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Abstract 

Background Improving reproductive performance in Yorkshire pigs, a key maternal line in three-way crossbreeding 
systems, remains challenging due to low heritability and historical selection pressures favoring production traits. Iden-
tifying pleiotropic genetic variants that influence both reproduction and production traits is crucial for understanding 
their genetic interplay and enhancing molecular breeding strategies.

Results Genome-wide association studies (GWAS) using 2,764 individuals identified 264,660 significant loci associ-
ated with reproduction traits and 12,460 loci for production traits, with 73 independent signals, including genes such 
as SCLT1 and CAPN9. A total of 465,047 independent loci were identified, resulting in a genome-wide significance 
threshold of 2.15× 10

−6 . Genetic correlations analysis between reproduction and production traits across parities 
revealed varying trends, including a strengthening negative correlation between mean litter weight (MLW) and back-
fat thickness (BFT) with increasing parity (P1:rg=-0.0376; P2:rg=-0.1371; P3:rg=-0.1475). Given 1062 shared significant 
loci between MLW and BFT, local genetic correlation was calculated within the corresponding genomic regions, 
resulting in a weak correlation of 0.014. Transcriptome-wide association studies (TWAS) leveraging data from the Pig-
GTEx project, which includes 9,530 RNA-sequencing samples across 34 tissues, revealed 2,143 significant genes, 
with 31 linked to total number of piglets born (TNB) and 133 to number of piglets born alive (NBA). These results high-
light the importance of these genes in reproductive performance, with SCLT1 being notably significant in reproduc-
tive tissues. For MLW, integrating results from multiple analyses revealed CENPE as a strong candidate gene, exhibiting 
significant association and colocalization. Validation in an independent population (n = 300) showed that incorporat-
ing the top 0.2% of significant single nucleotide polymorphisms (SNPs) in the GFBLUP model improved predictive 
accuracy, increasing from 0.0168 to 0.0242 for MLW.

Conclusion This study provides new insights into the pleiotropic genetic architecture underlying reproduction 
and production traits in Yorkshire pigs. Genetic correlations, shared loci, and candidate genes inform breeding pro-
gram design. The increased accuracy of genomic selection using these significant loci highlights their practical utility 
in improving breeding efficiency. These findings suggest opportunities for refining selection strategies, although fur-
ther research is warranted to fully realize their potential for enhancing breeding programs.
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Highlights 

• Seventy-three independent signals identified for reproduction and production traits in Yorkshire pigs.

• One thousand sixty-two shared loci indicate genetic correlation between reproduction and production traits.

• Explored the relationship between reproduction and production traits across three parities.

• Multi-omics integration (GWAS, TWAS, COLOC, and SMR) revealed functional roles of key genes, such as SCLT1, 
CENPE, COL9A1.

• Incorporating significant loci as features in GFBLUP significantly enhanced the accuracy of genomic selection.

Keywords Genetic pleiotropy, Reproduction traits, Multi-omics integration, Cross-parity genetic correlation, Genomic 
selection enhancement, Yorkshire pigs, Shared genetic loci

Introduction
Sow reproductive performance is crucial for achieving 
higher economic benefits in modern commercial breed-
ing programs. Traits like total number born (TNB) and 
number born alive (NBA) are prioritized in breeding 
selection indices worldwide due to their significant eco-
nomic impact [1]. However, these reproduction traits 
have low heritability, resulting in slow genetic improve-
ment using conventional breeding methods [2]. Genomic 
selection has emerged as a powerful tool to accelerate 
genetic progress. It offers higher accuracy and enables 
early selection, shortening the generational interval [3]. 
Despite these advances, accurately estimating breeding 
values for reproduction traits remains challenging. Many 
studies show that a comprehensive understanding of the 
underlying genetic mechanisms is crucial for improving 
the accuracy of genomic selection [4–6].

Advancements in sequencing technologies have pro-
pelled genome-wide association studies (GWAS) to the 
forefront of identifying candidate genes associated with 
economically important traits in livestock [7–10]. GWAS 
has significantly contributed to understanding the genetic 
basis of these traits. For example, the Animal QTL data-
base lists over 55,166 QTLs reported for pigs [11]. SNP 
chips are the most common genotyping method in live-
stock genomic breeding. However, their limited num-
ber of markers hinders comprehensive identification of 
associated loci. Previous studies [12–14] on reproduc-
tion and production traits in Yorkshire pigs used limited 
SNPs, potentially overlooking important genomic regions. 
Whole-genome sequencing (WGS) offers a more compre-
hensive approach [15], but its high cost limits widespread 
use. The increasing availability of haplotype reference 
panels, such as PHARP [16], SWIM [17], AGIDB [18], and 
PGRP [19], facilitates imputation from sparse SNP data-
sets to high-density, genome-wide SNPs. This improves 
the identification of trait-associated loci.

However, GWAS often identify significant signals in 
intergenic or non-coding regions. This complicates the 

functional interpretation of these genetic variants [20]. 
Resources like the GTEx project provide expression 
quantitative trait loci (eQTLs) across various crucial tis-
sues [19], facilitating interpretation of these signals. This 
information benefits GWAS, genomic selection pro-
grams, and genome editing strategies, advancing both 
practical and theoretical livestock genetics.

Production traits, with their higher heritability and 
direct economic impact, have been under strong selec-
tion pressure in recent decades. This often came at the 
expense of reproduction traits. Consequently, neglecting 
the complex interplay between production and reproduc-
tion has reduced reproductive performance in many live-
stock species. Studies on dairy cattle show that selection 
for increased milk yield negatively impacts reproduction 
[21, 22]. In pig breeding, Yorkshire pigs are crucial as a 
maternal line. While the relationship between reproduc-
tion and production traits has been investigated across 
different pig breeds, including Yorkshire pigs, most stud-
ies have focused on genetic correlation estimates and 
heritability analyses [23, 24]. There remains a gap in iden-
tifying specific genes and their functional roles in shaping 
this relationship.

The complex relationship between reproduction and 
production traits in Yorkshire pigs significantly influ-
ences breeding efforts aimed at improving productiv-
ity and economic viability. Pleiotropic genetic effects, 
where a single genetic variant influences multiple traits, 
play a crucial role in shaping these relationships. This 
study investigates the genetic correlations between these 
traits using advanced genomic tools and large-scale data 
analysis to address current knowledge gaps. Specifi-
cally, we aim to identify pleiotropic genetic variants that 
contribute to both reproductive success and productive 
efficiency, shedding light on their shared genetic archi-
tecture. By integrating genome-wide association study 
findings with functional genomic insights, we aim to 
inform more effective selection strategies that improve 
reproductive and productive performance.
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Materials and methods
For clarity, our materials and methods are summarized 
(Fig. 1).

Animals and data
The dataset used in this study consisted of phenotype 
records of four reproduction and six production traits 
measured in a population of 3,064 Yorkshire pigs from 
a nucleus pig farm in Chizhou, Anhui Province, China.

