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Abstract
Background  Improving photosynthetic efficiency is an essential strategy for advancing wheat breeding progress. 
Integrating wheat genetic resources provides an opportunity to discover pivotal genomic regions and candidate 
genes (CGs) for photosynthetic efficiency traits in wheat.

Results  A large-scale meta-QTL (MQTL) analysis was performed with 1363 initial quantitative trait loci (QTLs) 
for photosynthetic efficiency traits extracted from 66 independent QTL mapping studies over the past decades. 
Consequently, 718 initial QTLs were refined into 74 MQTLs, which were distributed on all wheat chromosomes except 
1D, 3 A, 4B, and 5B. Compared with the confidence interval (CI) of the initial QTL, the CI of the identified MQTL was 
0.03 to 10.97 cM, with an average of 1.46 cM, which was 20.46 times narrower than that of the original QTL. The 
maximum explained phenotypic variance (PVE) of the MQTL ranged from 7.43 to 20.42, with an average of 11.97, 
which was 1.07 times higher than that of the original QTL. Of these, 54 MQTLs were validated using genome-wide 
association study (GWAS) data from different natural populations in previous research. A total of 3,102 CGs were 
identified within the MQTL intervals, where 342 CGs share homology with rice, and 1,043 CGs are highly expressed 
in leaves, spikes, and stems. These CGs were mainly involved in porphyrin metabolism, glyoxylate, dicarboxylate 
metabolism, carbon metabolism and photosynthesis antenna proteins metabolism pathways by the in silico 
transcriptome assessment. For the key CG TaGGR-6A (TraesCS6A02G307700) involved in the porphyrin metabolism 
pathway, a functional kompetitive allele-specific PCR (KASP) marker was developed at 2464 bp (A/G) position within 
the 3′ untranslated region, successfully distinguishing two haplotypes: TaGGR-6A-Hap I (type AA) and TaGGR-6A-Hap 
II (type GG). Varieties with the TaGGR-6A-Hap II allele exhibited approximately 13.42% and 11.45% higher flag leaf 
chlorophyll content than those carrying the TaGGR-6A-Hap I allele. The elite haplotype TaGGR-6A-Hap II was positively 
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Introduction
Wheat (Triticum aestivum L.) is one of important staple 
food crops worldwide, providing about 20% of the calo-
ries consumed in the global diet [1]. The increasing pace 
of global food crisis is staggering in the context of adverse 
global climate change, ever-growing world population 
and reduction in arable land [2, 3]. It is estimated that 
wheat production must increase by 60% to meet the food 
demand of the projected global population of 9.6 billion 
by 2050 [4]. To address these concerns, significant strides 
have been made on elite trait-based breeding to acceler-
ate grain yield improvement.

Wheat yield is a complex trait influenced by various 
agronomic traits, where photosynthesis plays a critical 
role. Photosynthesis captures solar energy and represents 
the main driving force for plant growth, biomass accu-
mulation and sink storage [5]. Optimizing photosynthe-
sis represents a feasible strategy to increase cereal yield 
[6]. The efficiency of photosynthesis is a key indicator of 
photosynthetic capacity in plants [7–9]. Several impor-
tant photosynthetic parameters, consisting of chlorophyll 
content, photosynthetic rate, stomatal conductance and 
so on, used to assess plant photosynthetic performance 
can significantly impact wheat growth, development, and 
final yield [10, 11]. The grain chlorophyll contents with 
high photosynthetic capacity and grain filling rate show 
significant positive correlation [12]. Elongating the dura-
tion of effective photosynthesis could increase the net 
photosynthetic rate and positively contributes to grain 
yield potential [13]. It is universally acknowledged that 
photosynthetic-related traits, including leaf morphology, 
leaf angle and stomatal morphology also have effect on 
wheat yield [14]. Optimal leaf shape and size are essen-
tial characteristics for efficient absorption of sunlight 
energy and its conversion into grain yield in wheat [15]. 
Gas exchange between plants and the environment is 
determined by stomatal conductance. The size and den-
sity of stomata are closely related to the efficiency of car-
bon dioxide and water transfer, which in turn influences 
the process of photosynthesis and overall photosyn-
thetic efficiency [16]. In recent years, research on genetic 
improvement of photosynthetic efficiency in wheat has 
made remarkable progress. Through in-depth explora-
tion of the molecular mechanism underlying photosyn-
thesis, researchers have successfully identified several key 

