, applying different filtering options. Initially, 
filtering criteria of FS > 60.0 and MQ < 40.0 were applied, 
resulting in the retention of 5,219,107 and 6,163,705 
SNPs from the GATK4 and BCFtools pipelines, respec-
tively. Subsequent filtering using VCFtools reduced 
these counts to 396,003 (including 47,152 multi-allelic 
SNPs) and 498,128 (including 4,668 multi-allelic SNPs) 
for the GATK4 (soft-filtering) and BCFtools pipelines, 
respectively. Applying additional filtering with GATK4 
(FS > 60.0, MQ < 40.0, QD < 2.0, SOR > 4.0, MQRankSum 
< -12.5 and ReadPosRankSum < -8.0) yielded 4,355,396 
SNPs, which were further filtered down to 312,153 SNPs 
(including 37,789 multi-allelic SNPs) using VCFtools. A 
total of 260,026 bi-allelic SNPs were commonly detected 
across all three pipelines. A comprehensive summary of 
SNPs across scaffolds Pn1 to Pn45 of the black pepper 
genome is presented in Table 2.

To further explore the variants captured by RAD-seq 
and RNA-seq, maximum likelihood-based dendrograms 

Table 1 Summary of read mapping statistics
Sequencing method Sample name Number of reads Number of mapped reads Percentage of mapped reads *(%)
RAD-seq RADSeq_L1 11,797,966 11,312,242 95.88

RADSeq_L2 11,576,872 10,746,769 92.83
RADSeq_L3 11,273,120 9,226,049 81.84
RADSeq_L4 10,955,876 10,505,325 95.89
RADSeq_L5 14,283,951 14,113,501 98.81
RADSeq_L6 13,236,830 12,948,368 97.82
RADSeq_L7 10,917,273 10,501,409 96.19
RADSeq_L8 11,736,240 10,194,484 86.86
RADSeq_L9 16,812,385 15,344,276 91.27
RADSeq_L10 14,701,799 13,724,218 93.35
RADSeq_L11 11,176,087 10,571,519 94.59
RADSeq_L12 10,917,762 10,618,659 97.26
RADSeq_L13 16,857,697 15,787,988 93.65
RADSeq_L14 15,268,020 14,496,398 94.95

RNA-seq RNASeq_R1 72,526,011 69,952,709 96.45
RNASeq_R2 61,089,624 59,968,012 98.16
RNASeq_S1 71,972,092 70,011,417 97.28
RNASeq_S2 61,726,229 60,002,566 97.21
RNASeq_F1 63,668,082 61,898,613 97.22
RNASeq_F2 71,737,337 63,457,681 88.46
RNASeq_L1 78,033,253 76,810,273 98.43
RNASeq_L2 74,790,187 73,637,708 98.46
RNASeq_2MAP1 81,879,996 79,395,158 96.97
RNASeq_2MAP2 69,422,645 66,196,518 95.35
RNASeq_4MAP1 58,599,249 57,144,443 97.52
RNASeq_4MAP2 68,899,979 67,155,706 97.47
RNASeq_6MAP1 51,309,671 49,523,609 96.52
RNASeq_6MAP2 68,809,951 66,683,083 96.91
RNASeq_8MAP1 58,110,425 54,850,975 94.39
RNASeq_8MAP2 67,092,287 62,944,500 93.82

*The mapped percentage is the percentage of reads that were aligned with the black pepper reference genome
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Table 2 SNP count per scaffold
Scaffold* Scaffold 

length (bp)
Number of SNPs SNP density (SNP per kb)
BCFtools GATK4 

(soft-filtering)
GATK4 
(hard-filtering)

BCFtools GATK4 
(soft-filtering)

GATK (hard-
filtering)