Genotypic data
Total DNA of all Yorkshire pigs (n = 3,064) was 
extracted from ear tissue samples, which were col-
lected using the following procedure: First, the ear 
was cleaned sequentially with warm water, physiologi-
cal saline, and 70% alcohol to ensure it was free from 

contaminants. A small piece of ear tissue was then 
carefully excised using sterile scissors. The tissue sam-
ple was immediately placed into a centrifuge tube con-
taining 75% ethanol for preservation. After collection, 
the samples were stored at −20°C for long-term preser-
vation until further processing.

Of the 3,064 pigs, 2,764 individuals (referred to as 
Group1) were genotyped using the GGP 50K Porcine 
v1 Genotyping BeadChip (Neogen), acquiring 50,697 
SNP markers distributed across the genome. We firstly 
removed the SNPs with missing rate greater greater than 
0.05 or minor allele frequencies (MAF) lower than 0.05, 
and only autosomal SNPs were considered in this study. 
Then, conform-gt program (http:// facul ty. washi ngton. 
edu/ brown ing/ confo rm- gt. html) was used to address 
potential strand issues for the remaining SNPs based on 
the reference SNPs from haplotype reference panel of 

Fig. 1 Structural diagram of the methodological framework. Created in BioRender. ›O, q6. (2025) https:// BioRe nder. com/ a41l8 22

http://faculty.washington.edu/browning/conform-gt.html
http://faculty.washington.edu/browning/conform-gt.html
https://BioRender.com/a41l822
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PGRP [16]. At last, the remaining SNPs were imputed 
to the whole genome level using Beagle (v5.1) with the 
help of PGRP [25]. After imputation, SNPs with Dosage 
R-Squared (DR2) lower than 0.8 were discarded. Using 
PLINK v1.90, SNPs with MAF less than 0.05 or not in 
Hardy–Weinberg equilibrium (HWE, p < 1 × 10⁻⁶) were 
further filtered out [26]. Ultimately, 11,794,966 autoso-
mal SNPs were retained for analysis.

The other 300 Yorkshire individuals (referred as 
Group2) were sequenced using DNBSEQ-T7 platform 
at low coverage (~ 1X). Subsequently, The raw sequenc-
ing reads were processed with fastp v0.20.0 to remove 
the low-quality reads using default filtering criteria [27]. 
Clean reads were then aligned to the Sus scrofa 11.1 ref-
erence genome using GTX v2.1.5 [28, 29]. The result-
ing BAM files were utilized for imputation to the PGRP 
level using GLIMPSE2 v2.0.0 [30]. After imputation, 
SNPs with an information quality score (INFO_SCORE) 
greater than 0.7 were retained. PLINK v1.90 was used to 
remove SNPs with minor allele frequencies (MAF) less 
than 0.05 or those extremely deviated from Hardy–Wein-
berg equilibrium (HWE, p < 1 ×  10–10). After these quality 
control steps, 8,554,664 autosomal SNPs were retained 
for Group2.

Reproductive data
The reproduction traits included total number of piglets 
born (TNB), number of piglets born alive (NBA), coeffi-
cient of variation of piglets’ weight at birth (WeightCV), 
and mean litter weight (MLW). TNB is the total number 
of piglets born per litter, while NBA is the total number 
of piglets born within 24 h, excluding stillborn piglets. 
Farrowing records were excluded from analysis if either 
TNB or NBA fell below 6 or exceeded 30. No data filter-
ing step was applied to WeightCV and MLW (Table 1).

Productive dataset
The production traits included two growth traits, off-test 
body weight (BW) and average daily gain (ADG), two 
body composition traits, backfat thickness (BFT) and loin 
muscle depth (LMD), and two feed traits, average daily 
feed intake (ADFI) and feed conversion ratio (FCR). BW 
was measured at off-test age (168.6 ± 7.5 days) and ADG 
was the average weight gain across the period from on-
test age (121.6 ± 5.3 days) to the off-test age. BFT and 
LMD were obtained at off-test stage using the BioSoft 
Toolbox (v2.6.0.1) from ultrasound images, which 
were captured between the 3rd and 4th last rib of pigs. 

Table 1 The descriptive statistics of 4 reproduction and 6 production traits

a Nrecord is the number of phenotype records
b Nindividual is the number of individuals with phenotype records
c Mean, SD and SE represent the mean, standard deviation and standard error, respectively
d Min and Max represent the minimum and maximum values observed

Trait Group Nrecord
a Nindividual

b Meanc SDc SEc Mind Maxd

TNB Group1 13068 744 14.53 3.21 0.118 6.00 29.00

Group2 862 300 14.27 3.17 0.183 6.00 22.00

NBA Group1 12897 746 13.25 2.93 0.107 6.00 26.00

Group2 853 300 13.41 3.02 0.175 6.00 21.00

WeightCV Group1 11764 744 20.73 9.65 0.352 1.76 224.63

Group2 869 300 17.32 5.86 0.339 0.00 52.10

MLW Group1 11874 742 1.38 0.24 0.009 0.54 4.03

Group2 876 300 1.29 0.24 0.014 0.00 2.35

BW (kg) Group1 2614 2614 104.44 12.27 0.240 80.00 146.96

Group2 300 300 119.29 9.36 0.541 94.50 146.50

BFT (mm) Group1 2614 2614 10.88 2.22 0.043 4.20 24.90

Group2 300 300 12.74 2.72 0.157 6.20 23.80

LMD (mm) Group1 2614 2614 60.61 6.38 0.125 39.10 81.00

Group2 300 300 62.86 5.09 0.294 42.40 77.50

ADFI (kg/days) Group1 823 823 0.66 0.10 0.0035 0.34 1.14

Group2 281 281 0.75 0.11 0.0066 0.46 1.19

ADG (kg/days) Group1 2016 2016 0.89 0.16 0.0035 0.38 1.84

Group2 281 281 0.95 0.10 0.0059 0.72 1.24

FCR Group1 821 821 2.47 0.36 0.0126 1.25 4.09

Group2 281 281 2.71 0.33 0.0197 1.82 3.88
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ADFI was measured by the total feed intake divided by 
the length of the period from the on-test age to the off-
test age. FCR was calculated by ADFI divided by ADG 
(Table 1).

Pedigree data
A complete five-generation pedigree was constructed for 
Group1, encompassing all individuals with available gen-
otypic or phenotypic data, totaling 251,543 individuals.

