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Abstract 

With the rapid advancement of sequencing technology, the increasing availability of single-cell multi-omics data 
from the same cells has provided us with unprecedented opportunities to understand the cellular phenotypes. 
Integrating multi-omics data has the potential to enhance the ability to reveal cellular heterogeneity. However, data 
integration analysis is extremely challenging due to the different characteristics and noise levels of different molecular 
modalities in single-cell data. In this paper, an unsupervised integration method (JSNMFuP) based on non-negative 
matrix factorization is proposed. This method integrates the information extracted from the latent variables of each 
omic through a consensus graph. High-dimensional geometrical structure is captured in the original data and biolog-
ically-related feature links across modalities are incorporated into the model using regularization terms. JSNMFuP can 
be utilized for data visualization and clustering, facilitating marker characterization and gene ontology enrichment 
analysis, providing rich biological insights for downstream analysis. The application on real datasets shows that JSNM-
FuP has superior performance in cell clustering. The factors are interpretable, making it an effective method for analyz-
ing cell heterogeneity using single-cell multi-omics data.
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Introduction
Single-cell sequencing technologies allow us to probe 
multiple biological layers. Single-cell level data, such as 
gene copy number, gene expression, chromatin accessi-
bility, and protein abundance, enable us to comprehen-
sively analyze cell heterogeneity. Single-cell multi-omics 
data analysis can provide unprecedented insights into cel-
lular state and biological processes. However, integrating 

various omics data is a challenging task. More and more 
computational tools are being developed to integrate 
single-cell multi-omics data. The Integration problems 
in single-cell biology can be categorized as the integra-
tion problems of matched and unmatched data [1]. In 
recent years, several algorithms have been developed 
to integrate unmatched data. Seurat V3 [2] constructs 
a gene activity matrix from scATAC-seq data and inte-
grates it with scRNA-seq data by matching shared genes. 
Both MATCHER [3] and UnionCom [4] implement data 
integration through manifold learning. MATCHER [3] 
assumes that all cells are distributed along a one-dimen-
sional structure. UnionCom [4] embeds each modality 
into a distance matrix that captures the intrinsic low-
dimensional structure of each single-cell dataset. GLUE 
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[5] is a deep learning method for integrating unmatched 
single-cell multi-omics data and inferring regulatory 
interactions based on the entire input dataset. Most inte-
gration methods for unmatched data require identifying 
similar cells in a sample and accurately aligning cross-
experimental datasets to discover new insights.

With the advancement of sequencing technolog [6–10], 
more and more single-cell multi-omics data from the 
same cells can be used for integrative analysis, but meth-
ods for unmatched data are not applicable to the setting 
that features are measured from the same cell. single-
cell multi-omics data analysis greatly improves our abil-
ity to resolve cell states, which requires computational 
methods that can define cell states based on matched 
data. BREM-SC [11], based on a probability generation 
model, assumes that each gene has multiple distribu-
tions in each cell type, which used to obtain RNA and 
protein count matrices using CITE-seq. Seurat V4 [12] 
is a late integration method that uses weighted near-
est neighbor (WNN) to synthesize intercellular affinity. 
Both scAI [13] based on non-negative matrix factoriza-
tion (NMF) and MOFA+ [14] based on factor analysis, 
integrate data through a latent space. JSNMF [15] is also 
based on NMF to integrate single-cell multi-omics data, 
but it assumes different latent variables for two molecu-
lar morphologies and uses a consensus graph to combine 
the information carried by different molecular modali-
ties. Meanwhile, several other ensemble algorithms for 
mismatched single-cell omics, for example, iNMF [16] 
is an online, continuously iterative, on-line single-cell 
data integration algorithm that scales to an arbitrarily 
large number of cells using fixed memory and iteratively 
merges new datasets as they are generated. CCNMF [17] 
is to link multi-omics single cells by linking copy num-
ber and general concordance of gene expression profiles. 
Couple NMF [18] is for the generation of different types 
of functional genomic data on single cells from different 
cell samples from the same heterogeneous population 
should be coupled to the clustering behaviour of cells in 
different samples.