genes associated with photosynthetic efficiency, and uti-
lized gene editing technology to precisely modify these 
genes, thereby enhancing the photosynthetic efficiency 
and yield of wheat [17, 18]. Although the aforementioned 
genes have achieved remarkable results in the genetic 
improvement of wheat photosynthetic efficiency, the 
regulatory network of wheat photosynthetic efficiency 
is still complex and not fully elucidated. Therefore, it is 
important to continue to deepen the understanding of 
the genetic mechanism of photosynthetic efficiency traits 
in wheat and to identify more key genes.

In recent decades, quantitative trait locus (QTL) map-
ping associated with photosynthetic efficiency traits has 
been extensively discovered in different genetic back-
grounds [10, 19–23]. However, the accuracy of QTL 
identification is affected by several factors, including 
the density of molecular markers, the complexity of the 
parental genetic backgrounds, and the statistical models 
used [24, 25]. To overcome these limitations, meta-QTL 
(MQTL) analysis which incorporates molecular markers 
and QTL detected from various genetic backgrounds and 
environments can identify reliable, stable and consistent 
MQTL regions and candidate genes (CGs) linked to traits 
in wheat [26]. The MQTL method can be directly applied 
to wheat genetic improvement without being influenced 
by genetic backgrounds, thereby enhancing breeding effi-
ciency and accuracy [27, 28].

The combination of MQTL and genome-wide associa-
tion studies (GWAS) is of great importance in genetics, 
and by overlaying GWAS results with MQTL data, we 
can more precisely identify genomic regions associated 
with photosynthetic efficiency. This improvement not 
only integrates raw QTL results from different genetic 
backgrounds but also improves the accuracy and reliabil-
ity of QTL mapping, thus accelerating the identification 
of CGs [29]. This study provided a breakthrough solu-
tion to the challenge of genetic resolution of photosyn-
thetic efficiency, a complex trait, through the systematic 
integration of MQTL and GWAS. Compared with previ-
ous studies, the data collected in this study are larger in 
scale and more extensive in trait coverage, demonstrat-
ing significant advantages in data size and trait resolu-
tion dimensions. The increasing and intensive application 
of MQTL has effectively revealed the complex genetic 
architecture of multigene quantitative traits in wheat 

selected during wheat breeding, as evidenced by the geographical and annual frequency distributions of the two 
TaGGR-6A haplotypes.

Conclusion  The findings will give further insights into the genetic determinants of photosynthetic efficiency traits 
and provide some reliable MQTLs and putative CGs for the genetic improvement of photosynthetic efficiency in 
wheat.
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[30]. Among previous MQTL studies, three or more have 
focused explicitly on traits related to the photosynthetic 
rate, such as chlorophyll content and flag leaf size [31–
33]. In the present study, the first large-scale integration 
of photosynthetic efficiency-related traits was conducted 
to provide a comprehensive systematic analysis of photo-
synthetic efficiency in wheat for a more thorough discov-
ery of multiple MQTLs and CGs in wheat.

The objective of this study was to conduct an MQTL 
analysis related to wheat photosynthetic efficiency 
based on QTL mapping studies published over the past 
few decades and to identify key CGs in the important 
genomic intervals to pinpoint excellent haplotypes. This 
study will offer further insight into the genetic determi-
nants for photosynthetic efficiency, and some valuable 
putative CGs will be suggested to be employed for the 
wheat improvement.

