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1–2% of the human genome [2]. For the far larger part 
of the genome, sometimes referred to as “Dark Genome“ 
[3, 4], no adequate analysis strategies are available. Part of 
this “Dark Genome” are genomic elements called “short 
open reading frames” (sORFs). These sORFs are non-
canonical reading frames shorter than the convention-
ally defined 100 codons, that may overlap with canonical 
coding regions and might encode for functional micro-
proteins or fulfill regulatory functions [5]. sORFs are 
dispersed across the whole genome and several attempts 
have been made to classify and group them into different 
sub- categories [5–11].

sORF datasets and nomenclature
Our analysis is based on a consensus paper published in 
2022 by Mudge et al. [5] in which the used sORF con-
sensus set has been presented and categorized by their 

Introduction
Definition of short-open-reading-frames
Variants in the human genome can lead to a variety of 
pathologies and genome analysis is increasingly used as 
a basis for clinical decision making [1]. While sequenc-
ing technologies have improved rapidly in the past years, 
an extensive analysis of whole genome data lacks behind. 
The interpretation of genomic data is often limited to the 
protein coding parts of the genome, which makes up only 
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Abstract
Understanding the dark genome is a priority task following the complete sequencing of the human genome. Short 
open reading frames (sORFs) are a group of largely unexplored elements of the dark genome with the potential for 
being translated into microproteins. The definitive number of coding and regulatory sORFs is not known, however 
they could account for up to 1–2% of the human genome. This corresponds to an order of magnitude in the 
range of canonical coding genes. For a few sORFs a clinical relevance has already been demonstrated, but for the 
majority of potential sORFs the biological function remains unclear. A major limitation in predicting their disease 
relevance using large-scale genomic data is the fact that no population-level constraint metrics for genetic variants 
in sORFs are yet available. To overcome this, we used the recently released gnomAD 4.0 dataset and analyzed 
the constraint of a consensus set of sORFs and their genomic neighbors. We demonstrate that sORFs are mostly 
embedded into a moderately constrained genomic context, but within the gencode dataset we identified a subset 
of highly constrained sORFs comparable to highly constrained canonical genes.
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genomic localization in comparison to canonical cod-
ing as well as non-coding elements. Six categories have 
been proposed and annotated with a terminology which 
we have adapted. These six categories are sORFs falling 
into canonical genes (intORFs), sORFs falling onto long 
noncoding RNAs (lncRNA-ORFs), sORFs falling into 
the 5’ (uORF) or 3’ (dORF) UTR of canonical genes and 
sORFs that start in the 5’ (uoORF) or 3’ (doORF) UTR 
of a canonical gene but reach into the canonical coding 
region of the gene [5]. For some of these sORFs a poten-
tial clinical relevance has been demonstrated [12, 13], 
although the biological role of the majority of sORFs 
remains elusive. The actual number of predicted sORFs 
varies within the literature. Conservative estimates used 
in the gencode sORF consensus set or in another small 
consensus set provided by Chen et al. [9] contain a few 
thousand sORFs. This contrasts with extremely large 
sORF datasets presented by Neville et al. [10] and Li et 
al. [11] which contain hundreds of thousands to millions 
of sORFs. Ultimately, experimental progress will result 
in the reduction of false positive annotations, although 
other strategies have been proposed. Of particular 
importance for our study is the strategy by Jain et al. [14]. 
They suggested using constraint metrics to reduce the 
number of predicted sORFs, by excluding sORFs which 
show close to no constraint. We selected the gencode 
dataset for our analysis due to several reasons: it contains 
sORFs which have been found in multiple ribo-seq stud-
ies, has redundant sORFs merged, includes sORFs with 
the canonical start codon ATG, covers both overlapping 
and non-overlapping sORFs and has undergone review 
by an international consensus working group.

Quantifying the constraint of sORFs in the general 
population
We investigate the constraint of sORFs from differ-
ent perspectives. At first, we investigate the suitability 
of existing genomic constraint scores (e.g. the Gnocchi 
score), secondly, we adapt constraint scores presented in 
the gnomAD constraint pipeline for a tailored constraint 
calculation, lastly, we compare the calculated sORF con-
straint to neighboring genomic elements.

Proposing a constraint workflow for the analysis of 
overlapping sORFs
While constraint metrics of sORFs that do not over-
lap with canonical regions have been calculated before, 
to our knowledge, a constraint analysis for overlapping 
sORFs, such as those in the gencode dataset, has not been 
carried out before and provided to the public, particularly 
using the gnomAD 4.0 dataset. Analysis of overlapping 
genomic elements can be challenging, because it is neces-
sary to differentiate between actual relevant constraints 
affecting the individual feature and out of frame effects 

from overlapping genomic elements. We approached 
the analysis of overlapping sORFs by calculating con-
straint metrics, which make different assumptions about 
the genomic elements in question. We hypothesize that 
by comparing these different scores, we might be able to 
partially separate the constraint of overlapping sORFs 
from their neighboring genomic background. We dem-
onstrate that a subset of sORFs is highly constrained 
when analyzed for the intolerance for missense variants, 
while being less constrained when treated as a genomic 
region with unspecified single nucleotide variants.

Results
Sample size, statistical power and coverage
While sORFs have largely been investigated for evolu-
tionary conservation [5, 11, 15–17], an extensive quan-
tification for their selective pressure in a large-scale 
dataset has only partially been investigated. Reasons for 
that can be seen in their short length as sORF analy-
sis can be hindered by low statistical power [18]. This is 
particularly noticeable when examining loss-of-function 
variants which are less likely to occur. The analysis of 
loss-of-function intolerance in short genomic elements 
can be complicated when sample size is limited. With the 
recent gnomAD [19] 4.0 release, these shortcomings can 
be overcome for some variant types. gnomAD 4.0 con-
tains whole-genome data of 76,215 and whole-exome 
data from 730,947 individuals which brings up the total 
number of reference samples to 807,162 individuals. At 
first, we tested whether all gencode sORFs are contained 
in the whole-exome samples. This revealed that 4,274 
out of the 7,264 gencode sORFs are included in regions 
present in gnomAD 4.0 exomes. However, not all of them 
have sufficient coverage for downstream analysis. There-
fore, we limited some of our downstream analysis to the 
data from the 76,215 whole-genome samples contained 
in the gnomAD genomes.