The features in multi-omics data do not exist in isolation, 
and there are complex interactions between them. These 
interactions often reflect complex regulatory networks 
in organisms, and introducing such a priori information 
can improve the accuracy of data analysis. The informa-
tion provided by different histological data is often com-
plementary, and by integrating these data and introducing 
feature interactions, a more comprehensive view can be 
formed and new information and patterns that cannot be 
revealed by single histological data can be discovered.The 
Correlation-based Local Approximation of Membership 
(CLAM) algorithmic framework is one of the methods to 
integrate multi-omics data and introduce known molecular 

interactions during gene module identification. In this 
paper, we propose a novel multi-view algorithm based on 
non-negative matrix factorization (NMF) for the integra-
tive analysis of single-cell multi-omics data obtained from 
the same cell, referred to as Jointly Semi-Orthogonal Non-
negative Matrix Factorization using Prior knowledge (JSN-
MFuP). JSNMFuP not only captures the high-dimensional 
geometrical structure of each omics in the original data, 
but also considers the related features across modalities. 
Compared with JSNMF [15], it effectively improves clus-
tering performance, as validated on mouse brain and kid-
ney datasets. We utilize JSNMFuP for the analysis of three 
modalities dataset. This method not only accurately distin-
guishes HepG2 cells (a human hepatoblastoma-derived cell 
line) from human hepatocellular carcinoma (HCC) cells, 
but also provides biological insights into the classification 
of HCC subpopulations in the dataset.

Method
NMF
Given a non-negative original matrix X ∈ Rf×s , where f is 
the number of shared genes and s is the number of cells. 
NMF [19] aims to approximate it by the product of two 
non-negative low-rank matrices W ∈ Rf×K and H ∈ RK×s , 
i.e., X ≈ WH . K is the number of factors and its value is 
less than f and s. Solving NMF to obtain the base matrix 
W and coefficient matrix H can be considered as solving a 
constrained optimization problem, whose objective func-
tion is:

where ‖‖F denotes the Frobenius paradigm number of a 
matrix.

JSNMF
JSNMF [15] is suitable for the joint analysis of transcrip-
tomic and epigenomic profiles. For feature matrices 
X1 ∈ Rf1×s and X2 ∈ Rf2×s , JSNMF requires that they have 
the same samples, but the features can be different. JSNMF 
enables the construction of a consensus graph, which inte-
grates various molecular patterns within the same cells to 
analyze cellular heterogeneity. The objective function is as 
follows:
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where α , η and γ are hyperparameter weights, and �(i) 
can define the weight of the i th data modality in the 
term with a Laplacian graph by adaptive learning. The 
first term represents the standard NMF loss function, 
which quantifies the difference between the original 
matrix and the reconstructed matrix. The second term 
refers to the cell-cell similarity matrix S ∈ Rs×s that inte-
grates multiple molecular modalities. The third term is a 
semi-orthogonal constraint on H (i) and the fourth term 
is a normalized term of S. The fifth term refers to graph 
Laplacian regularization, which aims to preserve the 
high-dimensional geometrical structure of each modality 
in the original data space.

JSNMFuP
JSNMF points out that incorporating the regulatory rela-
tionships between genes and regulatory regions into the 
framework is one of the future development directions. The 
approach of incorporating prior information about interac-
tions into the objective function in the form of regulariza-
tion terms has been successfully utilized in various fields 
[18, 20]. To improve the performance of JSNMF algorithm, 
we introduce an adjacency matrix to connect the regula-
tory relationships between different modality features. We 
use the adjacency interaction matrix Ri,j to connect the fea-
tures of one modality to the features of another modality. If 
there is a regulatory relationship between the two features 
of distinct omics layers, the corresponding element in Ri,j 
is 1; otherwise, it is 0. In the guide graph constructed by 
GLUE[5], nodes represent omics features (such as genes 
and ATAC peaks), and edges represent prior regulatory 
relationships between these features. By default, if ATAC 
peaks are located near the promoter of a gene, they will be 
connected. Inspired by GLUE, these regions and features 
are considered connected when constructing adjacency 
matrices. Based on JSNMF, we further define the objective 
function of JSNMFuP as follows:

where γ2
∑

1≤i<j≤M

tr(Wi
TRi,jWi) is a new term that repre-

sents the relationship between modality features through 
network regularization. Parameter γ2 represents the 
weight of the network regularization constraint. The JSN-
MFuP framework is shown in Fig. 1.
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Since the objective function of JSNMFuP is non-con-
vex, it is relatively difficult to solve it directly. For this 
reason, we use the method of optimizing one matrix at a 
time while keeping the other variables constant. JSNM-
FuP first uses the Non Negative Double Singular Value 
Decomposition (NNDSVD) algorithm [21] to compute 
the optimization problem min

Wi ,Hi≥0

∥
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T
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∥

2

F
 to ini-

tialize Wi and Hi , and uses Similar Network Fusion (SNF) 
algorithm [22] to initialize S. Then the objective function 
is optimized using multiplicative updates (MU). The opti-
mization problem is divided into four sub-problems for 
iterative solution.