Results
Study on the characteristics of QTLs related to wheat 
photosynthetic efficiency
Between the years 2007 and 2024, a total of 66 indepen-
dent QTL mapping studies related to photosynthetic 
efficiency traits were conducted, with the majority of 
these studies being published between 2014 and 2022. 
These studies involved 61 recombinant inbred line (RIL) 
populations and 15 doubled haploid (DH) populations 
(Fig.  1a-b, Table S1). As these lines of the permanent 
mapping populations were genetically stable and could 
be used for phenotyping the yield-related traits for years 
under different environment conditions. As a result, 
1,363 QTLs for wheat photosynthetic efficiency were col-
lected, including 588 QTLs for photosynthetic param-
eters and 775 QTLs for photosynthetic-related traits 
that influence photosynthetic parameters (Fig. 1c). These 
1,363 reported QTLs distributed among all 21 wheat 
chromosomes, where 78.94% (1076/1363) were distrib-
uted on the A and B sub-genomes. Among them, chro-
mosome 7A contained the highest number of QTLs with 

Fig. 1  The information of QTL for photosynthetic parameters and photosynthetic-related traits in previous QTL mapping studies used for meta-QTL anal-
ysis. (a) The time distribution of previous QTL mapping studies. The orange column shows a greater number of published studies, while the blue column 
indicates a lesser number of published studies. (b) The population type of pervious QTL mapping studies. (c) The proportion of QTL for photosynthetic 
parameters and photosynthetic-related traits. (d) The distribution of QTL on chromosomes
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113, followed by chromosome 5A with 104 and chromo-
some 2B with 102, chromosome 3D harbored the lowest 
number of QTLs with only 14 (Fig.  1d). Correspond-
ingly, the phenotypic variation explained (PVE) value of 
individual QTLs range from 0.01 to 72.72% with a mean 
value of 11.18%. Some QTL have high PVE values. These 
QTL with high PVE values may be statistical artifacts due 
to small population size, but they may also truly reflect 
some important biological effects. The 95% confidence 
intervals (CIs) ranged from 0.03  cM to 101.4  cM, with 
approximately 56% of the initial QTLs having a CI of 
less than 10 cM. The logarithm of the odds (LOD) values 
ranged from 2 to 48.64, with 59% of the initial QTLs hav-
ing a LOD value that fell from 3 to 5.

Construction of consensus genetic map
The 76 individual genetic maps were integrated into 
the reference map to generate a consensus map (Table 
S2), containing 26,511 markers with an average of 1,559 
markers per chromosome. The total length of the con-
sensus map was 2,741.78  cM, with an average length of 
161.28 cM per chromosome. The markers were unevenly 
distributed across the chromosomes while chromosome 
1B harboring the highest number of markers with 3,544 
(Fig. 2).

Identification of MQTLs related to wheat photosynthetic 
efficiency
Only 718 QTLs from 66 independent QTL studies were 
successfully projected onto the consensus map. Based 
on the criteria of the lowest model value and at least 
two overlapping initial QTLs, these initial QTLs were 
grouped into 74 MQTLs (Table  1; Table S3). Among 
the 74 identified MQTLs, all of them comprised at least 
two initial QTLs, with 97.29% (72/74) of MQTLs includ-
ing three or more initial QTLs, and 66.22% (49/74) of 
MQTLs being made up of 11 to 50 initial QTLs while 
MQTL-7A.3 (61), MQTL-7A.4 (57) and MQTL-7A.5 
(58) contained more than 50 initial QTLs (Fig. 3a). These 
MQTLs were distributed on 17 chromosomes except 1D, 
3A, 4B, and 5B with an average of four MQTLs per chro-
mosome (Fig. 3b). The average CI of MQTLs was 20.46 
times smaller than that of initial QTLs with significant 
differences among different chromosomes. The CIs of 
chromosomes 3B and 1A decreased by 81.09 times and 
58.83 times, respectively, followed by chromosomes 2B 
and 7A with reduction of 53.36 times and 33.93 times, 
respectively (Fig. 3c). The much smaller CIs demonstrate 
a significant improvement in the mapping accuracy of 
these MQTLs (Fig. 4).