Analysis of mutational background
The descriptive analysis was conducted on the MANE 
select subset of coding variants present in genes and 
sORFs. In their current release the gnomAD genomes 
contain 4,320,631 unique missense variants, 2,188,653 
synonymous variants and 376,271 high impact SNVs 
(start loss, stop loss, stop gain and frameshift variants) 
located in canonical genes. Considering the same MANE 
select transcripts, the gencode sORFs contain 101,445 
missense variants, 44,118 synonymous variants and 
19,441 high impact variants. The distribution is visual-
ized in Fig. 1. Canonical genes and sORFs show a simi-
lar distribution of variants with the majority of variants 
being missense variants, followed by synonymous vari-
ants. Protein truncating variants like frameshift and stop- 
gain variants are a minority, although the gencode sORFs 
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show a noticeably higher amount of high impact variants 
like frameshift variants and start loss variants.

Estimation of sORF constraint utilizing different genomic 
constraint metrics
As a next step we analyzed whether sORFs are generally 
intolerant against single nucleotide variants (SNVs) and 
whether this can be evaluated using established con-
straint scores. Therefore, we annotated the sORFs and 
for comparison three groups of non-coding genomic 
elements (lncRNAs, miRNAs and snoRNAs) with the 
recently published Gnocchi score [20]. The distribution 
of these four elements can be seen in Fig. 2. As demon-
strated previously by Chen et al. [20] a noticeable por-
tion of miRNAs (mean Gnocchi Score = 1.264) located 
on autosomes passes the cut-off value of 4 (15.4%), 
while only the minority of lncRNAs (mean Gnocchi 
Score = 0.605) show a highly constrained Gnocchi score 
(2%). snoRNAs (mean Gnocchi Score = 0.447) showed a 
Gnocchi score comparable with that of lncRNAs. Only 
1.5% of snoRNAs fall into the highly constrained percen-
tile of the genome. In comparison, some sORFs (mean 
Gnocchi Score = 0.152) show a higher constraint accord-
ing to the Gnocchi score which places 7% into the most 
constrained percentile.

In the next step we wanted to analyze the sORFs with 
a more tailored approach, when compared to the larger 
Gnocchi score windows. Followingly, we calculated a 
constraint metric with a higher resolution, considering 
only the coding bases of the predicted sORFs. Using the 
genome data from gnomAD 3.0 / gnomAD 4.0, we calcu-
lated the SNV observed/expected upper bound fraction 
for SNVs falling into sORFs. We termed this value the 
SNVOEUF, and it is an adaption of the loss-of-function 
observed/expected upper bound fraction (LOEUF) score 
proposed by Karczewski et al. [18] and the missense 
observed/expected upper bound fraction (MOEUF) 
score put forward by Jain et al. [14].

Considering the gnomAD genome data, only 15 sORFs 
from the gencode dataset have less than 10 expected 
SNVs and were therefore discarded in the SNVOEUF 
analysis. The distribution of the SNVOEUF values can 
be seen in Fig. 3. Like the Gnocchi score, the SNVOUEF 
does not make any assumptions about the coding poten-
tial of the analyzed region. Instead, it provides an esti-
mate of the overall constraint of the region for SNVs. For 
downstream analysis we compared the SNVOEUF score 
to the SNVOEUF score of MANE select transcript fil-
tered coding genes and the SNVOEUF score of the UTR 
regions corresponding to these MANE select transcript 
filtered gene list. As visible in Fig. 3 only a small number 
of sORFs (53/7,249) passes the cut-off value for highly 
constrained regions, if the highest constraint decile of 
the SNVOEUF of the UTRs is taking as cut-off reference. 
When compared to genes, 700/7,249 sORFs fall into the 
highest constraint decile of the SNVOEUF of coding gene 
regions. The Gnocchi score and SNVOEUF do not cor-
relate well (Kendall Rank Correlation Coefficient=-0.07, 
p < 0.001). This weak correlation was confirmed in a 
repeated experiment, in which only the SNVOEUF values 
of sORFs that fall exactly into on Gnocchi interval were 
considered (Kendall Rank Correlation Coefficient=-0.1, 
p < 0.001). The SNVOEUF distribution plots of the indi-
vidual sORF subsets can be found in the appendix.

Most sORFs show a moderate constraint against missense 
variants
Because sORFs might encode for functional micropro-
teins we additionally calculated a missense constraint 
score (MOEUF) and loss-of-function constraint score 
(LOEUF) to unravel the constraint for specific muta-
tional categories, which might be missed when only the 
SNVOEUF is analyzed. Again, we computed the number 
of expected variants for both classes, to estimate whether 
reasonable assumptions can be made about a mutational 
constraint considering the sample size present in gno-
mAD. Utilizing the genomes from gnomAD 3.0 / 4.0 

Fig. 1  The distribution of variants present in the gnomAD 4.1.0 genomes A) Variant distribution for all MANE select transcripts (genes); B) Variant distribu-
tion for all Mane select transcripts (sORFs)
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5,573 out of 7,264 gencode sORFs had equal to or more 
than 10 expected missense variants. For the same data-
set only 2 sORFs had equal to or more than 10 expected 
loss-of-functions variants, highlighting that despite its 
size gnomAD is not large enough to make estimates 
about loss-of-function intolerance using OEUF values 
for sORFs. Based on the results of the gnomAD flag-
ship paper, which was published using data from 141,456 
samples [18], the authors concluded that approximately 
75% of genes had a power sufficient for constraint analy-
ses and extrapolated their expected values to estimate a 
required sample size sufficient for constraint analyses. In 
the supplementary material of their article (supplemen-
tary Fig.  8 ”The sample size required for well-powered 
constraint”) the authors also included a figure for OEUF 
values for LOF variants. This figure highlights that for 
sufficient power for smaller genes the required sample 
size needs to be in the millions.

Since the average sORF is by orders of magnitude 
shorter than the average canonical gene, this limita-
tion is followingly inherited by sORF encode micropro-
teins. While LOEUF analyses therefore are currently 
out of scope of this paper we restricted our visualiza-
tion to the distribution of MOEUF scores which can be 
seen in Fig. 4. Within the gnomAD genome dataset the 
sORF MOEUF distribution of (non-overlapping sORFs) 
differs significantly from the MOEUF distribution of 
MANE select transcripts of canonical genes when cal-
culated from the genome dataset (Kolmogorov- Smirnov 
p < 0.001). Additionally, a significant difference between 
these filtered sORF MOEUF values (MRank = 16897.79) 
and the MOEUF value of the MANE select transcripts 
of canonical genes (MRank = 10857.72) was observed 
(Mann-Whitney-U-Test: U = 77741709.5, p < 0.001). This 
was further explored by calculating the Vargha and Del-
aney A measurement [21] which returned an estimate 