Pn1 48,451,882 30,058 24,029 18,776 0.62 0.50 0.39
Pn2 43,104,928 28,900 22,970 18,221 0.67 0.53 0.42
Pn3 39,384,597 23,941 18,594 14,889 0.61 0.47 0.38
Pn4 37,189,380 19,524 15,060 11,956 0.52 0.40 0.32
Pn5 36,778,867 28,968 23,112 17,791 0.79 0.63 0.48
Pn6 33,612,360 14,366 11,615 9,061 0.43 0.35 0.27
Pn7 32,737,202 29,134 23,301 18,186 0.89 0.71 0.56
Pn8 32,725,476 29,758 23,922 18,943 0.91 0.73 0.58
Pn9 32,482,239 22,500 18,344 14,259 0.69 0.56 0.44
Pn10 31,231,022 18,203 14,420 11,348 0.58 0.46 0.36
Pn11 29,812,524 19,793 15,345 12,250 0.66 0.51 0.41
Pn12 29,600,758 9,780 7,450 6,115 0.33 0.25 0.21
Pn13 29,427,894 23,902 18,938 14,743 0.81 0.64 0.50
Pn14 29,032,553 17,419 13,906 11,048 0.60 0.48 0.38
Pn15 28,693,427 21,572 17,230 13,774 0.75 0.60 0.48
Pn16 27,948,387 15,911 12,872 10,175 0.57 0.46 0.36
Pn17 25,720,905 15,394 12,027 9,420 0.60 0.47 0.37
Pn18 25,555,373 12,367 9,724 7,668 0.48 0.38 0.30
Pn19 24,808,771 17,505 14,089 11,031 0.71 0.57 0.44
Pn20 24,284,306 16,112 12,720 10,043 0.66 0.52 0.41
Pn21 22,260,265 10,672 8,500 6,610 0.48 0.38 0.30
Pn22 22,167,516 15,629 12,543 9,979 0.71 0.57 0.45
Pn23 20,442,519 12,773 10,164 8,054 0.62 0.50 0.39
Pn24 19,853,247 15,198 12,112 9,575 0.77 0.61 0.48
Pn25 18,224,315 19,164 15,632 12,419 1.05 0.86 0.68
Pn26 14,906,710 9,546 7,360 5,798 0.64 0.49 0.39
Pn27 65,737 - - - - - -
Pn28 58,380 - - - - - -
Pn29 57,069 - - - - - -
Pn30 47,017 5 2 2 0.11 0.04 0.04
Pn31 45,114 - - - - - -
Pn32 45,072 - - - - - -
Pn33 43,961 - - - - - -
Pn34 40,824 5 2 1 0.12 0.05 0.02
Pn35 38,901 7 2 2 0.18 0.05 0.05
Pn36 38,354 - - - - - -
Pn37 37,066 - - - - - -
Pn38 36,761 - - - - - -
Pn39 35,667 - - - - - -
Pn40 34,574 - - - - - -
Pn41 32,332 - - - - - -
Pn42 31,851 - 1 1 - 0.03 0.03
Pn43 30,876 - - - - - -
Pn44 30,737 - - - - - -
Pn45 30,593 22 17 15 0.72 0.56 0.49
Total 498,128 396,003 312,153
*Pn1-Pn26 represent pseudo-chromosomes
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were constructed from SNP alignments using RAxML. 
This analysis revealed a clear separation of the 30 black 
pepper samples into two well-supported clusters: (i) 
RAD-seq based samples and (ii) RNA-seq based sam-
ples (Fig.  2); only the dendrogram constructed for 
SNPs detected using GATK4 (hard-filtering) pipeline is 
shown here. This indicates the presence of potentially 
distinct SNP populations between the two sequencing 
techniques.

Filtered SNPs were plotted across scaffolds of the black 
pepper genome, revealing non-uniform distribution 
(Table  2; Fig.  3). It was evident that scaffolds Pn1, Pn2, 
Pn5, Pn7, and Pn8 had the highest number of SNPs. No 
SNPs were detected in scaffolds Pn27-Pn29, Pn31-Pn33, 
Pn36-Pn41, and Pn43-Pn44. SNP density ranged between 
0.21 and 0.91 in the pseudo-chromosomes. The highest 
average density of SNPs was observed on pseudo-chro-
mosomes Pn25 (0.86 SNPs/kb), Pn8 (0.74 SNPs/kb), Pn7 

Fig. 3 Distribution of SNPs on the 45 scaffolds of the black pepper genome. Pn1 to Pn26 represent pseudo-chromosomes

 

Fig. 2 Dendrogram of 30 black pepper samples based on SNP data derived via GATK4 (hard-filtering)
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(0.72 SNPs/kb), and Pn13 (0.65 SNPs/kb). SNP density 
across the scaffolds is shown in Fig. 4a-c.

LD analysis
Analysis of the LD among SNPs revealed a pattern of 
high LD, with average genome-wide LD values of 0.44 
and 0.49 for SNPs detected using GATK (hard-filtering) 
and BCFtools, respectively (Table  3). The average LD 
among individual chromosomes (Pn1-Pn26) ranged 
from 0.39 (Pn12) to 0.52 (Pn5). Generally, a lower per-
centage of SNP marker pairs recorded an r² value of less 
than 0.2 (Table 3; Fig. 5a-f ); only 36.56% of the SNP pairs 
recorded an r² value of less than 0.2 for SNPs identified 
using GATK (hard-filtering), while 31.00% of SNP pairs 
exhibited r² value below 0.2 for SNPs identified using 
BCFtools. The percentage of SNPs showing complete 
LD (r² = 1.0) ranged from 6.06% on chromosome Pn12 
to 7.90% on chromosome Pn13 for SNPs identified using 
the GATK (hard-filtering) pipeline. In contrast, for the 
SNPs identified using the BCFtools pipeline, the percent-
age of SNPs with complete LD (r² = 1.0) ranged from 
6.32% on chromosome Pn12 to 8.19% on chromosome 
Pn26 (Table 3).