All identified MQTLs were associated with at least 
two traits related to photosynthetic efficiency. Of the 74 
MQTLs, 62 contain QTLs for flag leaf area (FLA), 27 con-
tain three or more QTLs for FLA, and 58 and 57 MQTLs 
contain QTLs for flag leaf length (FLL) and the evolution 

Fig. 2  Marker distribution on the consensus genetic map used for meta-QTL analysis. From red to green, the marker density in chromosome, the genetic 
length of chromosome, and the number of markers in chromosome decrease from high to low
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MQTL ID Position 
(cM)b

CI (cM)c No. Of 
QTL

Traitsd Physical interval 
(Mb)

Flanking markers

MQTL-1 A.1a 79.72 0.06 20 FLW(4),FLL(4),FLA(3),SPAD(3),CCI(1),Others(5) 471.47-478.35 AX-110,567,101-AX-108,870,453
MQTL-1 A.2a 80.25 0.06 24 FLL(6),SPAD(4),FLW(4),FLA(3),Fm(2),Others(5) 533.44-535.02 wsnp_Ex_c6563_11378915-

BS00110130_51
MQTL-1 A.3a 80.79 0.05 27 FLW(6),SPAD(4),FLL(4),Ci(2),Tr(2),Others(9) 532.24-544.36 wsnp_Ra_rep_c95460_83855592-

BS00110877_51
MQTL-1 A.4 81.33 0.47 29 FLW(5),FLL(5),SPAD(4),FLA(3),Ci(2),Others(10) 542.43-577.84 Excalibur_c26688_138-RAC875_

c53725_217
MQTL-1 A.5a 82.27 0.07 28 FLL(6),FLW(5),SPAD(4),FLA(4),Fm(2),Others(7) 582.86-589.47 RAC875_rep_c71278_345-

BS00023419_51
MQTL-1B.1 99.6 0.09 30 FLL(4),SPAD(3),FLW(3),FLANG(3),Ci(2),Others(15) 303.68-478.72 BS00050630_51-BS00091871_51
MQTL-1B.2 100.86 0.6 32 FLL(4),Gs(3),PN(3),FLA(3),FLANG(3),Others(16) 536.70-638.93 RAC875_c102223_220-

BS00089790_51
MQTL-1B.3a 102.88 0.15 18 FLA(2),FLL(2),SPAD(2),FLANG(2),FLR(2),Others(8) 646.67–664.30 Kukri_rep_c102001_420-Tdu-

rum_contig55429_116
MQTL-1B.4 103.9 1.31 23 FLL(3),SPAD(2),FLANG(2),FLR(2),FLW(2),Others(12) 673.74-678.31 RAC875_c3001_1236-wsnp_Ex_

c1058_2020681
MQTL-1B.5 113.36 1.11 15 Fm(3),SPAD(2),Fv/Fm(2),Fo(2),FLL(1),Others(5) 678.73-686.93 WMC367-TC88378
MQTL-2 A.1 131.57 1.76 13 SPAD(7),SD(1),Gs(1),PN(1),Ci(1),Others(2) 21.26–34.49 BS00021706_51-Ku_c23118_149
MQTL-2 A.2 134.22 2.34 17 SPAD(9),Gs(1),PN(1),Ci(1),Tr(1),Others(4) 34.66–51.49 BS00076693_51-BS00068196_51
MQTL-2 A.3a 137.06 0.12 24 SPAD(10),FLW(3),FLL(2),Gs(2),PN(2),Others(5) 62.30-68.25 BS00070693_51-GENE-1246_393
MQTL-2 A.4a 137.41 0.25 29 SPAD(9),FLL(3),FLA(3),Gs(3),PN(3),Others(8) 70.98–79.75 Jagger_c2047_362-

BS00079443_51
MQTL-2 A.5 138.05 0.74 32 SPAD(9),PN(5),Gs(4),FLA(3),Ci(3),Others(8) 675.89-696.85 RAC875_rep_c113120_326-

Ex_c23042_1024
MQTL-2 A.6a 138.68 0.06 28 SPAD(8),PN(4),Gs(3),Ci(3),FLW(3),Others(7) 709.04-712.72 wsnp_Ku_c54793_58953037-

Ku_c13700_1189
MQTL-2 A.7 139.39 0.86 26 SPAD(8),PN(4),Gs(3),Ci(3),FLW(2),Others(6) 728.75-770.01 wsnp_Ex_c14953_23104041-