Selection of hyperparameters
In JSNMFuP, We refer to the JSNMF [15] to initialize 
the adaptive weights and set the default values of each 
parameter to: ϕi = 1

M , η = 0.5 . The graph regularization 
parameters α and γ1 , and the feature links regularization 
parameter γ2 are set as follows:

In the results, we perform robust analysis of the hyper-
parameters α , γ1 and γ2 . The results indicate that within a 
certain range of parameter value, the overall performance 
of the model is relatively robust. K is the number of fac-
tors. In our experiments, we set the number of factors in 
JSNMFuP to equal the number of cell types. At the same 
time, we test the robustness of JSNMFuP by varying the 
number of factors from 10 to 50 to assess its sensitivity to 
the number of K.

Constructing Laplacian graph
If two cells are close to each other in the original data 
space, they should also be close to each other in the 
low-dimensional latent space. We capture the high-
dimensional geometrical structure of each dataset using 
Laplace graphs. The Laplace matrix Li can be defined as 
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T
i

∥

∥

∥

2

F

10
M
∑

i=1

tr(ĤT
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Li = Di − Ai , where Ai is the adjacency matrix and Di 
is the diagonal matrix. We use an exponential similarity 
kernel function to calculate the similarity.

where β is empirically set to 0.5 and (µi)m,n is used 
to eliminate the scaling problem. dmn denotes the 
squared Euclidean distance between cell m and n, 

(7)(Ai)m,n = exp

(

−

∥

∥(xi)m − (xi)n
∥

∥

2

F

β × (µi)m,n

)

(8)(µi)m,n =
mean(d(m,Nm))+mean(d(m,Nm))+ dmn

3

mean(d(m,Nm)) denotes the average of the squared 
Euclidean distance between cell m and its 20 nearest 
neighbors, and mean(d(n,Nn)) denotes the average of 
the squared Euclidean distance between cell n and its 20 
nearest neighbors.

Evaluation metrics
We construct a k-nearest neighbor (KNN) graph (k=50) 
using the cell-cell similarity matrix S, and then clus-
ter the cells using Louvain [23] based on the KNN 
graph. The adjusted rand index [24] (ARI), normalized 
mutual information (NMI), and residual average Gini 
index [25] (RAGI) are calculated to evaluate algorithm 

Fig. 1  Overview of JSNMFuP. A Integration analysis of single-cell multi-omics data from the same cells (B) Construction of feature interaction matrix 
and Laplacian graph (C) Learning of feature loading matrix and factor loading matrix (latent variables) (D) Learning of cell-cell similarity matrix (E) 
Data integration for downstream analysis
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performance. ARI and NMI require the true labels of the 
data to compare the similarity and consistency between 
the cluster prediction labels and the true labels. RAGI 
does not require true labels of the data, as it measures the 
difference between the variability of marker gene expres-
sion and the variability of housekeeping gene expression 
across cell clusters. Marker genes are highly expressed 
in specific cell types, while housekeeping genes need to 
be stably expressed in all cells. The higher the values of 
the three metrics, the better the clustering effect of the 
algorithm. The true label is determined by the cell label 
provided in the original publication, and the selection 
of marker genes and housekeeping genes is consistent 
with JSNMF in the same datasets. For the three modali-
ties data, we calculate the Calinski-Harabasz (CH) index 
[26] and the Silhouette Coefficient [27] to determine the 
number of clusters for analysis. The higher values indi-
cate that the cluster is more compact and farther away 
from other clusters.