Genetic parameters estimation
Genetic parameters for reproduction traits were esti-
mated using data from Group1 based on single step best 
linear unbiased prediction (ssBLUP) model as follows:

where y is the vector of phenotypic values for all individ-
uals; b is the vector of the effects of fixed effects, includ-
ing year season of delivery, herd, parity; a is the vector 
of additive genetic effects, which is assumed to follow 
normal distribution N (0,Hσ 2

a ) , where H is the combined 
relationship matrix built from the pedigree and genotypic 
data, and σ 2

a  is the additive genetic variance. The inverse 
of H is:

where A is the numerator relationship matrix constructed 
based on pedigree and A22 is the pedigree-based relation-
ship matrix of the genotyped animals. G is the genomic 
relationship matrix, built using GCTA v1.92.4 software 
[31] based on pruned SNPs (465,047 loci obtained by the 
command “–indep-pairwise 50 5 0.3” in PLINK v1.90). G 
was calculated using the following formula:

where Gijk is the genetic relationship between j th and 
k th individual at locus i , and N  is the number of SNPs. 
xi is the genotypic vector for locus i , which is composed 
elements coded as 0, 1 or 2 for  A1A1,  A1A2 and  A2A2. pi is 
the allele frequency of  A2.

In model (1), s is the vector of mated sire effects, which 
is assumed to follow N (0, Iσ 2

s ) with I denoting identity 
matrix and σ 2

s  is the sire effect variance. pe is the vector 
of permanent environmental effects, which is assumed 
to follow normal distribution N (0, Iσ 2

pe) , where σ 2
pe per-

manent environmental variance. e is the vector of ran-
dom residual effects, and is assumed to follow N (0, Iσ 2

e ) , 
where σ 2

e  denoting the residual variance. X , Z1 , Z2 , and 
Z3 are the incidence matrices assigning observations to 

(1)y = Xb + Z1a + Z2s + Z3pe+ e

(2)H−1
= A−1

+

[

0 0

0 G−1
− A−1

22

]

(3)Gjk =

1

N

�

i

Gijk =







1
N

�

i
(xij−2pi)(xik−2pi)

2pi(1−pi)
, j �= k

1+
1

N

�

i

x2ij−(1+2pi)xik+2p2i
2pi(1−pi)

, j = k

corresponding effects. The variance components were 
estimated using average information restricted maximum 
likelihood estimation (AI-REML) implemented in DMU 
software [32]. Based on the estimates, we can further get 
the estimated heritability for each reproduction trait using 
the following formula:

For production traits, the single-trait model was as 
follows:

where y is the vector of phenotypic values for production 
traits, including BW, ADG, BFT, LMD, ADFI and FCR. 
b is the vector of fixed effects. For BW, the fixed effects 
include growth days, year season of birth, herd, and birth 
parity. For BFT, ADG, FCR, LMD and ADFI, the fixed 
effects include off-set weight, year season of birth, herd, 
and birth parity. a ∼ N (0,Hσ 2

a ) is the vector of additive 
genetic effects, with H and σ 2

a  denoting the combined 
genetic relationship matrix calculated using (3) and addi-
tive genetic variance, respectively; X and Z are the inci-
dence matrices assigning observations to corresponding 
effects; e ∼ N (0, Iσ 2

e ) is the vector of random residual 
effects, with I and σ 2

e  denoting the identity matrix and 
the residual variance. The variance components in (5) 
were also estimated using AI-REML implemented in 
DMU and the estimated heritability for each production 
trait using the following formula:

The genetic correlations ( rg ) between individual pairs of 
reproduction and production traits were independently 
calculated for the initial three reproductive parities using 
two-trait model, which is in the form of Eq. (2), where y 
includes each pair of reproduction and production traits. 
a is now assumed to follow normal distributions N, 

0,H ⊗
σ 2
α1

σα1α2

σα1α2
σ 2
α2

 , where σ 2
ai

 is the genetic vari-

ance for trait i , σa1a2 is the genetic covariance between the 
two traits and ⊗ is the Kronecker product. e is now 
assumed to follow normal distributions N, 
(

0, I ⊗

(

σ 2
e1

σe1e2

σe1e2
σ 2
e2

))

 , where σ 2
ei

 is the residual variance 

for trait i and σe1e2 is the residual covariance between the 
two traits. The equations for calculating rg is as follows 
[33]:

(4)h2 =
σ̂ 2
a

σ̂ 2
a + σ̂ 2

s + σ̂ 2
pe + σ̂ 2

e

(5)y = Xb + Za + e

(6)h2 =
σ̂ 2
a

σ̂ 2
a + σ̂ 2

e
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where σ̂a1a2 is the estimated additive genetic covariance 
between each pair of traits; σ̂ 2

ai
 is the estimated additive 

genetic variance for trait i . The estimates were all calcu-
lated by the AI-REML algorithm using DMU software 
[32].

Genome‑wide association study
GWAS was undertaken to identify genetic variants asso-
ciated with reproduction and production traits in Group1, 
and the whole procedure was divided into two steps.

First step For reproduction traits, we calculated the de-
regressed proofs (DRP) and weights for each pig based 
on the GEBV estimated from (1) using the methods 
described by Garrick et al. [34]. The formula is as follows:

where y∗i  is information equivalent to a right-hand-side 
element pertaining to the individual. PA is the parental 
average of genomic estimated breeding values (GEBV). 
GEBVi is the GEBV for animal i . Z ,

PAZPA and Z ,
iZi reflect 

the unknown information content of the parental average 
and individual (plus information from any of its offspring 
and/or subsequent generations). They were calculated 
using the following formulas:

where k , α and δ can be calculated using the following 
formulas:

where RELPA is the reliability of the parental average, and 
RELi is the reliability of the GEBV for animal i . Then, the 
DRP can be obtained as follows:

where RELDRP the reliability of the DRP for animal i.
The weights of DRP can be derived from 

wi =
1−h2

[c+(1−RELDRP)/RELDRP]h2
 , where c is assumed to be 

known as the proportion of genetic variation for which 
genotypes cannot account. In this study we set c to be 0.2.

(7)r̂g =
σ̂a1a2

√

σ̂ 2
a1
σ̂ 2
a2

(8)
[

Z ,
PAZPA + 4k −2k

−2k Z ,
iZi

][

PA
GEBVi

]

=

[

y∗PA
y∗i

]

(9)Z ,
PAZPA = k(0.5α − 4)+ 0.5k

√

α2
+ 16/δ,

Z ,
iZi = δZ ,

PAZPA + 2k(2δ − 1)

(10)k =

(

1− h2
)

/h2,α = 1/(0.5− RELPA),
δ = (0.5− RELPA)/(1− RELi)

(11)

DRP = y∗i = [−2kPA+

(

Z
,
iZi + 2k

)

GEBVi]/Z
,
iZi,

RELDRP = 1− k/(Z,
iZi + k)

For production traits, we calculated corrected pheno-
types through adding GEBV and residual estimated from 
Model (2).

Second step We conducted the individual GWAS using 
GEMMA (v 0.98.5) [35]:

where y is the vector of DRP ∗ weight for reproduction 
traits and y is the vector of corrected phenotypes for pro-
duction traits; X is the vector of marker genotypes, β is 
the effect size of the marker effects; P is a matrix contain-
ing the top five principal components (PCs) of genomic 
relationships, which were calculated using PLINK v1.9 
[26], f  is the vector of corresponding regression coef-
ficients; e is a vector of random residual errors with 
e ∼ N (0,Rσ 2

e ) , where σ 2
e  is residual error variance.