Fig. 2  A) Boxplot showing the Gnocchi score distribution of lncRNAs, snoRNAs, miRNAs and sORFs. B) Boxplot showing the Gnocchi score distribution of 
the different classes of genecode sORFs. The cut-off value of 4 (here depicted by a vertical red line) marks the border of the most constrained percentile 
of the genome, as introduced by Chen et al. [20] The Gnocchi scores were taken from supplementary dataset 3 from the Gnocchi score paper [20]
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of 0.75. The comparison of the two complete distribu-
tions can be seen in Fig. 4B. As visible in Fig. 4, a small 
number of sORFs (111 / 5,573) fall into the highly con-
strained area, which is below the depicted cut-off values. 
To leverage the way larger sample size of the gnomAD 
4.0 exome dataset and to estimate the effect of a sample 
size limitation, we also calculated the MOEUF scores 
of the previously mentioned 4,274 well covered sORFs 
included in the gnomAD exome regions. The cut-off 
value of the highest constrained decile for the MANE 
select transcripts of the canonical genes was used to 
study how many sORFs fall into this highly constrained 
decile. Of the 4,274 sORFs 3,578 had more than 10 
expected missense variants and therefore have suf-
ficient data for constraint analysis. Again, within the 
gnomAD exome dataset the sORF MOEUF distribution 

(of non-overlapping sORFs) differs significantly from 
the MOEUF distribution of MANE select transcripts of 
canonical genes when calculated from the exome data-
set (Kolmogorov-Smirnov p < 0.001). Similar to the com-
parison in the genome dataset, a significant difference 
between these filtered sORF MOEUF values (MRank = 
14604.63) and the MOEUF value of the MANE select 
transcripts of canonical genes (MRank = 9987.03) was 
observed (Mann-Whitney-U-Tests: U = 31096690.5, 
p < 0.001). Again, the Vargha and Delaney A measure-
ment [21] was computed and returned an estimate of 
0.72. 175 of these 3,578 sORFs fell into the highly con-
strained decile. Overall, our results are in line with the 
results presented by Jain et al. [14] who demonstrated 
that the distribution of MOEUF scores of sORFs tend to 
be similar to the MOEUF score of less constrained genes, 

Fig. 3  A) Boxplots of the SNV observed/expected upper bound fraction for the different classes of gencode sORFs. We used 0.86 and 0.53 as cut-off 
values for intolerance. OEUF scores are best interpreted in a continuous manner, but for downstream analysis decile-based filtering is suggested by 
gnomAD. 0.86 (black vertical line) marks the SNVOEUF cut-off value base on the most constrained decil with respect to the mane select transcripts of 
canonical genes. 0.53 (grey vertical line corresponds to the SNVOEUF cut-off value considering the UTRs from mane select transcripts. B) KDE (Kernel 
Density Estimate) plot depicting the relation between SNVOEUF values, and the Gnocchi score obtained from the supplementary dataset 3 from the 
Gnocchi score publication [20]
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as the majority of sORFs falls into the lesser constrained 
interval between a MOEUF value of 1 and 1.5 (1779/3578 
sufficiently powered sORFs for the gnomAD exomes and 
2560/4274 sufficiently powered sORFs for the gnomAD 
genomes). Plots of the MOEUF distributions of individ-
ual sORF categories can be found in the appendix.

Identifying sORFs with OEUF values that respect their 
reading frame
To separate actual constrained overlapping sORFs 
from background out of frame effects from overlapping 
genomic elements, we compared the MOEUF values 
to the SNVOEUFs value of the sORFs. We demonstrate 
that 3084/3578 sORFs (of the sORFs sufficiently covered 
and sufficiently powered sORFs in the whole exome data) 
have a lower MOEUF value than SNVOEUF value (mean 
MOEUF value = 1.34 compared to a mean SNVOEUF 
value = 1.65). When the highly constrained subset of 185 
sORFs from the whole exome data is analyzed, 160/185 

sORFs show a lower MOEUF value, when compared to 
their corresponding SNVOEUF value (mean MOEUF 
value = 0.6 compared to a mean SNVOEUF value = 0.933). 
For the whole genome data 1506/5573 sufficiently pow-
ered sORFs have a lower MOEUF than SNVOEUF 
value (mean SNVOEUF value = 1.3 compared to a mean 
MOEUF value = 1.4). For the highly constrained sORFs 
in the whole genome dataset 62/129 sORFs have a 
lower MOEUF than SNVOEUF value (mean SNVOEUF 
value = 1.29 compared to a mean MOEUF value = 1.4).

Most sORFs are neighbored by moderately constrained 
genes
While Jain et al. [14] compared the general distribution of 
sORFs to the distribution of RefSeq genes, to our knowl-
edge the constraint of sORFs has not been previously 
compared to the directly neighbored genes or genes into 
which sORFs are embedded and therefore to the genomic 
background in which sORFs have evolved relatively 

Fig. 4  A) Boxplots showing the MOEUF score distribution of the mane-select transcripts of canonical genes and the different classes of gencode sORFs 
computed using the data of 730,947 exomes. The red vertical line (0.77) marks the most constrained decile of the canonical genes. B) Boxplots showing 
the MOEUF score distribution of the mane-select transcripts of canonical genes and the different classes of gencode sORFs computed using the data of 
76,215 genomes. The red vertical line (0.73) marks the most constrained decile of the canonical genes. The plots share a common X-axis
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recently. Therefore, we used the gnomAD exome data 
to compare the MOEUF values of sORFs to the MOEUF 
values of their neighbored genes. Figure 5 highlights two 
points. Firstly, the gencode sORFs tend to be neighbored 
with genes that are subject to a moderate constraint. Sec-
ondly, with a correlation coefficient value of 0.12 (Ken-
dall Rank Correlation Coefficient = 0.12, p < 0.001) there 
seems to be only a weak connection between the MOEUF 
values of sORFs and their neighbored genes. This is fur-
ther supported if analyzed in a pairwise fashion. sORFs 
(median = 1.49) show a significantly higher MOEUF com-
pared to their neighbored genes (median = 1.10) (Wil-
coxon signed ranked test: W = 801505.5, p < 0.001). Plots 
of the individual subcategories of sORFs can be found in 
the appendix.

Further analyzing the genomic neighbors of highly 
constrained sORFs
To get a hint for possible clinical relevance, we ana-
lyzed whether some of these highly constraint sORFs are 
neighbored by protein coding genes, which are involved 
in monogenic diseases, since it has been demonstrated 
by Mudge et al. that a subset of sORFs function as regu-
latory elements for their genomic neighbors. Of the 104 
sORFs that are constrained by either both their own and 
neighboring genes’ MOEUF values or solely their own, 
101 have unique neighboring genes. Using Ensembl [22] 
Release 113, phenotype associations were identified for 
30 genes. An overview of these genes and their respec-
tive phenotypes is provided as supplementary dataset 4. 
Figure 6 illustrates the distribution of sORF types among 
these 30 highly constrained genes linked to phenotypes. 
Further analysis of Ensembl Release 113 revealed Gene 
Ontology (GO) terms for 99 genes. Supplementary 
Figs.  30, 31, and 32 present bar plots of the top 20 GO 
terms by count for each gene term domain. The underly-
ing data for the GO analysis is provided as supplemen-
tary dataset 5.