Ra_c1757_256
MQTL-2B.1a 70.39 0.23 42 FLW(7),Gs(5),SPAD(5),FLL(4),Fv/Fm(4),Others(17) 10.78–14.04 BS00064570_51-Excalibur_

c25445_1061
MQTL-2B.2 70.93 0.12 42 FLL(5),Gs(5),SPAD(5),FLW(5),PN(4),Others(18) 24.51–58.32 BS00070900_51-Tdurum_con-

tig54704_176
MQTL-2B.3 71.81 0.12 43 FLW(8),SPAD(6),PN(4),Gs(4),FLANG(3),Others(18) 115.38-181.61 wsnp_BM140364B_Ta_2_3-

TA001322-1176
MQTL-2B.4 72.21 0.61 42 SPAD(7),FLW(6),Gs(5),PN(4),FLANG(3),Others(17) 182.01-240.22 Kukri_c10054_567-WMC223
MQTL-2D.1 52.44 1.94 20 FLW(4),FLANG(2),FLA(2),FLL(2),Gs(2),Others(8) 6.63–20.76 RAC875_c12533_2006-JD_

c63957_1176
MQTL-2D.2 61.96 1.79 6 FLL(2),FLA(2),FLW(1),FLR(1) 26.61–27.77 BS00009575_51-D_GB5Y7FA-

02HINSP_259
MQTL-3B.1 8.26 0.08 17 FLW(4),FLA(3),PN(3),SPAD(2),FLL(2),Others(3) 479.87–587.00 BS00023645_51-Excalibur_

c26662_218
MQTL-3B.2 8.82 0.1 17 FLW(5),FLA(3),PN(3),SPAD(2),FLL(1),Others(3) 669.71-779.13 wsnp_Ex_c3257_6003626-

BS00024883_51
MQTL-3D.1 67.91 1.44 4 SD(2),Fv/Fm(1),SW(1) 129.02–297.50 Xwmc533-Xbarc1119
MQTL-3D.2 82.43 10.03 2 SD(1),Fv/Fo(1) 462.53–564.60 Xwmc492-Xcfd223
MQTL-4 A.1a 114.46 0.42 7 FLL(4),FLA(2),FLW(1) 4.47–11.81 Xcfa2173-BS00022177_51
MQTL-4 A.2 119.85 1.89 14 FLA(7),FLL(6),FLW(1) 12.20-16.19 BS00065863_51-wsnp_Ex_

c28429_37553452
MQTL-4 A.3 125.22 0.1 21 FLL(7),FLA(6),PN(2),SW(1),Fv/Fm(1),Others(4) 515.84–576.70 Xwmc89-wsnp_Ex_

c23248_32488191
MQTL-4 A.4 125.79 0.06 21 FLL(7),FLA(6),PN(2),SW(1),Fv/Fm(1),Others(4) 591.70-617.09 wsnp_Ex_c21383_30513824-

BS00022418_51
MQTL-4 A.5 126.58 0.22 20 FLL(6),FLA(6),PN(2),Tr(2),SW(1),Others(3) 636.97-735.74 BS00062059_51-wPt-1007
MQTL-4 A.6 126.77 0.11 20 FLL(7),FLA(5),PN(2),Tr(2),SW(1),Others(3) 660.79-727.11 BobWhite_c43728_100-RFL_Con-

tig2531_987
MQTL-4D.1 80.32 4.58 3 FLW(1),PN(1),Tr(1) 238.37-274.22 Xcfd193-GENE-2128_156

Table 1  Summary of the 74 MQTLs detected in the present study (Continues)
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of soil plant analysis development (SPAD), respectively. 
Among them, 55 MQTLs simultaneously contain QTLs 
for both FLA and FLL, 51 for both FLA and SPAD, 44 for 
both FLL and SPAD, and 43 MQTLs contain QTLs for 
all three traits: FLA, FLL, and SPAD. In addition to the 
major traits mentioned above, some MQTLs also broadly 
encompassed multiple traits related to photosynthetic 
efficiency. For example, MQTL-7A.5 was simultaneously 
associated with 16 photosynthetic efficiency-related 
traits: net photosynthetic rate (Pn), stomatal conduc-
tance (Gs), flag leaf angle (FLANG), maximum photosyn-
thetic efficiency of optical system II (Fv/Fm), intercellular 
CO2 concentration (Ci), flag leaf width (FLW), stomatal 
length (SL), chlorophyll a/chlorophyll b (Chla/b), chloro-
phyll a (Chla), chlorophyll index (CCI), stomatal density 