Model (12) was run for each SNP, with the signifi-
cance threshold calculated as 1/N, where N denotes the 
number of relatively independent SNPs used to con-
struct the genomic relationship matrix using Eq.  (4) 
by GCTA v1.92.4 software [31], employing a leave-
one-chromosome-out approach. Specifically, it utilized 
pruned genomic SNPs that were not located on the 
chromosome being tested. A total of 465,047 relatively 
independent loci were identified using the command “–
indep-pairwise 50 5 0.3” in PLINK v1.90. Consequently, 
the genome-wide significance threshold was deter-
mined to be 2.15× 10−6 (1/465,047).

The proportion of variance in phenotype explained 
(PVE) of significant SNPs was estimated as:

where ̂β  is the effect size of for genetic matrix X, p is 
minor allele frequency, se(̂β) is standard error of ̂β  ; and 
N is the sample size.

Post‑GWAS analysis
Conditional and joint analysis
To identify independent significant signals accurately, 
we employed the conditional and joint association anal-
ysis (COJO) method implemented in the GCTA v1.92.4 
software to select lead SNPs  (r2 < 0.1) from those that 
achieved the genome-wide significance threshold on 
each chromosome. The closest gene to each lead SNP 
was identified as candidate gene through mapping anal-
ysis with the reference genome. In order to understand 
the candidate genes of the lead SNPs, we manually que-
ried PubMed (https:// pubmed. ncbi. nlm. nih. gov/), Pig-
GTEx (https:// piggt ex. farmg tex. org/), and GeneCards 

(12)y = Xβ + Pf + e

(13)
PVE =

β2Var(X)
Var(Y )

=
β2Var(X)

β2Var(X)+σ 2

=
2̂β2p(1−p)

2̂β2p(1−p)+(se(̂β))
2
2Np(1−p)

https://pubmed.ncbi.nlm.nih.gov/
https://piggtex.farmgtex.org/
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(https:// www. genec ards. org/) to obtain information on 
the associations between candidate genes for all lead 
SNPs and the traits studied.

Transcriptome‑wide association study
TWAS using data from the PigGTEx project, which 
includes 9,530 public RNA-sequencing samples across 
34 tissues, including Adipose, Blastocyst, Blood, 
Cartilage, Duodenum, Fetal thymus, Heart, Ileum, 
Kidney, Liver, Lymph node, Milk, Muscle, Ovary, Pla-
centa, Spleen, Testis, Artery, Blastomere, Brain, Colon, 
Embryo, Frontal cortex, Hypothalamus, Jejunum, Large 
intestine, Lung, Macrophage, Morula, Oocyte, Pitui-
tary, Small intestine, Synovial membrane, and Uterus. 
We conducted single-tissue TWAS using the FUSION 
method based on GWAS summary statistics [36]. We 
utilized the FarmGTEx TWAS-Server (v1, https:// 
twas. farmg tex. org/, accessed on 1 December 2023) 
[37] to identify associations between genetically regu-
lated gene expression and phenotypic traits. The server 
imputed gene expression levels (transcripts per million, 
TPM) for 26,908 genes across 34 pig tissues, sourced 
from the FarmGTEx project [19]. To control for mul-
tiple testing, we applied Bonferroni correction, setting 
the significance threshold at a corrected P < 0.05.

Colocalization and summary mendelian randomization
We determined SNPs used by GWAS colocalized with 
eQTLs using the COLOC package (v5.1.0, https:// 
cran.r- proje ct. org/ web/ packa ges/ coloc/) in R [38]. For 
COLOC, predictions were made on the basis of the 
reported posterior probability of colocalization (PP4), 
and PP4 > 0.9 was considered as significance. To further 
investigate the putative causal relationships between 
the identified SNPs and gene expression levels (eQTLs), 
we applied the SMR method [39] based on the link-
age disequilibrium (LD) information of the Yorkshire 
pigs, which was calculated using PLINK v1.90 with the 
parameters, " –bfile, –make-bld, –r, –ld-wind 4000 and 
–out ". In order to identify potential association signals, 
a significant threshold of 0.1 was applied to identify 
SNPs with potential causal effects on gene expression.

Local genetic correlation estimation by SUPERGNOVA
Given the computational constraints, we focused solely on 
the common significant loci intervals between production 
traits (BFT) and reproduction traits (MLW) for estimating 
local genetic correlations. We first harmonized all GWAS 
summary data using the munge_sumstats.py function of 
the linkage disequilibrium score regression (LDSC v1.0.1) 

with parameters: “–sumstats, –N and –out” [40]. Next, we 
used the SUPERGNOVA (v1.0.1) software to calculate the 
local rg between BFT and MLW [41].

Genomic prediction
To validate the application of the significant loci identi-
fied in GWAS for genomic prediction, we utilized the 
genotypic and phenotypic data from Group2 to con-
duct a fivefold cross-validation. This approach allowed 
us to compare the predictive performance of the 
genomic feature best linear unbiased prediction (GFB-
LUP) model, which incorporates the significant loci as 
features, against GBLUP model.

For GBLUP in reproduction trait, the statistical 
model was in the form of Eq.  (1), where y , b , s , pe , e , 
X  , Z1 , Z2 and Z3 are same as model (1), a ∼ N (0,Aσ 2

a ) 
is the vector of additive genetic effects, with A denoting 
additive genetic relationship matrix calculated using 
GCTA v1.92.4 software based on Eq. (4) [31].

For GFBLUP in reproduction trait, the statistical 
model was:

where y , b , s , pe , e , X , Z2 and Z3 are same as GBLUP, f  is 
the vector of the genomic values captured by the genetic 
markers linked to the genomic feature of interest, follow-
ing a normal distribution of f ∼ N (0,Gf σ

2
f ) ; and r is a 

vector of genomic values captured by the remaining set 
of genetic markers, following a normal distribution of 
r ∼ N (0,Grσ

2
r ) . Z11 and Z12 are the incidence matrices. 

Gf  was constructed according to the preselected markers 
which included the significant GWAS SNPs identified 
from Group1, while Gr was constructed according to the 
remaining markers.

For GBLUP in production trait, the statistical model 
was as model (2), where y , b , e , X  and Z are the same, 
but a is now following the same settings as GFBLUP in 
reproduction trait.

For GFBLUP production trait, the statistical model 
was:

where y , b , e , and X are same as GBLUP, f and r are the 
same as GFBLUP in reproduction trait, Z1 and Z2 are the 
incidence matrices relating the additive genetic values (g 
and f) to the phenotypic records. Gf  and Gr were con-
structed according to using the preselected and remain-
ing markers.