Additionally, we obtained phyloP values from the most 
recent Zoonomia [23] publication, which is a measure-
ment for evolutionary conservation and mapped them 
to the subset of highly constrained sORFs and genes. 
Followingly, we calculated the average phyloP scores 
for the highly constrained sORFs from the exome data 
and subsequently also for the coding parts of the sORFs 
and genes and compared them towards each other. The 
results can be seen in Table 1.

Constraint comparison between sORFs and UTRs
To further analyze the genomic context of sORFs we 
investigated the regional constraint of UTRs retrieved 
from the UTR 2.0 database [24]. For this we computed 
the SNVOEUF score for all UTRs within the UTR 2.0 
database assigned to MANE select transcripts, using 
the data from the gnomAD genomes. Additionally, 

Fig. 6  Distribution of sORF types among the 30 highly constrained genes linked to phenotypes

 

Fig. 5  KDE (Kernel Density Estimate) plot illustrating the relationship be-
tween the MOEUF values of sORFs and their neighboring genes, calculated 
using gnomAD exome data. The quadrants interpret as follows: the lower 
left indicates sORFs highly constrained by both their own and neighbor-
ing genes’ MOEUF values, the upper left shows sORFs highly constrained 
by their own MOEUF values alone, the lower right highlights sORFs highly 
constrained by the MOEUF values of their neighboring genes only, and 
the upper right represents sORFs which are neither highly constrained by 
their own nor neighboring genes
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we differentiated between UTRs that contain gencode 
sORFs and those that do not. In a similar vein to the 
MOEUF comparisons, we calculated deciles and picked 
the maximum SNVOEUF value of the most constrained 
decile (0.53) as a cut-off value for SNV-intolerant UTR 

regions. As it can be seen in Fig. 7, UTRs which contain 
uORFs are dispersed across the SNVOEUF distribu-
tion of UTRs. Their distribution is significantly different 
to the SNVOEUF distribution of UTRs without uORFs 
(Kolmogorov-Smirnov p < 0.001). A significant differ-
ence between the sORF containing UTR SNVOEUF 
values (MRank=22516.53) and the SNVOEUF values of 
UTRs without sORF (MRank= 19926.71) was observed 
(Mann-Whitney-U-Test: U = 46219468.0, p < 0.001). The 
subsequently computed Vargha and Delaney A mea-
surement returned an estimate of 0.56. To further ana-
lyze the UTR regions, we examined whether canonical 
genes with multiple UTR regions show regional con-
straint between their UTRs. As previously introduced, 
we filtered the annotated UTRs for UTRs with at least 
10 expected variants. This reduced the original UTR 
dataset from 46,216 regions to 40,265 UTRs. Next, we 
filtered for genes with multiple UTRs, which revealed 
that out of a total of 18,546 genes, 16,217 genes contain 

Table 1  Evolutionary conservation of highly constrained sORFs neighbored by genes with associated phenotypes
sORF Gene Mean phyloP sORF Mean phyloP gene sORF class Conservation 

status estab-
lished by Sand-
mann et al. [17]

C9NOREP73 AOPEP 0.11 2.62 dORF Primatomorpha
C18NOREP74 BCL2 2.52 1.60 uORF Human
C20NOREP99 EEF1A2 4.11 3.98 dORF Primatomorpha
C5RIBOSEQORF120 ERGIC1 1.14 2.25 dORF Old work Monkeys
C8RIBOSEQORF34 EXTL3 1.25 1.66 uORF Primatomorpha
CXRIBOSEQORF28 FGD1 2.82 3.28 uORF Primatomorpha
CXNOREP99 FGF13 2.92 0.38 uORF Primatomorpha
C19NOREP210 FUT1 -0.46 0.63 uORF Primatomorpha
C4RIBOSEQORF123 HAND2 2.82 3.19 uORF Conserved
C1RIBOSEQORF39 HNRNPR 6.02 3.01 intORF Conserved
CXRIBOSEQORF37 IGBP1 -0.52 1.68 uORF Primatomorpha
CXNOREP24 KDM6A 4.85 3.71 intORF Conserved
C17RIBOSEQORF80 KRT10 2.78 2.88 dORF Primatomorpha
C19NOREP118 LSM14A 5.17 3.55 intORF Conserved
C5NOREP142 MATR3 5.66 3.86 intORF Conserved
CXRIBOSEQORF6 MID1 3.71 1.68 uORF Conserved
C16RIBOSEQORF112 MTSS2 2.96 2.59 uORF Primatomorpha
C1NOREP188 NOTCH2 3.92 2.79 intORF Conserved
C13NOREP28 NUDT15 0.56 1.11 dORF Primatomorpha
C5NOREP99 PPIP5K2 2.12 1.38 uORF Primatomorpha
C7NOREP21 RAC1 4.94 2.89 intORF Primatomorpha
CXRIBOSEQORF13 SH3KBP1 2.96 2.76 uORF Conserved
C16NOREP74 SIAH1 5.48 3.92 intORF Conserved
C8RIBOSEQORF45 SLC20A2 4.18 2.71 uORF Primatomorpha
CXNOREP28 SYN1 0.99 3.37 dORF Primatomorpha
C20NOREP24 TASP1 5.06 3.81 intORF Old work Monkeys
C3NOREP214 TBL1XR1 6.23 3.50 intORF Conserved
CXNOREP58 TIMM8A 2.24 2.08 dORF Primatomorpha
CXNOREP11 TMSB4X 2.29 2.95 dORF Primatomorpha
CXNOREP17 ZFX 3.98 1.98 intORF Conserved

Fig. 7  UTROEUF distribution of UTR regions containing uORFs (orange) 
and without uORFs (blue)
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multiple UTRs. To analyze how many of these genes 
have regional UTR constraint we made use of the pre-
viously introduced decile method. We defined a gene as 
regionally UTR constrained if it contains multiple UTRs 
which are in separated deciles and delimited by at least 
two other deciles. Applying this definition 12,610 of 
the genes contained in the mane select filtered UTR 2.0 
database fulfilled this criterion for regional UTR con-
strain. This is partially explainable by large base length 
differences observed across the UTRs, as OEUF values 
are influenced by base sequence length [18]. Thus, a cor-
relation analysis showed a strong correlation between 
the SNVOEUF score and base sequence length (Kend-
all Rank Correlation Coefficient=-0.46, p < 0.001). Being 
limited by the sample size of gnomAD for small UTRs 
and to further adjust the analysis for sequence length, we 
repeated the previous analysis on a sequence length fil-
tered UTR subset, by filtering the 40,265 UTRs for UTRs 
with a minimum length of 800 bases which corresponds 
to the mean UTR sequence length of the filtered 40,633 
UTRs. Applying these filter criteria, 203 genes have mul-
tiple UTR sequences and 107 of these 203 genes have a 
regional UTR constraint following the definition above. 
Highlighting the potential relevance of constraint values 
that incorporate the genomic context of UTRs.