Competitive methods
The three commonly used vertical integration methods 
are scAI [13], MOFA+ [14], and MNN [12]. scAI aggre-
gates sparse epigenetic signals in cell like structures 
learned in an unsupervised manner through iterative 
learning, allowing for coherent fusion with transcrip-
tome measurements. MOFA+ reconstructs low dimen-
sional representations of data using computationally 
efficient variational inference and supports flexible spar-
sity constraints, allowing for joint modeling of variations 
between multiple sample groups and data patterns. MNN 
can learn the relative utility of each data type in each cell, 
thereby achieving integrated analysis of multiple patterns. 
And JSNMF [15] is our main method based on, which 
assumes two molecular patterns of different latent vari-
ables and integrates transcriptome and epigenome data 
with consensus graph fusion to better address different 
features and noise levels in different molecular patterns 
in single-cell multi omics data. Therefore, we choose the 
above four methods to compare with our method. MNN 
and MOFA+ are composed of corresponding R pack-
ages, while other methods are used by Python packages. 
For each method, we use the same cells according to the 
required data preprocessing steps, and each method uses 
default hyperparameters.

Datasets
 

1.	 Mouse brain dataset. Histone modifications and gene 
expression profiles of 7465 adult mouse frontal cor-
tex and hippocampus from Paired-Tag are down-

loaded from the Gene Expression Omnibus (GEO) 
(GSE152020).

2.	 Mouse kidney dataset. Chromatin accessibility and 
gene expression profiles of 8837 adult mouse kidney 
cells obtained from sci-CAR are downloaded from 
GEO (GSM3271044 and GSM3271045).

3.	 Hou dataset. 25 HCC cells and 6 single HepG2 cells 
are sequenced by scTrio-seq, and the sequencing 
data are downloaded from GEO (GSE65364).

For the mouse brain dataset and mouse kidney dataset, 
we filter out cells with read counts for the genes less than 
500 in the expression data or read counts for the regions 
less than 200 in the epigenomic data. Then use Seurat [2] 
to normalize the data of the two modalities, perform log-
arithmic transformation, select features, and extract the 
first 5000 highly variable genes and the first 10000 highly 
variable regions for analysis. If the highly variable region 
overlaps with the gene body or promoter region of a 
highly variable gene, they will be connected. For the three 
modalities dataset (Hou dataset), we convert the down-
loaded gene expression data from FPKM to TPM stand-
ardization. For DNA methylation data, we first download 
the GTF annotation file from the Gencode database 
(https://​www.​genco​degen​es.​org/). Then, extract the CpG 
sites located within the range of 2000bp upstream to 
2000bp downstream of transcription start sites, calculate 
the average methylation level and normalize the methyla-
tion values. We utilize the R package CopyKAT [28] to 
acquire gene copy number variation (CNV) data, which 
is inferred from single-cell gene expression data. Then, 
normalize the CNV data. Select the first 2000 highly vari-
able features from each modality and create an adjacency 
matrix of feature links based on features associated with 
the same gene.

Result
Application to the mouse brain dataset
In the first case, we investigate jointly profiles of his-
tone modifications and gene expression in mouse 
brain cells. We compare JSNMFuP with scAI, WNN, 
MOFA+, and JSNMF. In order to quantify the cluster-
ing effect, we optimize the clustering resolution to align 
with the number of clusters in the publication. JSNM-
FuP enables the data visualization using uniform mani-
fold approximation and projection (UMAP) [29], and 
annotate cells with the original labels (Fig.  2A). It can 
be seen that cells of the same cell type can be closely 
clustered together, and JSNMFuP has the highest val-
ues of the three indicators in comparison, represent-
ing the best clustering performance (Fig.  2B). Our 
analysis focuses on factors 17 and 14, with a detailed 
examination of both. The violin plots demonstrate that 