The predictive accuracy was assessed by calculat-
ing the Pearson correlation coefficient between the 

(15)y = Xb + Z11f + Z12r + Z2s + Z3pe+ e

(16)y = Xb + Z1f + Z2r + e

https://www.genecards.org/
https://twas.farmgtex.org/
https://twas.farmgtex.org/
https://cran.r-project.org/web/packages/coloc/
https://cran.r-project.org/web/packages/coloc/
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estimated breeding values (EBVs) and the corrected 
phenotypes. Both the GFBLUP and GBLUP models 
were calculated using the HIBLUP software [42]. The 
whole procedure was repeated ten times.

Result
Genetic parameters
Except for MLW ( h2 = 0.287), the heritability of the other 
three reproduction traits were quite low (Table  2). The 
production traits generally exhibited higher heritability 
estimates, with 0.248, 0.360, 0.324, 0.226, 0.146, and 0.145 
for BW, BFT, LMD, ADFI, ADG and FCR, respectively.

Genetic correlations between reproduction and pro-
duction traits were calculated separately for parities 1–3 
(P1-P3) due to variation in reproduction traits across 
parities (Fig. 2a, Table S1). The correlations were gener-
ally low and predominantly negative. However, a notable 
positive correlation between ADG and WeightCV was 
observed in P1 ( rg = 0.2925), which decreased in sub-
sequent parities (P2:rg = 0.0724; P3:rg = −0.022), high-
lighting the crucial role of parity in selection strategies. 
Correlations between TNB, NBA, and production traits 
were weak, although all were positive in P2. Conversely, 
the negative genetic correlation between MLW and BFT 
increased in magnitude across parities (P1:rg = −0.0376; 
P2:rg = −0.1371; P3:rg = −0.1475), suggesting a biologi-
cal constraint or trade-off that intensifies with increasing 
parity.

GWAS identified significant loci and candidate genes 
for reproduction and production traits
After quality control, 11,794,966 variants from Group1 
were utilized in GWAS, which included 4 reproduc-
tion traits and 6 production traits. Ultimately, 264,660 
significant loci were identified for reproduction traits, 
while 12,460 significant loci were found for production 
traits (Figure S1, Table S3-S7). Additionally, COJO anal-
ysis identified 73 independent signals (Fig.  2b), includ-
ing 62 for reproduction traits (6 in TNB and NBA, 50 
in MLW) and 11 for production traits (7 in BFT, 3 in 
LMD, 1 in BW) (Table  3). Annotation revealed 3,697 
candidate genes and 6,014 QTL intervals, with several 
genes like EGR2, BMPR1B, and FSHR previously linked 
to reproductive performance. Furthermore, 1,062 shared 
significant loci were identified for MLW and BFT, pre-
dominantly clustered on chromosome 1 (1,059 loci) 
within the 50.0–54.0 Mb region (Fig. 2c), with three addi-
tional loci on chromosome 13.

Local genetic correlation in co‑significant loci regions
The distinct genetic correlation and presence of shared 
significant loci between MLW and BFT prompted fur-
ther investigation of their genetic association within 
these regions. Using SUPERGNOVA [41], we calculated 
genetic correlations in the shared loci. No significant 
association was detected in the co-significant region on 
chromosome 13. In contrast, the co-significant region 
on chromosome 1 exhibited weak correlations ranging 

Table 2 Estimates of additive genetic variance ( σ2α ), residual variance ( σ2e ), sire effect variance ( σ2s ), permanent environmental effect 
variance ( σ2pe ), heritability ( h2 ) and standard error ( h2(SE))

σ
2
α σ

2
e σ

2
s σ

2
pe h2 h2(SE)

TNB 1.152 7.442 0.556 0.898 0.115 0.000169

NBA 0.923 6.471 0.360 0.622 0.110 0.000163

WeightCV 3.037 76.156 1.345 0.951 0.0373 0.0000592

MLW 0.0165 0.0317 0.00428 0.00501 0.287 0.000278

BW 25.861 78.483 - - 0.248 0.0316

BFT 1.379 2.447 - - 0.360 0.0321

LMD 7.748 16.157 - - 0.324 0.0307

ADFI 30.892 106.091 - - 0.226 0.0652

ADG 0.00204 0.0119 - - 0.146 0.0319

FCR 0.0152 0.0895 - - 0.145 0.0550

(See figure on next page.)
Fig. 2 Estimates of genetic correlations and GWAS result of 10 traits. A Estimates of genetic correlations. Blue, positive genetic correlation; red, 
negative genetic correlation. B A 4Mb interval in Sscrofa11.1 Chr1 enriched significant associations for BFT and MLW. C Circular plot representing 
the positions and quantities of lead SNPs obtained from GWAS analysis processed through COJO. The points on the ring indicate the locations 
of lead SNPs on the chromosomes associated with each trait, with gene names labeled accordingly. The traits are displayed in the circular plot 
from the inner to the outer ring in the order: MLW, NBA, TNB, BFT, Weight, and LMD
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Fig. 2 (See legend on previous page.)
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Table 3 Seventy-three independent signals