Methods
Annotation of sORF encoded variants
We utilized the custom annotations feature provided by 
the ensembl variant effect predictor (VEP) [25] to anno-
tate the gnomAD chromosome reference VCF files for 
functional consequences in the sORF reading frame. To 
do so we created a gene transfer format (gtf ) file in which 
we defined the sORF reading frame, by designating the 
sORF regions from the gencode ribo-seq orf bed file [5] 
as gene regions and the corresponding block regions as 
exons. Next to an annotation for functional consequence 
the general population frequency from gnomAD 4.0 
exomes or genomes was added.

Constraint evaluation of sORF encoded variants
For the constraint evaluation of sORF encoding variants, 
we calculate the observed/- expected upper bound frac-
tion (OEUF) for different variant types and name them in 
correspondence with their variant type (MOEUF for mis-
sense variants, LOEUF for loss-of-function variants and 
SNVOEUF for not further divided SNVs). In brevity, the 
number of uniquely observed protein truncating variants 
is compared with the number of expected variants for a 
given mutation type calculated by a mutational model 
which assumes a neutral effect of these variants.

For the calculation of observed variants, we fol-
lowed the recommendations used in the assembly of 
the gnomAD constraint scores [18]. This means that we 

annotated the gnomAD 4.0 release respecting the sORF 
context utilizing VEP, then filtered it for the number of 
unique variants for the mutation type of interest. We only 
included variants with a general gnomAD frequency less 
than 0.1% that passed all filters and had a median depth 
greater or equal to 1. For all constraint calculations we 
only considered single nucleotide variants, therefore for 
loss–of-function variants we only considered start-loss, 
stop-loss, and stop-gain variants. As a consequence of 
using VEP [25] for annotation, splice variants are pre-
dicted. Considering the limited known information of 
sORFs and therefore the uncertainty about the occur-
rence of possible splicing mechanisms in sORFs, we 
decided to discard variants that were only predicted as 
splicing variants. This exclusion applied to all analysis, 
including the loss-of-function analysis. To calculate the 
number of expected variants we at first calculated the 
number of possible variants for which we followed the 
protocol defined by Karczewski et al. [18]. In short, we 
estimate the number of expected SNVs, missense and 
synonymous variants by utilizing the mutation rates pub-
lished in the paper by Chen et al. [20], where the Gnocchi 
score was proposed. Instead of relying on the Hail-frame-
work previously introduced by Karczewski et al. [18] we 
reimplemented the workflow by means of Python and 
Spark. For this, we first extracted the base sequence of 
the gencode sORFs using Biopython [26]. Subsequently, 
we parsed the sequences and calculated the number of 
possible variants, for the class of interest, by iterating 
over each coding triplet and calculating the relevant con-
text triplet for each base in the analyzed triplet. Adhering 
to the protocol set by Karczewski et al. [18] we reduced 
the number of possible variants. Variants were excluded 
if they originated from bases with a low-quality variant in 
the gnomAD data, had a high allele frequency (greater or 
equal to 0.1%) or fell into a region with insufficient cover-
age (mean depth less than 1). We additionally calculated 
a sORF mutation rate by summing the mutational rate of 
each individual base with its corresponding context trip-
let and the corresponding methylation status. Figure  8 
illustrates the workflow schematically.

For the final OEUF calculations, we computed the 90% 
confidence interval (between the 5th and 95th percen-
tiles) for an expected value of a Poisson distribution given 
an observed count and an expected count.

The mathematical formulation of the Poisson probabil-
ity mass function (pmf) is:

	
G (X = k) = λ k ∗ e−λ

k!

where:

 	• λ is the average rate (expected value).
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 	• k is the actual number of events (observed value).
 	• e is the base of the natural logarithm.
 	• G(X = k) is the probability of k events occurring in an 

interval.

Here the Poisson pmf is calculated for a range of values 
from 0 to 2 with steps of 0.001 so that:

	 λ = λ ′ ∗ x

where:

 	• x is the range value with:

{x: xε [0, 2], with x = n * 0.0001,where n ε N0 and 
0 < = n <= 2000}

 	• λ is the average rate (expected value).

The lower and upper bounds of the expected value are 
then calculated as the first values in the cumulative dis-
tribution where the normalized values are greater than or 
equal to 0.05 and 0.95 respectively.

The following is a rough mathematical representation 
of the process:

1.	 Calculate Poisson pmf for each λ ′  for a given 
expected and observed count

2.	 Calculate the cumulative sum of these Poisson pmf 
values.

3.	 Normalise these values.
4.	 Lower Bound = min( λ ′ | Normalised Cumulative 

Poisson pmf > = 0.05)
5.	 Upper Bound = min( λ ′ | Normalised Cumulative 

Poisson pmf > = 0.95)

Comparison of OEUF values and defining constraint
OEUF values represent a continuous value which are 
best analyzed as a spectrum, however introducing cut-
off values for downstream analysis can be helpful. There-
fore, following the protocol by Karczewski et al. [18] we 
binned the resulting OEUF distributions into 10 equally 
sized bins and took the maximum OEUF value of the 
most constrained bin as a cut-off value for highly con-
strained items in this decile. Using this cut-off value we 

Fig. 8  presents a detailed workflow for the calculation of possible variants and mutation rates for a given sequence, based on the type of variant. The 
iterative process is represented by a sample sequence composed of three codons: the start codon ATG, the triplet CTG, and the stop codon TAA (1). To 
further elucidate the process, the calculation of the possible variants and mutation rate for the CTG triplet is emphasized. The first step involves identify-
ing the context triplets for each of the three bases (highlighted in green) of the coding triplet. This is done by considering their direct neighboring bases 
(shown in purple). Afterwards, both the coding and the context triplet are modified to create all possible single nucleotide variants. This is achieved by 
replacing the bases of the coding triplet (in green) with all other possible bases, resulting in a total of 9 altered triplets (2). Subsequently, the consequence, 
and thus the variant type, of each altered triplet is determined by evaluating its impact on amino acid translation (3). The mutation rate for a specific 
variant type of the whole codon is calculated by summing up the mutation rates of the corresponding context triplets (4). Complementary, the count 
of possible variants for a given variant type is simply the sum of triplets that align with that variant type (4). Finally, the mutation rate and total count of 
possible variants for the entire sequence are computed by summing up the mutation rates and possible variant counts, respectively, for each variant type 
across all codons in the sequence (5)
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further compared sORFs and their OEUF values to other 
genomic elements.