(SD), transpiration rate (Tr), maximum fluorescence 
(Fm), FLA, FLL, and SPAD (Table 1; Table S3).

Validating MQTLs using MTA identified in previous GWAS 
studies
The physical positions of the MQTLs identified in this 
study and the marker trait associations (MTAs) from 
18 previous GWAS studies were used for comparison 
to further determine the reliability of MQTL for photo-
synthetic efficiency. Accordingly, 72.97% (54/74) of the 
identified MQTLs were co-located with 758 MTAs peak 
positions early reported in GWAS for photosynthetic 
efficiency in wheat (Table S4). Among these MQTLs, 
37 were identified in at least two studies. MQTL-5A.2 
was identified in nine GWAS studies, making it the 
most frequently observed, followed by MQTL-2B.2 and 

MQTL ID Position 
(cM)b

CI (cM)c No. Of 
QTL

Traitsd Physical interval 
(Mb)

Flanking markers

MQTL-4D.2 98.68 10.97 4 Fm(1),Fv/Fm(1),SPAD(1),Fo(1) 439.66-461.51 Xcfd89-Xbcd15
MQTL-4D.3 109.55 4.59 5 Fm(1),Fv/Fm(1),SPAD(1),Fo(1),FLW(1) 477.12-484.65 Xfbb178-Xwmc399
MQTL-5 A.1 6.24 0.78 32 FLA(9),FLL(8),FLANG(6),FLR(2),SPAD(2),Others(5) 37.06–70.73 Excalibur_rep_c108066_112-

Xbarc56
MQTL-5 A.2 7.79 0.28 35 FLL(11),FLA(8),FLANG(6),FLR(2),FLW(2),Others(6) 437.20-585.40 BobWhite_c17440_130-wsnp_

Ex_c31799_40545376
MQTL-5 A.3 9.66 0.03 38 FLL(9),FLA(9),FLANG(6),SPAD(4),FLW(3),Others(7) 588.84-647.36 Kukri_c64923_717-Tdurum_con-

tig15047_186
MQTL-5D.1 65.92 2.24 4 FLL(3),Chl(1) 41.81–44.61 AX-89,752,452-AX-110,024,138
MQTL-5D.2 71.55 0.65 4 SL(1),FLA(1),FLL(1),Chl(1) 229.36-290.67 Xgdm68-AX-111,117,089
MQTL-7 A.5 133.02 0.22 58 FLW(12),FLANG(8),FLL(7),FLA(7),SPAD(4),Othe

rs(20)
115.81-343.84 BS00038787_51-wsnp_Ra_

c23253_32762188
MQTL-7B.1 94.93 5 4 FLA(2),FLL(1),Fv/Fm(1) 553.18-723.21 AX-109,902,366-Xbarc1073
MQTL-7B.2 103.99 0.24 9 Tr(2),Ci(2),SPAD(2),Chla/b(1),FLL(1),Others(1) 670.84-708.47 wPt-3533-Tdurum_con-

tig44876_1362
MQTL-7B.3 105.54 1.85 10 SPAD(3),Tr(2),Ci(2),CCI(1),FLL(1),Others(1) 625.88-730.15 BobWhite_c12256_96-Excalibur_

rep_c69840_85
MQTL-7B.4 107.51 0.41 19 Tr(4),Ci(3),SPAD(2),PN(2),Gs(2),Others(6) 645.12-744.11 wsnp_Ku_c16295_25148628-

RAC875_c42674_239
MQTL-7B.5 109.3 0.75 18 FLW(3),FLL(3),FLA(3),Ci(2),SPAD(2),Others(5) 657.87-732.39 wsnp_BE605194B_Ta_2_7-