Chr SNP bp refA freq b p LD_r trait

1 1_17650409 17650409 A 0.478 −0.0786043 1.89E-11 0 MLW

1 1_31489383 31489383 T 0.484 0.0724781 8.51E-11 0 MLW

1 1_41616008 41616008 A 0.358 0.0868325 4.30E-14 0 MLW

1 1_52903638 52903638 G 0.27 0.382757 4.53E-09 0 BFT

1 1_57076537 57076537 T 0.325 −0.0993716 6.51E-18 0 MLW

1 1_57097746 57097746 A 0.323 −2.65513 1.57E-08 0 TNB

1 1_57137635 57137635 G 0.448 −2.48957 3.02E-09 0 NBA

1 1_78566750 78566750 C 0.47 −2.88334 2.21E-09 0 TNB

1 1_78566750 78566750 C 0.468 −2.60303 2.23E-08 0 NBA

1 1_80060057 80060057 C 0.388 −0.0976229 1.49E-14 0 MLW

1 1_106088048 106088048 T 0.057 −0.130498 3.34E-08 0 MLW

1 1_148348537 148348537 C 0.327 −0.360743 1.02E-08 0 BFT

1 1_158552874 158552874 A 0.341 −0.385012 7.82E-10 0 BFT

1 1_161595589 161595589 C 0.381 −1.90171 3.37E-09 0 WG

2 2_3198096 3198096 T 0.116 −1.32569 5.47E-09 0 LMD

2 2_3366709 3366709 C 0.053 0.810718 2.55E-10 0 BFT

2 2_137672690 137672690 C 0.12 −0.0953401 1.33E-08 0 MLW

3 3_58937886 58937886 T 0.477 −0.0794469 3.78E-10 0 MLW

3 3_80716636 80716636 A 0.45 −0.0747885 8.68E-09 0 MLW

3 3_91642164 91642164 A 0.395 0.0800743 1.52E-10 0 MLW

3 3_101916599 101916599 A 0.276 0.0723421 3.93E-08 0 MLW

4 4_23806331 23806331 G 0.24 0.0793875 8.59E-10 0 MLW

4 4_34414347 34414347 C 0.338 0.0803028 1.87E-12 0 MLW

4 4_46540547 46540547 T 0.15 0.101251 6.51E-10 0 MLW

4 4_96126396 96126396 G 0.182 −0.112455 1.82E-15 0 MLW

4 4_112953751 112953751 G 0.293 −0.0798908 5.91E-10 0 MLW

5 5_50376752 50376752 A 0.488 −0.0657739 6.64E-09 0 MLW

5 5_60783991 60783991 G 0.146 0.116623 1.26E-12 0 MLW

5 5_72398125 72398125 A 0.483 −0.0623669 4.44E-09 0 MLW

5 5_85715468 85715468 A 0.128 0.0879312 3.39E-08 0 MLW

6 6_19840130 19840130 T 0.187 −0.422517 6.32E-09 0 BFT

7 7_24931790 24931790 G 0.369 −0.068572 2.13E-08 0 MLW

7 7_52127214 52127214 C 0.244 0.077862 1.39E-08 0 MLW

8 8_10707246 10707246 G 0.42 0.0615775 1.32E-08 0 MLW

8 8_41865526 41865526 C 0.438 0.0672975 2.35E-08 0 MLW

8 8_57742391 57742391 T 0.28 −2.97796 2.20E-09 0 TNB

8 8_66522154 66522154 A 0.206 −0.087649 1.55E-09 0 MLW

8 8_77092738 77092738 A 0.511 2.68296 2.42E-09 0 NBA

8 8_77106783 77106783 G 0.334 −2.77227 2.41E-08 0 TNB

8 8_88457598 88457598 A 0.42 −0.0788588 8.06E-11 0 MLW

8 8_95554276 95554276 G 0.493 2.99159 8.64E-11 0 TNB

8 8_95747367 95747367 C 0.46 −2.6576 1.50E-09 0 NBA

8 8_98775172 98775172 C 0.429 −0.105222 4.29E-17 0 MLW

8 8_118381837 118381837 G 0.146 0.0940498 8.51E-10 0 MLW

9 9_83499731 83499731 A 0.18 −1.03361 2.83E-08 0 LMD

11 11_61034879 61034879 T 0.462 0.0674645 3.90E-09 0 MLW

13 13_13856063 13856063 A 0.343 2.80159 5.07E-09 0 TNB

13 13_13856063 13856063 A 0.342 2.6391 1.38E-08 0 NBA

13 13_22140758 22140758 C 0.252 0.0762411 4.88E-09 0 MLW
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from 0.0012 to 0.014. The highest correlation (0.014) was 
located between positions 52,910,665 and 53,779,338 
bp. These shared loci are exclusively located between 
MLW and BFT, indicating that selection for improved 
MLW is unlikely to cause significant correlated changes 
in BFT within this specific genomic region. This minimal 
local genetic correlation suggests that the two traits can 
be optimized independently within this chromosomal 
segment.

TWAS revealed significant loci and genes linked 
to reproduction traits
Based on the expression data from 34 tissues, TWAS 
identified 2,143 significant genes associated with various 
traits (Table S8). We focused on seven tissues related to 
reproduction and hormone secretion, namely, embryo, 
hypothalamus, oocyte, ovary, placenta, pituitary, and 
uterus. For TNB, 31 genes were found among the 175 
significant loci that are related to these seven tissues. 
The most significant TWAS association was for the 
SCLT1 gene in the oocyte (p = 1 .74 × 10−18 ), which is 
also significant in the hypothalamus (p = 4.91× 10−11 ) 
and ovary (p = 1.18× 10−8 ). Interestingly, in the TWAS 
results for MLW, CAPN9 and SCLT1 were significant in 

the hypothalamus (p = 2.47× 10−25 ) and oocyte tissue 
(p = 1.80× 10−21 ), indicating that CAPN9 plays a pivotal 
role in reproductive physiology by potentially regulating 
hormone synthesis and secretion in the hypothalamus, 
as well as influencing oocyte development and function. 
The consistent, high-significance of SCLT1 across multi-
ple reproductive tissues further underscores its potential 
as a key regulator of both TNB, NBA and MLW.

Annotation of shared local significant regions 
between MLW and BFT identified two genes: COL9A1 
and B3GAT2. B3GAT2 exhibited marked signifi-
cance in MLW-relevant tissues,with hypothalamus 
(p = 6.91× 10−6 ) and frontal cortex (p = 5.38× 10−9 ), 
suggesting that B3GAT2 may contribute to the genetic 
regulation of maternal life weight by modulating neural 
mechanisms involved in growth and hormone signaling. 
COL9A1 showed broad significant associations across 
MLW, NBA, BFT, and LMD, implicating its role in mul-
tiple traits. To further investigate the potential regulatory 
mechanisms underlying these shared significant regions 
between MLW and BFT, we analyzed the identified regu-
latory elements. We discovered 536 distinct regulatory 
elements on chromosome 1 and 3 on chromosome 13 
within these shared regions (Table S11). Notably, within a 

Table 3 (continued)