Furthermore, analysis of the LD decay plots revealed 
no significant decay across the analysed distance (r² ≤ 
0.2), although r² decreased rapidly to half of its maximum 
value (Fig. 5a-b). The half-LD decay distances across the 
genome were 83.5 kb and 64.5 kb for GATK (hard-filter-
ing) and BCFtools, respectively. Furthermore, half-LD 
decay was not uniform across chromosomes, ranging 
from 12.5 (Pn9, Pn14, and Pn20) to 97.5 (Pn12) for SNPs 
identified using GATK (hard-filtering), and 2.5 (Pn21) to 
97.5 (Pn24) for SNPs identified using BCFtools (Table 3). 

Chromosome-wide LD decay for the SNPs identified 
using GATK (hard-filtering) is shown in Fig. 6.

Annotation of SNPs
SNPs were annotated using the SnpEff tool, and their dis-
tribution across genic and intergenic regions is depicted 
in Fig. 7. The majority of SNPs were located downstream 
of genes (32.46 to 32.68%) with an average of 32.54%, and 
upstream of genes (22.40 to 22.73%) with an average of 
22.53%. Following these, SNPs were observed in exonic 
regions (15.31 to 16.93%) with an average of 16.20%, 
and intronic regions (14.62 to 15.05%) with an average 
of 14.82%. Additionally, 12.80 to 13.53% of SNPs were 
identified in intergenic regions with an average of 13.09%. 
However, either no or relatively few SNPs were found 
in the splice acceptor, splice donor, splice region, and 5’ 
untranslated regions (UTR) regions.

Homozygous and heterozygous SNPs
In the context of bi-allelic SNPs, when both alleles are the 
same, they are referred to as homozygous. Conversely, 
when the alleles differ, they are referred to as heterozy-
gous SNPs. Figure  8 shows the frequency of homozy-
gous and heterozygous SNPs identified in the samples 
analyzed. A total of 994,858, 1,067,176, and 1,006,347 
homozygous SNPs were identified using the BCFtools, 
GATK4 (soft-filtering), and GATK4 (hard-filtering) pipe-
lines, respectively. Additionally, 2,299,838, 1,768,314, and 
1,688,979 heterozygous SNPs were detected through the 
BCFtools, GATK4 (soft-filtering), and GATK4 (hard-fil-
tering) pipelines, respectively. The ratio of heterozygous 
to homozygous SNPs varied from 0.23 to 9.52, with an 
average of 2.87.

Fig. 4 SNP density plots. (a) BCFtools; (b) GATK4 (soft-filtering); (c) GATK4 (hard-filtering). Scaffolds with no SNPs are not shown
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Notably, homozygous SNPs were more prevalent in 
certain RAD-seq samples (i.e., RADSeq_L4, RADSeq_
L10, RADSeq_L11, and RADSeq_L14) compared to other 
samples examined (Fig. 8a). The ratio of heterozygous to 
homozygous SNPs in RAD-seq samples ranged from 0.23 
to 3.69, with an average of 1.77. In addition, all RNA-seq 
samples exhibited a higher number of heterozygous SNPs 
compared to homozygous SNPs (Fig. 8b), with the ratio 
of heterozygous to homozygous SNPs varying from 1.62 
to 9.52, and an average of 3.85. Notably, the ratio of het-
erozygous to homozygous SNPs was higher in RNA-seq 
samples in the BCFtools pipeline (Fig. 8c).

Transition and transversion SNPs
SNPs can be classified based on nucleotide substitution 
into transitions (Ts) or transversions (Tv) [79]. Transi-
tions involve a point mutation changing a purine nucleo-
tide to another purine (A↔G) or a pyrimidine nucleotide 
to another pyrimidine (C↔T). On the other hand, trans-
versions involve substituting a purine for a pyrimidine, or 

vice versa (C↔G, T↔G, A↔C, A↔T). The quality of the 
SNP data was analyzed by calculating the ratio of Ts to 
Tv (Ts/Tv) (Table 4). This ratio serves as a benchmark for 
evaluating sequencing and SNP data quality in different 
samples [80]. The average number of Ts and Tv type SNPs 
were 228,415 (56.81%) and 173,679 (43.19%), respec-
tively, with a Ts/Tv ratio of 1.32. The Ts/Tv ratio observed 
was relatively lower than the expected ratio of 2.1 and 
2.07 reported in whole-genome sequencing for known 
and novel variants, respectively [80]. However, the ratio 
was higher than the expected ratio for random substitu-
tions [80]. BCFtools detected a higher number of both Ts 
and Tv SNPs compared to the GATK4 pipelines. Addi-
tionally, a bias towards Ts over Tv was observed in the P. 
nigrum genome. Among the Ts events, the substitution of 
A↔G (114,527) was the most common, followed by C↔T 
(113,888) (Table  4), whereas A↔T (54,147) and A↔C 
(43,410) were the most frequent Tv events.