Matching with Gnocchi score
In brevity, the Gnocchi score is a constraint metric for 
which the calculation of the whole genome data from 
gnomAD 4.0 (76,215 individuals) was analyzed [20].For 
this the genome was fragmented into 1,000 base span-
ning intervals. Using a context dependent mutational 
model for each interval the number of expected vari-
ants was calculated and compared to the number of rare 
SNVs. The resulting ratio was transformed into a z-score 
and since this score was calculated for every arbitrary 
region, we paired it with the coordinates of the gencode 
sORFs located on autosomes [20]. Since not all sORFs 
might encode stable microproteins we wanted to start 
our analysis with a constraint score in comparison with 
three non-coding regions. For this we used the Supple-
men- tary Dataset 3 from the recently published Gnoc-
chi score publication [20]. This dataset provides genome 
wide scores at 1 kilobase resolution, calculated itera-
tively by sliding 100 base pairs. By means of Python the 
gencode sORFs, the snoDB 2.0 [27] snoRNAs, gencode 
[28] miRNAs and gencode [28] lncRNAs were paired 
with Gnocchi scores. To be more precise, we located 
all Gnocchi score Intervals that fell between the start 
and end coordinates of the genomic element of inter-
est for all autosomes and then the averaged the Gnoc-
chi scores over these intervals. If no proper interval was 
found containing the genomic element, the two closest 
Gnocchi score intervals were used to calculate an aver-
age Gnocchi score. To have a more direct comparison 
between the Gnocchi score and the SNVOEUF we sub-
sequently repeated our analysis, by using the non-over-
lapping Gnocchi dataset (Supplementary Dataset 2 from 
the Gnocchi score publication [20]) to match the Gnoc-
chi score with sORFs which fall into exactly one Gnocchi 
score interval. Not mappable sORFs where discarded in 
this repeated analysis.

Constraint analysis of UTR variants
UTR regions for each MANE select transcript were 
selected from the UTR 2.0 database [24]. We calculated 
the number of variants in gnomAD 4.0 within said UTR 
regions and compared them to the number of variants 
within sORFs located in said UTR region. This was car-
ried out to estimate whether UTR regions containing 
the sORFs are subjected to a higher degree of selection. 
The underlying idea is that an UTR containing regula-
tory elements for the canonical CDS in addition to sORFs 
which might act as further regulatory elements or encode 
functional distinct micropeptides, should be subject to a 
stronger selection than an UTR only fulfilling regulatory 
purposes. To estimate this effect, we calculated the single 

nucleotide variant observed/- expected upper bound of 
these UTRs. To analyze a possible correlation between 
these two values we calculated the Kendall Rank Correla-
tion Coefficient.

Constraint analysis of canonical genes and comparison to 
sORFs
For the analysis of canonical genes, we filtered the com-
prehensive VCFs for the current gnomAD 4.0 release for 
MANE select transcripts using Spark for observed vari-
ants with the above-mentioned criteria. We calculated 
the constraint values in the same fashion as described 
above and paired the sORFs with their neighbored 
genes. To analyze a possible correlation between these 
two values we calculated the Kendall Rank Correlation 
Coefficient.

Filtering gnomAD exomes for covered sORFs
Utilizing the allele sites published by gnomAD for the 
exomic regions and the depth summary, we removed 
possible variants which were insufficiently covered. For 
this we filtered out sORFs which were not completely 
contained in the exomic regions file. Additionally, follow-
ing the gnomAD flagship paper we discarded regions in 
our analysis that showed a mean coverage of less than 1.

Creation of a whole genome methylation map
In a comparable approach to the gnomAD flagship paper, 
we obtained the bisulfite whole-genome data provided 
by the NIH Roadmap Epigenomics Consortium [29]. For 
each genomic position we averaged the methylation frac-
tion across the provided 37 epigenomes from different 
tissue types and developmental time periods. Afterwards 
we performed a liftover to hg38 coordinates, using the 
UCSC chain files and the Python package liftover. Since 
we used the mutation rates published with the recent 
Gnocchi constraint score paper, we followingly binned 
the averaged methylation fractions into 16 bins between 0 
and 1. This resulted in the following methylation fraction 
bins: [0-0.0625, 0.0625–0.125, 0.125–0.1875, 0.1875-0.25, 
0.25-0.3125, 0.3125–0.375, 0.375–0.4375, 0.4375-0.5, 0.5-
0.5625, 0.5625–0.625, 0.625–0.6875, 0.6875-0.75, 0.75-
0.8125, 0.8125–0.875, 0.875–0.9375, 0.9375-1]. We used 
the corresponding bin of each genomic position to decide 
which mutation rate to select from the precalculated 
mutation rates [20] at potentially methylated regions.

Matching codings regions with the zoonomia phylop score
We obtained the latest phyloP values from the most 
recent Zoonomia [23] manuscript by Christmas et al. 
and paired them to the coding blocks of the whole gen-
code sORF dataset and their neighbored genes. For the 
genes we obtained the coding blocks from the most 
recent Ensembl Release GTF file. The paired values were 
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averaged using the groupby and mean function from 
Pandas.

Statistics
Most statistical tests were performed using the Python 
library SciPy [30]. For the calculation of the Kendall 
Rank Correlation Coefficient [31] and the correspond-
ing p-value the SciPy [30] function kendalltau was used. 
To test the equality of different OEUF distributions a two 
sample Kolmogorov-Smirnov [32] was performed using 
the ks 2samp function. To perform the comparison of 
the mean ranks of different OEUF distribution a Mann-
Whitney-U test [33, 34] was performed using Scipys 
[30] mannwhitneyu function. The mannwhitneyu func-
tion from SciPy [30] does not return the calculated mean 
ranks of the two groups, therefore we utilised the rank 
function from the Python package pandas to rank the 
two groups in a concatenated dataframe. Subsequently 
we summed the ranks of the two groups and calculated 
an average. For the Mann-Whitney-U test we filtered 
the sORF dataset for uORFs, dORFs and lncRNA-ORFs 
to avoid dependencies which would result from using 
overlapping sORF and coding genomic regions (as pres-
ent in intORFs, uoORFs and doORFs) for constraint cal-
culation. For the comparison between the sORF MOEUF 
values and their neighbored gene MOEUF values a Wil-
coxon signed ranked test [33, 34] was performed using 
SciPy [30] and the Wilcoxon function. Multiple hypoth-
esis tests and correlation analysis resulted in p-values not 
distinguishable from 0 by scipy and R [35]. These values 
and p values below 0.001 were reported as p value < 0.001 
as suggested by multiple scientific organizations (e.g. the 
APA). Following the suggestions by Lin, Lucas and Shm-
ueli [36] for statistical inference in large and complex 
datasets, we accompanied most of our hypothesis tests 
with visualizations and analysis for effect sizes. We uti-
lized the R package effsize [37] to compute the Vargha 
and Delaney A measurement [21], provided by the VD. 
A function. The Vargha and Delaney measurement can 
be described as the probability that a value from group 
one will be greater than a value from group two [21], 
thereby allowing a further quantification of the difference 
between the two groups.