https://www.gencodegenes.org/
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mouse brain ependymal cells (HC NonNeu Ependy-
mal) exhibit elevated H1 in Factor 17 (Fig.  2C), while 
brain inhibitory neurons expressing growth inhibitors 
(BR_InNeu_Sst) display heightened H1 values in Fac-
tor 14 (Fig. S3B). Gene rankings are plotted using scAI 
to define gene scores, which is the expression value of 
each gene divided by the sum of the expression val-
ues of all genes in that factor (Fig.  2D) (Fig. S3C). 
The figure highlights 10 genes that have been identi-
fied as marker genes of mouse brain epithelial cells in 
CellMarker 2.0 [30]: Wdr63, Enkur, 3300002A11Rik, 
Ccdc170, Armc3, Fhad1, Ttc29, Dnah11, Ttc21a. Fur-
thermore, 10 marker genes are identified in growth 
inhibitor-expressing brain inhibitory neurons (Ccnb1, 
Cep170b, Igf1, Igfbpl1, Pdyn, Ptprm, Reln, Rnaseh2b, 
Ubash3b, Unc13c). These marker genes generally have 
high gene scores. Furthermore, we rank genes based on 
their expression values in each factor of the gene load-
ing matrix W1 , and the top 100 genes are considered as 
factor-specific genes. Use the R package ClusterPro-
filer to conduct Gene Ontology (GO) Biological Pro-
cess (BP) enrichment analysis on these 100 genes. In 
the GO BP enrichment analysis, the corrected p-value 
(Fisher’s accurate test) is obtained using the Benjamini-
Hochberg method, where Log10(p.adjust) represents 
the logarithm of the corrected p-value to the base 10. 

We set the corrected p-value threshold to 0.01, mean-
ing that we screen with a threshold of Log10(p.adjust) 
= −2. A total of 20 biological processes are screened. 
As shown in Supplementary Table S1, the results reveal 
biological processes closely associated with cilia and 
microtubules. This is consistent with the characteristics 
of ependymal cells. Ependymal cells, a type of glial cells 
located in the central nervous system, produce cerebro-
spinal fluid and contribute to the blood-brain barrier. 
In the brain ventricles, the cilia on the ependymal cells 
fluctuate back and forth to circulate cerebrospinal fluid 
[31]. The prominent feature of the apical surface of 
the ependymal cells is the presence of motile cilia, and 
the main skeleton of the motile cilia is a "9+2" micro-
tubule structure. Online GO BP enrichment analy-
sis is conducted using GREAT (http://​bejer​ano.​stanf​
ord.​edu/​great/​public/​cgi-​bin/​great​Web.​php) for the 
top 1000 loci in each factor ranking. The Binom Raw 
P-Value is set to be less than 0.01 and the Binom FDR 
Q-Value is set to be less than 0.05, resulting in hexose 
metabolic process (p-value=6.80× 10−5 ), monosaccha-
ride metabolic process (p-value=6.35× 10−5 ), response 
to insulin(p-value=8.06× 10−5 ). And previous histo-
logical and in  vitro studies have shown that the pos-
terior ependymal cells play a role as glucose sensors 
[32]. This indicates that enrichment analysis provides 

Fig. 2  Analysis of the mouse brain dataset (A) UMAP visualization of real cell types in the mouse brain dataset (B) Comparison of clustering results, 
evaluated by NMI, ARI, and RAGI (C) The violin plot shows the expression of different cell types in factor 17 (D) Gene ranking plot for the factor 17

http://bejerano.stanford.edu/great/public/cgi-bin/greatWeb.php
http://bejerano.stanford.edu/great/public/cgi-bin/greatWeb.php
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consistent and rich functional insights into the cell 
types identified.

Application to the mouse kidney dataset
In the second case, we conduct an integrative analysis of 
single-cell gene expression and chromatin accessibility 
in mouse kidney cells. We also compare JSNMFuP with 
four other methods and implement UMAP visualization 
(Fig.  3A). In this dataset, JSNMFuP still shows the best 
clustering performance in all indicators (Fig.  3B). We 
analysed Factor 9 and Factor 3 and found that distal con-
voluted tubule cells in mouse kidneys had higher levels 
of Factor 9 (Fig. 3C) and proximal tubule S3 cells (type 2 
cells) in kidneys had higher levels of Factor 3 (Fig. S4C). 
In CellMarker 2.0, 10 marker genes (Wnk1, Slc12a3, 
Lhx1, Sgms2, Slc16a7, Gm15848, Abca13, Trpm6, Pvalb, 
Hoxb5os) are identified. As can be seen from the gene 
sequencing plot, the scores and rankings tend to be 
higher for factor 9. Whereas (Eci3, Ghr, Guca2b, Ldhd, 
Mep1a, Nudt19, Slc6a18, Slc7a13, Slco1a6, Snhg11) 
tend to have higher scores and rankings in factor 3. We 
also perform GO BP enrichment analysis on the top 
100 factor-specific genes using the R package Cluster-
Profiler. Identify 5 biological processes with corrected 
P-values less than 0.01, i.e., Log10 (p.adjust) less than 