Table 3 Genome-wide and chromosomal scale linkage disequilibrium of SNPs
Scaffold GATK (hard-filtering) BCFtools

Average LD (r2) % r2 < 0.2 % r2 = 1 Half-LD decay 
distance (kb)

Average LD 
(r2)

% r2 < 0.2 % r2 = 1 Half-LD 
decay 
distance 
(kb)

Pn1 0.46 34.66 7.71 18.5 0.51 28.97 8.01 46.5
Pn2 0.45 35.51 7.62 39.5 0.49 30.41 7.72 29.5
Pn3 0.43 37.01 6.86 51.5 0.48 31.60 7.06 30.5
Pn4 0.43 37.75 7.35 32.5 0.48 31.96 7.66 55.5
Pn5 0.47 32.58 7.00 18.5 0.52 27.54 7.83 70.5
Pn6 0.42 39.08 7.11 40.5 0.48 33.17 7.54 33.5
Pn7 0.45 34.95 7.41 69.5 0.50 29.33 7.65 93.5
Pn8 0.43 37.70 7.09 26.5 0.49 31.93 7.41 44.5
Pn9 0.45 35.44 7.48 12.5 0.51 29.47 8.05 29.5
Pn10 0.44 36.46 7.63 23.5 0.50 31.02 7.82 61.5
Pn11 0.44 36.57 7.42 16.5 0.49 30.29 7.60 20.5
Pn12 0.39 41.77 6.06 97.5 0.44 35.26 6.32 5.5
Pn13 0.45 35.54 7.90 32.5 0.50 30.35 8.02 36.5
Pn14 0.43 38.62 7.10 12.5 0.48 32.87 7.22 31.5
Pn15 0.44 36.48 6.81 67.5 0.49 31.78 7.12 55.5
Pn16 0.42 39.20 7.30 94.5 0.48 33.53 7.65 65.5
Pn17 0.44 36.70 7.26 46.5 0.49 32.04 7.68 49.5
Pn18 0.42 38.42 7.08 34.5 0.48 31.38 7.59 92.5
Pn19 0.43 37.95 7.15 88.5 0.48 32.40 7.87 23.5
Pn20 0.43 37.10 7.06 12.5 0.49 31.85 7.49 58.5
Pn21 0.42 39.23 7.61 25.5 0.48 33.56 8.07 2.5
Pn22 0.45 35.59 7.06 73.5 0.49 30.80 7.15 7.5
Pn23 0.43 37.57 6.69 83.5 0.49 30.69 7.41 21.5
Pn24 0.44 36.41 6.91 66.5 0.48 31.08 6.85 97.5
Pn25 0.45 35.10 7.52 23.5 0.50 29.93 7.48 36.5
Pn26 0.43 38.27 7.00 28.5 0.49 32.32 8.19 35.5
WG* 0.44 36.56 7.30 83.5 0.49 31.00 7.59 64.5
*WG: whole genome
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Fig. 5 Estimates of linkage disequilibrium (LD) for the identified SNPs. (a) - (b) Scatter plots representing the genome-wide LD values over the physical 
distance. The red curve line represents the LD decay pattern, fitted using nonlinear LOESS regression; (c) - (d) Distribution of genome-wide LD values; 
(e) - (f) Frequency distribution of LD values categorized by chromosomes. Panels (a), (c), and (e) show the analysis of SNPs identified using GATK (hard-
filtering), while panels (b), (d), and (f) represent the analysis of SNPs identified using BCFtools
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Synonymous and non-synonymous SNPs
Coding SNPs can be functionally categorized into syn-
onymous and non-synonymous SNPs. Synonymous 
SNPs include silent substitutions, while non-synony-
mous SNPs include missense and nonsense SNPs. In 

the present study, missense mutations were found to 
be the most prevalent, followed by silent and nonsense 
mutations (Fig.  9). BCFtools identified a total of 96,984 
(54.33%) missense, 1,563 (0.88%) nonsense, and 79,946 
(44.79%) silent mutations (Fig.  9a). Similarly, GATK4 

Fig. 6 Scatter plots representing the chromosome-wide linkage disequilibrium (LD) decay for the SNPs identified using GATK (hard-filtering). The red 
curve line represents the LD decay pattern, fitted using nonlinear LOESS regression. Scatter plots representing chromosome-wide LD-decay for the SNPs 
identified using BCFtools are provided in Additional file 2
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(soft-filtering) identified 79,456 (53.06%) missense, 1,206 
(0.81%) nonsense, and 69,072 (46.13%) silent mutations 
(Fig.  9b). GATK4 (hard-filtering) resulted in a total of 
64,879 (53.14%) missense, 997 (0.82%) nonsense, and 
56,204 (46.04%) silent mutations (Fig. 9c).