Data processing with databricks and spark
The gnomAD 4.0 VCFs underwent comprehensive 
processing, including the preparation of positional 
whitelists, the filtration of designated genomic regions 
such as MANE transcripts, and observed variant count. 
This processing was conducted using Databricks and 
Azure Cloud. The employed Databricks runtime was 
14.3 LTS, which encompasses Apache Spark 3.5.0 and 
Scala 2.12. The computational infrastructure utilized was 

a multi-node E48d V4 Cluster, equipped with 384 GB 
memory and 48 cores per node.

Discussion
Research on sORFs is an emerging field and the discus-
sion of their function in the genome and their biological 
role is still ongoing. Here we tested different approaches 
to prioritize and evaluate variants that affect sORFs and 
neighbored regions, which is fundamental to under-
standing their role in health and disease.

sORFs show a similar mutational background to coding 
regions
sORFs show a similar mutational background to canoni-
cal genes, yet they can contain a higher number of high 
impact variants. This can have multiple explanations. 
It might be that these regions are not intolerant against 
loss-of-function variants or that these non-constrained 
sORFs do not encode functional microproteins. This sim-
ilarity in distribution, as seen in Fig. 1, on its own, does 
not bring sufficient evidence for a potential coding effect 
or conservation in sORFs, because the distribution might 
be fully explainable from a probabilistic standpoint, since 
synonymous and protein truncating variants have less 
opportunities to occur compared to missense variants. 
Followingly more complex workflows are required that 
respect the genomic context and the different effect of 
variants in differing reading frames.

A streamlined context dependent genomic constraint 
workflow
We put one of these more complex workflows to the 
test, by analyzing OEUF values for the effect of sequence 
length, alternating reading frames in overlapping regions 
and different genomic contexts. We provide evidence for 
the context sensitivity of these scores, therefore high-
lighting the importance of carefully mapped genomic 
constraint maps and the need for clearly defined genomic 
regions. We further strengthen this point by showing 
the difference in genomic constraint between sORFs and 
their closest genomic neighbors and transferring mapped 
OEUF values onto other regulatory regions, such as 
UTRs. Thereby we present further evidence for regional 
constraint differences, even in related regions. This is a 
concept which is in the process of being adapted in the 
analysis of coding regions, where it already has been 
demonstrated that the interpretation of some genes ben-
efits from regional constraint values in comparison to 
gene wide constraint values [38, 39]. For this, we sought 
to establish a more simplified method in comparison 
to the gnomAD Hail approach. This streamlined pro-
cedure enhances accessibility, particularly for Python-
native developers who may not be as well-versed with 
the Hail framework. It empowers the wider community 
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to calculate constraint metrics for their specific genomic 
elements of interest. While this approach has been spe-
cifically adapted for the use case presented here, it is 
important to acknowledge that the Hail framework offers 
a far more extensive range of capabilities.

Examining the explanatory power of OEUF scores from 
different perspectives
While OEUF values are a useful and versatile tool, their 
limitations need to be kept in mind, especially when 
comparing OEUF values from multiple regions to one 
another. OEUF scores are a one-sided conservative esti-
mation. Low OEUF scores hint towards a higher level 
of constraint, while high OEUF scores can either depict 
a region which is only weakly constrained or signal a 
small sample size with limited explanatory power. The 
limited explanatory power is a present issue, even today 
with datasets like gnomAD. Our analysis of the muta-
tional background in gnomAD and the calculation of the 
different constraint metrics demonstrate that the cur-
rently available sample size in gnomAD is insufficient to 
fully analyze the constraint level of sORFs. Especially the 
analysis of loss-of-function intolerance requires sample 
sizes which are by a magnitude larger than the current 
gnomAD release. As previously stated, small genomic 
regions suffer the most from the limited sample size since 
they already have a small number of mutational oppor-
tunities. Present metrics like the Gnocchi score try to 
reduce this problem by binning the genome in relatively 
large regions of 1,000 bases which are not mapped to the 
exact genomic architecture. We demonstrate that the 
OEUF value of SNVs in sORFs do not correlate well with 
the matched Gnocchi score of the sORFs. This might 
be explained by several possibilities. The first possibil-
ity is that the Gnocchi score bins relatively large regions 
of interest. sORFs only make up a small portion of these 
intervals and tend to fall within regions overlapping 
with canonical regions and regulatory elements. Conse-
quently, sORFs might just be another factor under many 
more that influences the Gnocchi score. Highlighting the 
importance of context sensitive genomic constraint maps 
and highlighting that the Gnocchi score might benefit 
from a higher resolution, a suggestion also mentioned in 
the original Gnocchi score paper [20]. On the other hand, 
our SNVOEUF calculation might also suffer from the 
short sample size. Large sample sizes could reveal a cor-
relation between the Gnocchi score and the SNVOEUF 
which might be masked by the fact that the sORF regions 
are just smaller and therefore tend to be more influ-
enced by the small sample size, than the larger gnocchi 
score intervals. Thereby highlighting the interaction of 
OEUF values, genomic context and sequence length and 
the need for expanding the presented workflow to larger 
datasets than gnomAD 4.0.