Chr SNP bp refA freq b p LD_r trait

13 13_43720049 43720049 A 0.244 0.0828626 8.83E-10 0 MLW

13 13_54913160 54913160 A 0.37 −0.0836799 5.00E-13 0 MLW

13 13_134114070 134114070 T 0.446 −0.355036 1.16E-09 0 BFT

13 13_139889196 139889196 G 0.162 0.0908292 1.73E-08 0 MLW

13 13_160434261 160434261 A 0.392 −0.0740589 1.42E-09 0 MLW

13 13_181391118 181391118 C 0.419 −0.318899 1.09E-08 0 BFT

13 13_183265993 183265993 T 0.347 −0.0697992 2.73E-08 0 MLW

14 14_14535867 14535867 A 0.371 0.076048 2.08E-10 0 MLW

14 14_31085113 31085113 T 0.128 −0.103933 1.71E-09 0 MLW

14 14_42954489 42954489 C 0.184 −0.111539 1.96E-14 0 MLW

14 14_57830778 57830778 T 0.112 0.0622371 0.000659189 −0.170976 MLW

14 14_59154730 59154730 C 0.201 −0.144115 4.90E-25 0.496021 MLW

14 14_63097471 63097471 C 0.323 −0.0228217 0.0557781 0.107681 MLW

14 14_63169107 63169107 T 0.279 0.0156105 0.231277 −0.0833084 MLW

14 14_64575780 64575780 G 0.262 −0.0461018 0.000420251 0.542911 MLW

14 14_66090588 66090588 A 0.407 −0.0343522 0.00318331 0.439825 MLW

14 14_70468838 70468838 A 0.194 −0.13138 1.28E-19 0 MLW

14 14_81120608 81120608 A 0.085 −0.138198 5.47E-11 0 MLW

14 14_91314704 91314704 G 0.394 −0.0691414 8.78E-09 0 MLW

14 14_102530914 102530914 G 0.325 −0.0683913 1.04E-08 0 MLW

14 14_119494674 119494674 T 0.405 0.0668115 7.04E-09 0 MLW

16 16_15015108 15015108 A 0.447 2.42126 4.16E-08 0 NBA

16 16_27248646 27248646 A 0.448 0.0810732 3.44E-13 0 MLW

17 17_15821131 15821131 C 0.094 −1.92546 3.93E-15 0 LMD
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critical zone on chromosome 1 spanning 50.0 to 54.0 Mb, 
we identified 460 regulatory elements. Within the region 
associated with COL9A1, we found several strongly 
active enhancers and promoters, as well as ATAC islands, 
which are indicative of open chromatin and potential 
regulatory activity. The presence of these elements sug-
gests a complex regulatory network that modulates gene 
expression through several mechanisms.

COLOC, SMR and integrated findings identified significant 
genes associated with reproduction traits
COLOC and SMR identified 127 and 1,050 signifi-
cant genes, respectively, associated with various traits 
(Table  S9, S10). Notably, COLOC revealed RNF150 
as a significant gene in blood tissues for both TNB and 
NBA. For MLW, the most significant gene in the hypo-
thalamus was CENPE (PP4 = 0.941). SMR further 
implicated SCLT1, showing significance in the oocyte 
(p = 9.75× 10−5 ) and hypothalamus (p = 5.66× 10−5).

For MLW, integrated analysis (TWAS, COLOC, SMR) 
identified CENPE as candidate gene (Fig.  3b); CENPE 
showed strong evidence of association (p = 1.59× 10−5 , 
Fig.  3c) and robust colocalization (PP4 = 0.941) in the 
hypothalamus (Fig.  3d), with further support from 
TWAS in the pituitary (p = 6.54 × 10−6 ). These find-
ings align with the known function of CENPE, a kine-
tochore protein that plays a pivotal role in chromosome 
segregation and cell cycle regulation. In humans, where 
CENPE expression is notably higher in EBV-transformed 
lymphocytes compared to other tissues and is higher in 
males than in females (Fig.  3a). While these data origi-
nate from humans, given the conserved role of CENPE in 
the cell cycle, it is plausible to infer that in Large White 
pigs, CENPE may also exhibit tissue-specific expression, 
particularly in reproductively relevant tissues. CENPE 
region contains multiple regulatory elements, including a 
strongly active promoter/transcript and several enhanc-
ers and quiescent elements, indicating a sophisticated 
regulation of CENPE expression.

Role of significant SNPs in enhancing predictive accuracy 
for genomic selection
To explore the application of GWAS findings in breed-
ing, we used the GFBLUP model to observe the impact of 
significant SNPs on improving the accuracy of genomic 
selection. Recognizing the low heritability of reproduc-
tion traits, which necessitates an expanded feature set to 
capture more of the genetic variation, we selected the top 
0.2% of SNPs based on the GWAS p values and included 
them as additional genetic relationship matrices in the 
GFBLUP model (Fig. 4a-b). This approach was evaluated 
against the standard GBLUP model using a fivefold cross-
validation. Notably, the inclusion of these significant 

SNPs led to substantial improvements in predictive accu-
racy. Predictive accuracy for MLW increased from 0.0168 
with GBLUP to 0.0242 with GFBLUP. Similar improve-
ments were observed for NBA (0.0901 to 0.0967), TNB 
(0.0735 to 0.0905), and WeightCV (0.0018 to 0.0217).

Discussion
In this study, we conducted a GWAS to identify genetic 
variants linked to production and reproduction traits in 
Yorkshire pigs. We detected 277,120 significant loci for 
these traits, providing insights into their genetic architec-
ture. The large number of loci suggests that these traits 
are influenced by a complex genetic framework, consist-
ent with findings in other livestock species that demon-
strate their polygenic nature [43]. Notably, reproduction 
traits exhibited a higher number of significant loci despite 
their lower heritability estimates. This can be attributed 
to their polygenic nature, where numerous genetic vari-
ants with small individual effects contribute to trait varia-
tion. The heritability of these traits is influenced not only 
by their genetic architecture but also by environmental 
factors such as nutrition, management practices, and 
physiological conditions, which may explain the lower 
heritability estimates observed. The identification of a 
larger number of significant loci, particularly at a lower 
significance threshold, reflects the presence of many 
small-effect variants that collectively contribute to these 
traits.

To enhance the resolution and power of our GWAS, 
we utilized the PGRP panel for genotype imputation 
to millions of SNPs, which significantly increased the 
marker density in our study. This high-density genotyp-
ing is especially valuable for traits governed by many 
small-effect variants, as it improves our ability to detect 
significant associations. These findings align with previ-
ous research in pigs [44], supporting the idea that repro-
duction traits are shaped by a combination of numerous 
genetic and environmental factors. The complex genetic 
architecture of these traits highlights the need for a more 
nuanced selection strategy, considering both genetic and 
environmental influences.

The results indicate that reproduction and production 
traits are interrelated, with these relationships varying 
across different parities. The differing genetic correlations 
suggest that breeding strategies should consider both 
reproduction and production traits to optimize improve-
ments in both areas. Specifically, the negative correlations 
between production traits, such as ADG, and reproduc-
tion traits, like MLW, in the third parity emphasize the 
necessity of carefully managing selection pressures to 
avoid adverse effects on reproductive performance. Our 
computational analysis also revealed positive relation-
ships among several production and reproduction traits. 
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Fig. 3 The post-GWAS analysis of MLW. A The expression of CENPE gene across various human tissues and between sexes from the GTEx database. 
B Venn diagram showing the significant genes associated with MLW detected by COLOC, SMR, and TWAS approached. C The results of SMR 
of CENPE. D The results of COLOC of CENPE 
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While a negative correlation between these categories 
has traditionally been assumed, posing challenges for 
balanced selection, our findings suggest a more nuanced 
relationship. The long-standing emphasis on production 
traits has inadvertently contributed to a decline in repro-
ductive performance. However, recent years have seen a 
growing recognition of the importance of reproduction 
traits. Despite this, progress in breeding for both traits 
has been hindered by limited knowledge of their genetic 
backgrounds. Our study’s identification of positively 
correlated traits (e.g., ADG and WeightCV, with a cor-
relation coefficient of 0.2925 in the first parity) provides 
valuable insights to guide breeding efforts. Notably, the 
correlations between reproduction and production traits 
appeared relatively consistent across parities, although 
minor variations suggest potential influences of parity 
on these relationships. This study may have limitations, 
such as sample size and the specific traits chosen. Fur-
ther research with larger datasets and additional traits 
could offer more comprehensive insights. These results 
highlight the importance of targeted selective breeding 
strategies to improve both productive and reproductive 
efficiency across different parities, ultimately enhancing 
overall productivity and economic returns in livestock 
breeding programs.