Xbarc182
MQTL-7B.6 112.73 0.94 14 Ci(3),SPAD(2),Tr(2),Gs(1),PN(1),Others(5) 726.13-747.19 BobWhite_rep_c50003_377-

wPt-2878
MQTL-7D.1 127.47 2.64 3 SPAD(1),Fv/Fo(1),Chla(1) 30.83–58.25 Xbcd588-Xgwm130
MQTL-7D.2 151.04 2.88 13 FLW(3),FLL(2),Chla(1),Fo(1),Fv(1),Others(5) 52.94-102.54 Xbarc92-IAAV2530
MQTL-7D.3 168.13 1.61 11 FLW(6),FLL(3),FLA(1),Chl(1) 211.40-364.63 wsnp_CAP11_c2839_1425826-

Xwmc221
MQTL-7D.4 170.71 2.37 11 FLW(5),FLL(2),FLA(1),Chl(1),Ci(1),Others(1) 414.28-531.58 Xwmc630-Xbarc121
MQTL-7D.5 173.78 2.56 7 FLW(4),Gs(1),SPAD(1),FLL(1) 530.67-587.91 wsnp_BE497845D_Ta_1_1-

Xbarc111
aCore MQTL
bThe most likely position on consensus map
cThe confidence interval (95%) of MQTL on consensus map
dFLW: flag leaf width; FLA: flag leaf area; FLANG: flag leaf angle; SPAD: the evolution of soil plant analysis development; Fo: initial fluorescence; Fv: variable 
fluorescence; CCI: chlorophyll index; Gs: stomatal conductance; CI: confidence interval; Fv/Fo: maximum primary yield of PSII photochemistry; Chl: chlorophyll 
content; Tr: transpiration rate

Each MQTL only lists the trait types of the top five QTL

Table 1  (continued) 
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MQTL-7B.1 each identified in seven studies, MQTL-6B.3 
and MQTL-6B.7 coexisted with the largest number of 
153 and 210 MTAs, respectively (Fig. 5).

Identification and functional analysis of CGs within MQTL 
regions
An in-depth exploration was conducted to uncover 
important CGs via integrating homology alignment with 
sequence information from plant genome databases. In 
this study, based on the detailed seanning for known rice 
genes resulted in the obtainment of 530 functional CGs 
affecting rice photosynthetic efficiency (Table S5). Using 
BLASTP analysis, 1,307 wheat orthologs of rice genes for 
photosynthetic efficiency were identified across wheat 
genomes. Only 342 genes were found within 74 MQTL 
intervals, with an average of 4 genes per MQTL (Table 
S6). Furthermore, by searching for the peak positions 
of MQTLs within a 2  Mb genomic range, 2,797 poten-
tial CGs were identified (Table S7). In summary, 3,102 
potential CGs were identified through the two aforemen-
tioned methods. The expression analysis performed on 
CGs revealed that 1,043 key CGs with ≥ 2 transcripts per 

million (TPM) and highly expression in leaves, spikes, 
and stems at different developmental stages were selected 
for further in silico analysis (Table S8). Gene ontology 
(GO) enrichment and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis were conducted with 
1,043 CGs. The GO analysis indicated that the cellular 
process (472 CGs) and metabolic process (417 CGs) were 
the most relevant enriched terms related to biological 
processes. As for molecular functions, the most enriched 
GO terms were related to binding (461 CGs) and cata-
lytic activity (391 CGs). In terms of cellular components, 
cellular anatomical entity (458 CGs) had the highest 
enrichment level (Fig.  6). The KEGG enrichment analy-
sis showed that these putative genes were highly involved 
in the porphyrin metabolism (16 CGs), glyoxylate and 
dicarboxylate metabolism (16 CGs), carbon metabo-
lism (32 CGs), and photosynthesis - antenna proteins (8 
CGs) (Fig. 7). Notably, 186 CGs recurring in the top 20 of 
KEGG enrichment pathways were to perform expression 
analysis. In order to more intuitively demonstrate the 
expression characteristics of these CG genes, a heatmap 
was further drawn for visualization and analysis (Fig. 8). 