−2. The distal tubules and the collecting duct in the pos-
terior half are the primary locations for secreting potas-
sium ions. They can also reabsorb sodium chloride and 
water in appropriate proportions to regulate sodium 
and potassium homeostasis [33]. In the GO BP enrich-
ment analysis results, we also observe processes related 
to potassium ion homeostasis and sodium ion transport 
(Supplementary Table  S2). Through the GO BP enrich-
ment analysis on W2 , we obtain the following biologi-
cal processes: positive regulation of stress-activated 
MAPK cascade (p-value=6.52× 10−5 ), positive regula-
tion of stress-activated protein kinase signaling cascade 
(p-value=7.25× 10−5 ), positive regulation of JNK cas-
cade (p-value=2.46× 10−4 ). This may be due to the acti-
vation of the MAPK signaling pathway by factors such as 
osmotic pressure and shear stress induced by fluid flow 
over the cell surface in curved tubular cells at the distal 
end of the mouse kidney.

Application to three modalities dataset
In this case, we integrate and analyze 31 liver cells data 
from the Hou dataset. We calculate the CH index and 
Silhouette coefficient for various numbers of clusters 
across different factors to identify the optimal number of 
clusters. From Fig. 4A, it is clear that when the number 

Fig. 3  Analysis of the mouse kidney dataset (A) UMAP visualization of real cell types in the mouse kidney dataset (B) Comparison of clustering 
results, evaluated by NMI, ARI, and RAGI (C) The violin plot shows the expression of different cell types in factor 9 (D) Gene ranking plot for the factor 
9
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of factors is 2 and the number of clusters is 2, both the 
CH index and silhouette coefficient have the highest val-
ues. Therefore, we set K=2 in JSNMFuP and optimize the 
clustering resolution to 2 clusters. Figure 4B displays the 
UMAP visualization of the clustering results. 25 HCC 
cells and 6 HepG2 cells can be correctly clustered. Over-
all, when the number of factors is 3 and the number of 
clusters is 3, a higher CH index and Silhouette coefficient 
are also obtained. Therefore, we also analyze this situa-
tion. By comparing the left and right subgraphs of Fig. 4B, 
It can be seen that when K changes from 2 to 3, Cluster 
2 divides into Cluster 2 and Cluster 3. That is, 25 HCC 
cells are divided into two subpopulations, which is con-
sistent with previous research findings [33]. These two 
subpopulations are associated with Factor 1 and Factor 3, 
respectively (Fig. 4C). We utilize the top 100 genes with 
the highest gene expression values in each factor for GO 
BP analysis (Fig. 4D). Factor 2 at K=3 exhibits correlation 
with HepG2 cells, and the analysis results focus on pro-
tein transcription and translation, as well as endoplasmic 
reticulum-related biological processes. HepG2 cell line 

closely resembles human liver tissue in both morphology 
and function, and is frequently utilized in the research 
on drug metabolism and liver toxicity. The liver is highly 
active in protein synthesis and metabolism, with the 
endoplasmic reticulum playing a key role in the synthesis 
of proteins and lipids. For these reasons, The biological 
explanations we obtain in the factors are consistent with 
existing knowledge. HCC subpopulation 1, correspond-
ing to Cluster 2, is at the forefront in blood coagulation, 
regulation of various enzymes, and metabolism in the 
biological process of gene enrichment. HCC subpopula-
tion 2, corresponding to Cluster 3, focuses on neutrophil 
activation and detoxification. This indicates that HCC 
subpopulation 1 exhibits a stronger response to immune 
recognition, while HCC subpopulation 2 tends to evade 
immune recognition and is more aggressive.

Hyperparameters and factor stability
To assess the robustness of JSNMFuP to hyperparameters 
and the number of factors, we create line plots to observe 
its performance. The experimental results are depicted in 

Fig. 4  Analysis of Hou dataset (A) CH index and Silhouette coefficient corresponding to different cluster numbers in different factors (B) UMAP 
visualization of Louvain clustering (Left: K=2, Right: K=3) (C) Heatmap of factor loading matrix obtained by JSNMFuP (D) Dotplots for GO BP analysis 
(upper: Cluster 1, middle: Cluster 2, bottom: Cluster 3)
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the figures. As can be seen in the results, for the hyperpa-
rameters α , γ1 , γ2 and the factor K, the clustering perfor-
mance evaluated by NMI, ARI, and RAGI does not show 
significant differences with their changes (Supplementary 
Fig. S1), indicating that the performance of JSNMFuP is 
robust.