Moreover, we used the SnpEff tool to evaluate the puta-
tive impact of the SNPs, categorizing them into three cat-
egories: low impact, moderate impact, high impact, and 
modifier (Fig.  10a-c). A total of 1,322 and 11,169 genes 
were consistently identified as having high and moder-
ate impact, respectively, across all three SNP calling and 
filtering pipelines (Additional file 3). SNPs classified as 
high impact are expected to have a disruptive effect on 
the gene function due to a gain or loss of stop codons, 
frameshift variations, splice acceptor/donor variants, 
and/or loss of start codons in the respective genes [81]. 
On average 1,044 genes contained stop-gain and 283 
genes contained stop-loss variants, potentially leading 
to significant functional consequences such as protein 
truncation, loss of function, or degradation of transcripts 
(Fig. 11a). Interestingly, we observed stop-gain and stop-
loss variants in several genes that exhibited significant 
expression in different stages of black pepper berries 
compared to other stages, such as root, stem, leaf, and 
flower. This included Pn1.2104, Pn1.2300, Pn1.3735, 
Pn2.2864, Pn2.1105, Pn2.883, Pn2.1331, Pn2.1301, 
Pn3.893, Pn3.4770, Pn5.3086, Pn7.1985, Pn8.2626, 
Pn8.305, Pn8.631, Pn10.1877, Pn10.1691, Pn11.2427, 
Pn11.2203, Pn15.786, Pn15.31, Pn16.847, Pn19.897, 
Pn21.1229, and Pn24.540 (Fig. 12).

Moderate impact SNPs consisted of non-disruptive 
missense variants that could potentially affect the protein 
effectiveness due to nucleotide substitutions (Fig.  11b). 
Further analysis of high and moderate impact SNPs 
revealed the presence of these types of variants in genes 
involved in secondary metabolism pathways and alka-
loid metabolism pathways (Table  5). Low impact was 
observed in synonymous variants as well as stop codon 
retained variants and splice region variants, which are 
unlikely to change protein function (Fig.  11b). Modi-
fier SNPs typically include non-coding variants (e.g. 
upstream and downstream gene variants, intergenic vari-
ants) that could influence the functionality of respective 
genes (Fig. 11b).

eQTL analysis
To address the redundancy introduced by high LD in 
genomic data, SNP markers were pruned prior to con-
ducting eQTL analysis. This pruning, based on their 
LD levels, retained a total of 61,562 and 38,648 SNPs 
from the BCFtools and GATK (hard-filtering) pipelines, 
respectively. Additionally, the filtering of genes based on 
their expression levels retained 37,093 genes. The associ-
ation analysis identified a total of 294,055 SNP-gene asso-
ciations for SNPs detected using the BCFtools pipeline, 
applying a genome-wide significance threshold (-log10(P-
value) > 8.12e− 7) (Fig.  13a). Furthermore, we identified 
1,316 significant cis-acting SNPs (cis-SNPs) associated 
with 1,161 genes (cis-genes), and 2,009 trans-acting SNPs 
(trans-SNPs) associated with 566 genes (trans-genes).

Fig. 7 Genomic annotation of SNPs. UTR: untranslated region
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Fig. 8 Frequency of homozygous (a), heterozygous (b) SNPs identified in the samples, and the ratio of heterozygous to homozygous SNPs per sample (c)
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Similarly, the analysis of SNPs detected using GATK 
(hard-filtering) identified a total of 243,772 SNP-gene 
associations at the genome-wide significance threshold 
(-log10(P-value) > 1.29e− 6) (Fig.  13b). Additionally, 851 
significant cis-SNPs corresponding to 808 cis-genes, and 
1,405 significant trans-SNPs associated with 563 trans-
genes were identified.

Furthermore, cis-QTLs were readily visualized as 
a distinct diagonal pattern, showing correspondence 
between the genomic positions of eQTLs and their 

associated transcript loci. In contrast, trans-QTLs dis-
played a scattered, non-uniform distribution across the 
genome (Fig. 14a-b).