The annotation of GWAS results indicated that a sub-
stantial number of identified significant genes have been 
previously associated with related traits in the literature, 
reinforcing the credibility of our findings [44–46]. For 
instance, genes such as EGR2, BMPR1B, and FSHR, pre-
viously linked to reproduction traits, were also found to 
be significantly associated with MLW in our analysis. By 
employing post-GWAS analyses, we uncovered several 
promising loci and genes warranting further investigation. 

For example, the CENPE gene, identified within a sig-
nificant locus for MLW, also demonstrated significance 
in TWAS, COLOC, and SMR analyses. CENPE, a pro-
tein-coding gene, plays a crucial role in regulating chro-
mosome segregation, cell division, and mitosis. Given 
its expression in the hypothalamus and uterus, CENPE 
may influence cell proliferation and, consequently, MLW 
through its involvement in the mitotic process. Further-
more, CENPE, located at Chr8:117973382, exhibited high 
expression in human cultured fibroblasts and Epstein-
Barr virus (EBV)-transformed lymphocytes, with expres-
sion levels higher in females than in males (Fig. 3a). Since 
both cell types are involved in cell division and prolifera-
tion, this elevated expression suggests a unique function 
for this gene. Within the CENPE gene region, several 
regulatory elements were identified, likely interacting 
in a complex network to control CENPE expression. 
Quiescent elements may silence the gene under certain 
conditions, while a strongly active promoter drives its 
expression in others. Weakly transcribed regions could 
contribute to tissue-specific or inducible expression. 
Additionally, accessible ATAC islands and flanking tran-
scription start sites (TSSs) may facilitate transcription, 
while enhancers, including medium and poised enhanc-
ers, could amplify or modulate gene expression. The inter-
play of these regulatory elements likely contributes to the 
spatiotemporal regulation of CENPE expression, ensuring 
appropriate expression in different cell types and devel-
opmental stages. Further studies are needed to fully elu-
cidate the intricate interactions and regulatory dynamics 
within the CENPE gene region. It is hypothesized that this 
gene may regulate cell proliferation and influence trait 
expression through yet-to-be-elucidated mechanisms.

Fig. 4 Impact of top SNPs on genomic prediction accuracy. Correlation between genomic estimated breeding values (GEBV) and corrected 
phenotypes for (A) reproduction traits and (B) production traits. The figure compares the predictive accuracy of standard GBLUP and GFBLUP 
models incorporating the top 0.2% of SNPs. Error bars represent standard errors
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By integrating insights from multiple GWAS results, 
we identified a set of loci that significantly affect both 
reproduction and production traits, with several shared 
loci located on chromosomes 1 and 13. Among these 
loci, COL9A1, a gene encoding Collagen Type IX Alpha 
1 Chain, was particularly noteworthy. Our analysis indi-
cated that COL9A1 may influence both BFT and MLW, 
though the direction of effect varies between traits. The 
local genetic correlation at the shared loci on chromo-
some 1 is relatively low because it is estimated by con-
sidering the entire genomic region rather than individual 
genes within that region. Since COL9A1 represents only a 
small portion of this region, its effect does not necessarily 
reflect the overall genetic correlation between BFT and 
MLW. The estimated correlation tends to regress toward 
the regional mean, and the contribution of a single gene 
within this region may be independent of the broader 
correlation pattern. Despite this, COL9A1 still appears to 
play a role in the shared region, with its TWAS results 
showing significant associations with both traits. Muta-
tions in COL9A1 have been associated with Epiphyseal 

Dysplasia and Stickler Syndrome, which further sup-
ports its potential involvement in trait variation in York-
shire pigs. LD analysis of this region identified several LD 
blocks, indicating that SNPs within these blocks could 
exert stronger effects on the traits. For instance, at locus 
Chr1:50072259 (Fig.  5a-c), the TT genotype (n = 1298) 
was associated with the highest BFT, while the trend 
was reversed for MLW, where CC (n = 606) genotypes 
exhibited higher values. This suggests that COL9A1 may 
influence these traits through different mechanisms. The 
presence of many regulatory elements in this region fur-
ther complicates the interpretation of the gene’s role.

Our study not only unearthed a wealth of candi-
date loci and genes but also demonstrated the practi-
cal utility of these findings in improving the accuracy 
of genomic selection. By incorporating these discover-
ies as features into GFBLUP, we achieved an enhance-
ment in selection accuracy compared to conventional 
GBLUP. However, the prediction accuracy for repro-
duction traits remained relatively low (Fig.  4b), which 
can be attributed to their complex genetic architecture 

Fig. 5 Shared associated regions between BFT and MLW. A The linkage disequilibrium (LD) block spanning the chromosomal region 
Chr1:50.071Mb-50.497Mb, including the corresponding R-squared  (R2) values. B Genotype distribution of Chr1:50,072,259 locus and the association 
between different genotypes and phenotypes. The difference of phenotypes of different genotypes was detected by t-test. The number of * 
represents the degree of significance level. * means the p value is less than 0.05, ** means the p value is less than 0.01, *** means the p value 
is less than 0.001. C Genotype distribution of Chr1:50,072,259 locus and the association between different genotypes and DEBV
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and lower heritability. These traits are influenced by 
numerous small-effect loci, making it more challeng-
ing to capture their genetic variation effectively using 
genomic prediction models. While GFBLUP outper-
formed GBLUP for some production traits, it showed 
lower prediction accuracy for others. This may be 
due to the fact that production traits often have fewer 
major-effect loci, which GFBLUP can better lever-
age, whereas reproduction traits rely on a larger num-
ber of minor-effect variants. Additionally, GBLUP, as 
a well-established method, may provide more stable 
performance for traits with highly polygenic architec-
tures. Since GFBLUP is a more recent approach, further 
optimization may be needed to improve its predictive 
power, particularly for traits with lower heritability.

Our study has laid a foundation for understanding the 
genetic architecture of reproduction and production 
traits in Yorkshire pigs. The next crucial step involves 
subjecting these identified candidate genes and loci to 
rigorous experimental validation. This process will enable 
us to confirm their functional significance and establish 
a direct link between genetic variation and phenotypic 
traits. Furthermore, we envision the integration of addi-
tional technical tools and knowledge to further illumi-
nate the genetic mechanisms underlying these traits. 
Pan-genomic analyses, which delve into the structural 
variation (SV) landscape, offer a powerful avenue for 
exploring the role of large genomic variants in shaping 
trait variation [47]. By combining these approaches, we 
can paint a comprehensive picture of the genetic land-
scape governing reproduction and production traits in 
Yorkshire pigs, paving the way for targeted breeding 
strategies that enhance both reproductive performance 
and growth efficiency in this important pig breed.
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