A subset of the sORF Gencode dataset is highly 
constrained
While the Gnocchi score and the SNVOEUF score can 
give a general overview of the constraint, additional 
metrics are required to analyze the coding potential 
of sORFs. Our analysis using the gnomAD genomes 
revealed that a portion of sORFs has a similar constraint 
to highly constrained genes with a similar OEUF value. 
While repeating this analysis with gnomAD exome data, 
we interestingly noticed a shift in the MOEUF distribu-
tion towards a smaller MOEUF value. We were surprised 
to see that the number of highly constrained sORFs 
increased. This could indicate that the current sample 
size for the gnomAD genomes might still be insufficient 
with respect to sORFs. As a result, this could potentially 
even lead to an underestimate of constraint in current 
datasets. These highly constrained sORFs, although a 
minority, might be of special interest in terms of poten-
tial clinical relevance since they show a similar constraint 
to the most constrained coding regions of the canoni-
cal genes. To our surprise intORFs were a minority in 
these highly constrained regions, which might highlight 
that these highly constrained regions are not purely 
ranked as highly constrained because of an overlap with 
canonical coding regions. To further explore the con-
straint of the sORFs, especially sORFs overlapping with 
other genomic regions, we suggest that an additional 
insight can be obtained by comparing the MOEUF val-
ues of genomic regions to their SNVOEUF value. Given 
a reading frame that is intolerant to missense variation it 
is to be expected that it has a lower number of total mis-
sense variants, than synonymous variants. If this reading 
frame is observed from an out of frame perspective this 
ratio might be different, because variants might be falsely 
interpreted as missense variants or vice versa. There-
fore, we hypothesize that sORFs predicted to be more 
constrained against missense variants compared to the 
totality of SNVs are indeed more likely to be constrained 
against missense variants. This is because the predicted 
intolerance metrics accurately reflect the balance of mis-
sense and general SNVs observed in a genuine reading 
frame. After performing our analysis, we observe this 
pattern for the majority of sORFs from the consensus 
dataset, when analyzed using the gnomAD exome data. 
When the gnomAD genome data is used, the picture 
becomes less clear. We argument that this is due to the 
large sample size difference between those two datasets, 
since missense variants have less opportunities to occur, 
when compared to the totality of possibilities of SNVs, 
which is in turn influenced by the sample size. These 
highly constrained sORFs, which also show this pattern 
of MOEUF/SNVOEUF relationship, are prime candi-
dates for experimental studies. To further explore their 
possible significance, we analyzed a recent preprint by 
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Deutsch et al. [40] in which the authors categorize this 
consensus dataset based on experimental evidence. 47 
of the highly constrained sORFs from the exome dataset 
have an evidence class assigned to them. 13 of these are 
ranked as Tier 1B, one as Tier 2 A, 25 as Tier 2 B, 7 as 
Tier 3, 1 as Tier 2 A and one as Tier 4. For the genome 
date, 37 of the highly constrained sORFs are assigned 
an evidence class. Of these 37, 11 are assigned a Tier 1B 
ranking, 20 as Tier 2B, one as a Tier 2 A and 5 as Tier 3.

Comparing the constraint of sORFs to the constraint of 
their genomic neighbors
When compared to the neighboring genes, which is 
used in the nomenclature of the gencode sORF set, we 
were not able to witness a correlation for both, gno-
mAD genome and exome data. This might be partially 
explained by the fact that the gnomAD constraint val-
ues are currently calculated gene wide. Some of these 
genes might have regional constraints, which will only 
be uncovered if a regional constraint calculation (exon 
wide or domain wide) is performed. To fully understand 
the connection between sORFs and neighboring genes it 
would be beneficial to analyze the sORFs and their closest 
neighboring gene element, annotated with regional con-
straint. This pattern of moderate constraint was contin-
ued when we compared uORFs with the constraint scores 
of UTR regions. This highlighted that uORFs evolved 
across a broad spectrum of constrained UTRs but were 
not enriched in highly constrained UTRs. Taken together 
we hypothesize that this moderately constrained back-
ground of genomic regions might have been a necessary 
condition for sORFs to evolve. This is supported by lit-
erature [5] as some sORFs are described as phylogeneti-
cally young and this background likely provides a balance 
between room for some genomic change and constraint.

Comparing evolutionary conservation and constraint-
based methods
There are multiple approaches for measuring sequence 
conservation. Common methods include evolutionary 
conservation metrics and population-based constraint 
approaches. Evolutionary conservation metrics involve 
aligning genomes from multiple specifies, followed by 
a sequence similarity comparison across the aligned 
genomes. The evolutionary background and develop-
mental history of sORFs has been investigated at length 
previously [15–17]. Sandmann et al. [17] demonstrated 
that the majority (around 90%) of sORFs contained in 
the gencode catalogue can be classified as evolutionary 
young, while the remaining 10% was classified as evolu-
tionary conserved across non-primate-mammals. They 
further identified a small subset (222/7264) of human 
specific sORFs. One limitation of evolutionary conser-
vation-based approaches is the further classification of 

recently developed genomic regions. This limitation can 
be reduced by population-based constraint approaches, 
which are focused on the distribution of variants inside a 
given population. Therefore, to extend existing prioritiza-
tion approaches, we investigated the constraint of sORFs 
in the general population, by implementing a workflow, 
which can be used standalone or can be combined with 
conservation-based approaches. To explore this further, 
we analyzed the phyloP score for the highly constrained 
sORFs from the exome data and subsequently in com-
parison also for their neighbored genes. The highly con-
strained sORFs have a mean phyloP value of 1.9 which 
is far from the median exome wide phyloP value of 4.9, 
as established by Christmas et al. [23]. However, this 
low phyloP values has to be interpreted under the pre-
viously introduced limitations. When those highly con-
strained sORFs are analyzed, which are neighbored by 
genes with already established phenotypes, as depicted 
in Table  1, we observed a mean phyloP value of 3.10. 
This is not really surprising, as we see a lot of associated 
GO-Terms in these genes regarding the highly conserved 
Notch-Pathway [41] and genes involved with neurode-
velopmental disorders, which in the literature also have 
been described as more conserved when compared to 
other genes [42]. An interesting direction, which could be 
explored in further research is to analyze whether these 
sORFs neighbored to genes, already mapped to clinical 
relevance, might function as regulatory elements of these 
regions, which is increasingly investigated in some dis-
ease types, especially in cancer [43–45].

Conclusion
We implemented a constraint calculation workflow 
in Python and Spark, which compares the number of 
expected genetic variants to the number of observed 
variants for different variant classes and genomic regions. 
Utilizing this workflow, we calculated constraint metrics 
for a consensus set of sORFs. We compared these com-
puted metrics to the already established Gnocchi score 
and to constraints of the genomic neighbors of sORFs. 
We demonstrate that it might be beneficial to calculate 
tailored constraint value for the sORFs, instead of rely-
ing on larger binned intervals. Furthermore, we provide 
evidence that there is only a weak connection between 
the constraint of sORFs and their genomic neighbors, 
signifying the benefit of a targeted constraint approach. 
Finally, we highlight that a small subset of sORFs is con-
strained in a similar way to highly constrained canonical 
genes, highlighting the need for further research in this 
emerging field.
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