The intersection of cis- and trans-genes identified 
through the eQTL analysis of SNPs detected using 
BCFtools and GATK (hard-filtering) revealed 675 cis-
genes and 554 trans-genes, respectively (Additional file 
4). GO mapping and annotation of these genes indicated 
that the majority of shared cis-genes were associated 
with biological processes, including cellular process (357 
genes), response to stimulus (262 genes), and biological 
regulation (181 genes). In terms of molecular functions, 
the highest number of genes were associated with bind-
ing (277 genes), followed by catalytic activity (221 genes) 
(Fig. 15a). Similarly, most shared trans-genes were asso-
ciated with GO terms related to biological processes, 
such as cellular process (353 genes), response to stimulus 
(240 genes), biological regulation (148 genes), and molec-
ular functions, such as binding (291 genes), and catalytic 
activity (226 genes) (Fig. 15b).

Table 4 The frequency of transition and transversion SNPs
Substitution BCFtools GATK4 

(soft-filtering)
GATK4 (hard-
filtering)

Transitions (Ts) 281,040 225,839 178,367
C↔T 140,365 112,609 88,690
A↔G 140,675 113,230 89,677
Transversions (Tv) 217,088 170,164 133,786
C↔G 40,811 31,982 25,518
A↔T 67,884 53,245 41,312
A↔C 54,275 42,441 33,514
G↔T 54,118 42,496 33,442
Ts/Tv ratio 1.2946 1.3272 1.3332

Fig. 10 Percentage contribution of SNPs in high, low, moderate, and modifier type of effects. (a) BCFtools; (b) GATK4 (soft-filtering); (c) GATK4 (hard-filtering)

 

Fig. 9 Number of missense, nonsense, and silent SNPs detected via different SNP calling and filtering pipelines. (a) BCFtools; (b) GATK4 (soft-filtering); (c) 
GATK4 (hard-filtering)
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Discussion
High-density SNPs are the most prevalent and stable 
molecular genetic markers in eukaryotes. They play a sig-
nificant role in assessing individual variation, population 

diversity, and the evolution of plant species [26, 81, 82]. 
The advent of high throughput sequencing technologies 
has accelerated the accumulation of sequence data across 
numerous agriculturally important crops [83, 84, 85, 86, 

Fig. 11 Types of SNP effects and their distribution. (a) High impact SNPs, (b) Moderate, low, and modifier SNPs
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87, 88], presenting opportunities for SNP marker devel-
opment in non-model crop species, such as black pepper. 
Despite its economic importance, a comprehensive cata-
log of SNPs in black pepper has been lacking, hindering 
genetic diversity exploration and breeding efforts.

Our study utilized publicly available NGS data from 
RNA-seq and RAD-seq experiments archived in the SRA 
[53] to identify SNPs in the black pepper genome. Cluster 
analysis based on SNP data revealed a distinct separation 
between samples derived from RAD-seq and RNA-seq 
datasets. This separation can be attributed to the differing 
methodologies of these sequencing approaches: RAD-
seq targets specific genomic regions flanking restriction 
enzyme cut sites, capturing a subset of genetic variation 
from both coding and non-coding regions of the genome 
[36, 89], while RNA-seq focuses on transcribed regions 
likely to influence phenotypic changes [33, 90]. Thus, 
understanding these methodological differences is cru-
cial for accurately interpreting genetic variation in stud-
ies of population genetics and evolutionary biology.

In our study, we employed two widely used variant 
callers, BCFtools mpileup and GATK HaplotypeCaller, 
applying different variant filtering criteria; to ensure a 
fair comparison, GATK (soft-filtering) was employed 
with the same filtering criteria as BCFtools (FS > 60.0 
and MQ < 40.0). Notably, BCFtools identified a higher 
number of SNPs compared to GATK (soft-filtering), 
whereas GATK (hard-filtering) significantly reduced the 
SNP count. While GATK is generally favored for plant 

Table 5 Genes involved in alkaloid metabolism and secondary 
metabolism pathways with high or moderate effect SNPs
Pathway Gene IDs
Alkaloid 
metabolism

Pn2.2494, Pn3.2263, Pn3.2268, Pn3.2278, Pn4.102, 
Pn4.3276, Pn5.162, Pn5.2057, Pn5.2058, Pn5.2062, 
Pn5.2063, Pn6.1978, Pn6.601, Pn7.1477, Pn7.1523, 
Pn8.619, Pn11.1124, Pn14.1396, Pn14.81, Pn16.214, 
Pn20.487, Pn22.491, Pn22.492, Pn22.745, Pn24.361, 
Pn24.364, Pn24.367, Pn24.370, Pn24.371, Pn26.157, 
Pn51.4