Convergence analysis
As a non-convex problem, JSNMFuP is solved by an 
iterative optimization algorithm. Supplementary Fig. S2 
shows the objective function changes in each iteration. 
The horizontal axis represents the number of iterations, 
and the vertical axis represents the value of the objective 
function. It can be clearly seen from the figure that the 
convergence trend of the objective function curve is obvi-
ous, with the target value steadily decreasing in each iter-
ation. The algorithm JSNMFuP guarantees convergence.

Conclusion
The rapid development of single-cell multi-omics 
sequencing technologies has led to an increasing avail-
ability of single-cell multi-omics data from the same cell. 
This has driven research on cell heterogeneity. In this 
study, we propose a method called JSNMFuP for integrat-
ing and analyzing multi-omics data from the same cells.

Firstly, JSNMFuP demonstrates good clustering perfor-
mance. In comparing the clustering performance of the 
mouse brain dataset and the mouse kidney dataset, we 
used metrics such as NMI, which utilizes raw label infor-
mation, and RAGI, which uses the expression of marker 
genes and steward genes. On one hand, JSNMFuP ranks 
first in clustering comparison with the other four meth-
ods (scAI, WNN, MOFA+, JSNMF). On the other hand, 
we construct a model that only uses gene expression data 
for clustering. The results show that JSNMFuP outper-
forms this model in clustering performance by utilizing 
two omics information. This indicates that JSNMFuP can 
integrate complementary and compatible information 
from each modality, and incorporating multi-omics data 
into integrative analysis is beneficial.

Secondly, the factors in JSNMFuP are interpretable. 
In the detailed analysis of factor 17 in the mouse brain 
dataset, it is evident that factor 17 shows a strong cor-
relation with ependymal cells in the mouse brain. GO 
enrichment analysis is performed on the genes ranked 
at the top of factor 17, revealing biological processes 
closely related to the unique cilia found in ependymal 
cells. In the analysis of factor 9 in the mouse kidney 
dataset, we also obtain biological explanations related 
to the distal convoluted tubule cells of the mouse kid-
ney. Using data from three modalities, JSNMFuP accu-
rately distinguishes HepG2 cells from HCC cells and 
divides HCC cells into two subpopulations. This allows 

for the study of regulatory mechanisms of biological 
pathways related to HCC. Finally, we investigate the 
robustness of hyperparameters α , γ1 , γ2 and the fac-
tor K. The test results confirm that the clustering per-
formance of the JSNMFuP for the examples is stable, as 
evidenced by the variation in their values. The JSNM-
FuP algorithm ensures convergence and tends to con-
verge within a hundred iterations.

The matrix decomposition methods such as scAI, 
MOFA+ and JSNMF may not be suitable for CITE-seq 
datasets due to the small second modal dimension of 
surface proteins. Our proposed JSNMFuP, as well as 
other matrix decomposition methods, are more suit-
able for handling single-cell multi-omics datasets 
with larger modal dimensions, especially for analyses 
involving transcriptomic and epigenomic data. Based 
on JSNMF, JSNMFuP incorporates the regulatory rela-
tionships between different omics features into the 
non-negative matrix factorization model. At present, 
JSNMFuP simply links the features associated with 
the same gene as an interaction.In the future,we might 
be able to mine the database to find the correspond-
ing high-confidence feature relationships that indicate 
interaction. The adjacency matrix of JSNMFuP features 
can be further optimized for linking terms.

In our future work, we will further explore the inter-
action between NMF-based multi-omics data inte-
gration methods [33] and various variable selection 
methods, as well as their differences in performance 
across different datasets. In addition, we will explore 
methods to design simulation studies to fully evalu-
ate the performance of our approach in different sce-
narios. In particular, we will explore how to accurately 
model complex single-cell regulatory relationships and 
evaluate the performance of methods. For the problem 
of data contamination, we will refer to the study of Wu 
et al. [36] and design simulation studies to evaluate the 
robustness of our method under different degrees of 
multi-omics data contamination, with a view to provid-
ing more reliable and robust analytical tools.
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