Secondary 
metabolism

Pn1.1495, Pn1.1976, Pn1.1979, Pn1.1980, Pn1.1982, 
Pn1.1983, Pn1.1984, Pn1.1985, Pn1.3447, Pn1.3451, 
Pn1.3454, Pn3.2308, Pn3.3892, Pn3.3894, Pn4.897, 
Pn4.964, Pn4.965, Pn4.982, Pn4.984, Pn4.2027, 
Pn4.2030, Pn4.2031, Pn4.2172, Pn4.2177, Pn4.2187, 
Pn6.1446, Pn6.1456, Pn6.1457, Pn6.1459, Pn6.1460, 
Pn6.1656, Pn6.1663, Pn6.2497, Pn6.2498, Pn6.2500, 
Pn6.2501, Pn7.1624, Pn7.1625, Pn7.1626, Pn7.1631, 
Pn8.264, Pn8.1028, Pn8.1029, Pn10.717, Pn11.267, 
Pn11.1372, Pn14.1349, Pn14.1353, Pn14.1371, 
Pn14.1373, Pn15.212, Pn15.213, Pn15.214, Pn15.221, 
Pn15.222, Pn15.1244, Pn15.1247, Pn17.545, 
Pn17.615, Pn17.1120, Pn17.1121, Pn17.1721, 
Pn17.1722, Pn17.1725, Pn19.1165, Pn19.1167, 
Pn21.925, Pn21.927, Pn21.928, Pn21.931, Pn21.936, 
Pn21.938, Pn21.950, Pn21.952, Pn21.953, Pn21.954, 
Pn22.576, Pn22.874, Pn23.254, Pn23.299, Pn23.305, 
Pn23.341, Pn23.342, Pn23.364, Pn23.365, Pn26.430, 
Pn26.435, Pn26.436, Pn26.438, Pn26.439

Fig. 12 Expression of selected genes in different stages of black pepper berries (2 months after pollination (MAP), 4MAP, 6MAP, 8MAP), root, stem, leaf, 
and flower. The color scale on the right represents normalized log2 expression values
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Fig. 13 Manhattan plots of SNPs associated with expressed genes. (a) SNPs identified using BCFtools with the blue horizontal line indicating the sugges-
tive threshold of 1.62e− 5 and the red line representing the genome-wide significance threshold of 8.12e− 7; (b) SNPs identified using GATK (hard-filtering), 
where the blue horizontal line represents the suggestive threshold of 2.59e10− 5, and the red line represents the genome-wide significance threshold of 
1.29e− 6
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Fig. 14 eQTLs observed across the genome. (a) eQTLs identified for SNPs detected using BCFtools; (b) eQTLs identified for SNPs detected using GATK 
(hard-filtering). The genomic position of eQTLs for target genes is shown. The clear diagonal band of red dots represents cis-acting eQTLs, while the off-
diagonal green dots represent trans-acting eQTLs
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Fig. 15 Top ten Gene Ontology terms (GO) associated with cis-genes (a) and trans-genes (b). The number next to each bar indicates the number of 
genes corresponding to the respective GO term
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datasets [42, 43], further investigation is necessary to 
assess the true positive and false positive rates of SNPs 
and evaluate tool performance in crop genomes.

Several studies have investigated genome-wide SNP 
coverage in crops such as rice [91], wheat [92], Indian 
mustard (Brassica juncea L.) [93], cotton [94], and soy-
bean [95], revealing diverse SNP density and distribu-
tion patterns. For instance, cotton exhibits uneven SNP 
distribution across its chromosomes, averaging one SNP 
per 0.5 kb [94], while soybean, with a lower SNP density 
(one SNP per 41.59  kb), shows similar uneven distribu-
tion patterns [95]. In contrast, B. Juncea demonstrates a 
more uniform SNP distribution [93]. In the black pepper 
reference genome, consisting of 45 scaffolds with pseudo-
chromosomes Pn1 to Pn26, SNP distribution was uneven, 
averaging approximately one SNP per 3 kb across all scaf-
folds, with scaffolds Pn27 to Pn45 showing minimal SNP 
presence. Several factors, including natural genetic diver-
sity, selection pressures favoring specific alleles, variable 
mutation rates, and methodological limitations, could 
contribute to the absence or low abundance of SNPs in 
some of the scaffolds.

The transition-to-transversion (Ts/Tv) ratio, a critical 
measure of SNP quality [96, 97, 98], was approximately 
1.36 in black pepper, indicating a bias towards Ts muta-
tions, a trend observed in other plant genomes [99, 100], 
such as Brassica napus [101], Hevea brasiliensis [102], 
Camellia sinensis [103], Vigna mungo [104], Camelina 
sativa [105], and Solanum lycopersicum [81]. This bias 
may be influenced by factors such as cytosine methyla-
tion levels in the genome [106, 107].

SnpEff serves as a valuable database for predicting the 
potential impacts of SNPs [67]. Annotation of SNPs using 
SnpEff revealed that the majority (approximately 83%) 
were located within gene body regions, with downstream 
and upstream variants accounting for nearly 54% of 
SNPs. These variants potentially play significant roles in 
gene regulation, offering promising targets for breeding 
programs aimed at enhancing crop traits [79]. However, 
further studies are needed to validate their functional 
impacts on gene expression and protein function, as 
not all variants may be functionally consequential [108, 
109]. Notably, we identified nearly 53.58% of missense 
SNPs, 45.57% of silent SNPs, and a small proportion of 
nonsense SNPs (0.83%). Missense mutations, which are a 
type of nonsynonymous SNPs, can cause structural and/
or functional alterations in proteins. In contrast, silent 
mutations are commonly regarded as low-impact vari-
ants, as they do not affect protein function. Therefore, 
the identification of missense SNPs within the coding 
regions of the black pepper genome, in particular genes 
associated with alkaloid and secondary metabolism bio-
synthesis pathways holds particular interest, as it enables 

the investigation of their potential effects on gene func-
tion and phenotype.

The extent of LD between markers and its decay over 
the genetic distance plays a pivotal role in determining 
the required number and density of SNP markers for 
association studies [110, 111, 112]. Self-pollinating plants 
often exhibit elevated levels of LD due to reduced effec-
tive recombination rates [110]. In this study, LD analy-
sis using SNPs identified through BCFtools and GATK 
(hard-filtering) revealed high levels of LD across the 
black pepper genome. The observed higher r² value sug-
gests a stronger genetic linkage between SNPs, indicating 
that these loci are more likely to be inherited together 
due to reduced genetic independence [113]. Since culti-
vated black pepper is predominantly self-pollinated and 
propagated by cuttings [114, 115], the elevated LD levels 
suggest that fewer markers may be sufficient to ensure 
comprehensive genome coverage for marker-trait asso-
ciation studies [116, 117]. This information is valuable for 
optimizing marker selection in future association map-
ping studies.

Expression QTL analysis is a powerful approach for 
unraveling associations between genetic variants, such as 
SNPs, and gene expression. This method provides valu-
able insights into expression-associated SNPs and their 
corresponding target genes [118, 119]. In our study, we 
identified at least 675 black pepper genes whose expres-
sion is potentially influenced by local SNPs (cis-acting 
SNPs), while 554 genes are influenced by trans-acting 
SNPs. Functional annotation of these genes revealed 
their involvement in key biological processes, including 
cellular processes, responses to stimuli, biological regu-
lation, as well as molecular functions, such as binding 
and catalytic activity. This inventory of cis- and trans-
eQTLs, along with their associated target genes, serves 
as an important resource for deepening our understand-
ing of the genetic and regulatory mechanisms underlying 
gene expression. It also provides a foundation for func-
tional studies aimed at trait improvement in black pep-
per. While genome-wide association studies (GWAS) 
remain a powerful approach for identifying associations 
between genetic variants and phenotypic traits, they 
often encounter challenges in identifying hub genes 
important for precision genome editing to improve crop 
traits [118]. Integrating eQTL analysis with GWAS can 
address this limitation, providing a robust framework for 
marker-assisted breeding and facilitating the develop-
ment of improved black pepper varieties in the future.

Conclusion
The present study presents a comprehensive catalog of 
genome-wide SNPs within the black pepper genome, 
accompanied by detailed SNP annotation. This analy-
sis uncovered an average of 402,094 SNPs across both 
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genomic and transcriptomic datasets, with SNP densi-
ties ranging from 0.21 to 0.91 in pseudo-chromosomes. 
Notably, 260,026 bi-allelic SNPs were consistently iden-
tified across multiple SNP calling and filtering pipelines. 
Furthermore, we identified at least 675 genes potentially 
influenced by cis-acting SNPs, while 554 genes were 
affected by trans-acting SNPs. These findings provide 
a valuable resource for understanding genetic varia-
tion within the species, holding significant implications 
for breeding, conservation, and evolutionary research. 
Moreover, the substantial number of variants identified 
in this study forms a foundation for designing genome-
wide high-density chips in the future. The availability of 
such tools has the potential to greatly enhance conserva-
tion strategies and breeding efforts aimed at improving 
black pepper.
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RaxML  Randomized Axelerated Maximum Likelihood
ReadPosRankSum  Rank sum test for site position
RNA  seq-Ribonucleic acid sequencing
SAM  Sequence alignment map
SNP  Single nucleotide polymorphism
SOR  Strand odds ratio
SRA  Sequence read archive
Ts  Transitions
Tv  Transversions
VCF  Variant call format
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