Fig. 3  Basic information of MQTL obtained in meta-QTL analysis. (a) The number of MQTL harboring different numbers of QTL. (b) The number of MQTL 
and average number of initial QTL projected on a single MQTL in different chromosomes. From blue to red, the number of QTL contained in MQTL in-
creases from low to high. (c) The reduction degree of QTL confidence interval (CI, 95%) after meta-QTL analysis. The orange and blue bars represent the 
average CI length (cM) of MQTL and initial QTL on chromosomes, respectively, and the broken line represents the reduction folds of the QTL CI length
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These 186 CGs could be divided into three classes. In 
class I, the genes were ubiquitously expressed in different 
tissues with varying degree of expression while in class 
II, the genes showed high expression in leaf and stem at 
the mid-flowering stage and finally in class III, the genes 
showed high expression in the spike and stem at the boot-
ing stage and early jointing stage. The high expression of 
class II genes during mid-flowering period and in leaves 
implies that they may be more closely related to photo-
synthetic efficiency. The key gene TraesCS6A02G307700 

(TaGGR-6A) belongs to class II genes, which involved 
in the porphyrin metabolism pathway for chlorophyll 
synthesis while its homologous gene in rice LYL1 as a 
light-responsive gene showing highly expressed in the 
leaf. Furthermore, TaGGR-6A is highly expressed in the 
leaf across three different stages: One-leaf stage, Early 
tiller stage, and 2 days after flowering, with TPM values 
exceeding 200. Therefore, we selected TaGGR-6A for fur-
ther investigation.

Fig. 4  The chromosome distribution of the 74 discovered meta-quantitative trait loci (MQTLs). The circles from inside to outside represent the genetic 
map, original quantitative trait loci (QTL) numbers, confidence interval, R2 values, physical position of MQTLs, and physical map (Mb), respectively
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Association analysis between TaGGR-6A gene haplotypes 
and chlorophyll content in wheat flag leaves
The polymorphic single nucleotide polymorphism 
(SNP) loci of the TaGGR-6A in wheat were identified 
by analyzing the variants in the genome sequence data 
of 1769 wheat varieties obtained from the Wheat Con-
sortium website (​h​t​t​p​​:​/​/​​w​h​e​a​​t​.​​c​a​u​​.​e​d​​u​.​c​n​​/​W​​h​e​a​t​U​n​i​o​
n​/, Accessed June 2024) (Table S9). Ten polymorphic 
SNP sites were identified in the key CG TaGGR-6A 
(Fig.  9a), seven in the promoter region, one within an 

exon, and two in the 3’UTR region. Owing to these vari-
ant sites, two haplotypes of TaGGR-6A were formed 
and designated TaGGR-6A-hap I and TaGGR-6A-hap II. 
A kompetitive allele-specific PCR (KASP) marker was 
developed based on a SNP at 2464 bp (A/G) to differenti-
ate wheat germplasm associated with the two haplotypes.

Bioinformatics analysis indicated that the two SNPs at 
the TaGGR-6A promoter were involved in the formation 
of several transcription factor binding sites, including 
ARE and MYB (Fig. 9a). The genotyping was performed 

Fig. 5  Validation of meta-quantitative trait loci (MQTLs) by marker-trait associations (MTAs) in photosynthetic efficiency of wheat from genome-wide 
association study (GWAS) with different natural populations. The number of MTAs located in MQTL is increasing from blue to orange

 

http://wheat.cau.edu.cn/WheatUnion/
http://wheat.cau.edu.cn/WheatUnion/
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on 252 wheat accessions using the KASP marker (Table 
S10, Fig.  9b). The unique transcription factor binding 
sites MYB and ARE contained in the TaGGR-6A-Hap II 
promoter sequence may account for its superiority. To 
further explore the impact of the TaGGR-6A marker on 
chlorophyll content in wheat, the association analysis of 
the chlorophyll content in flag leaves was conducted on 
252 wheat accessions with two different genotypes. The 
results showed that the wheat accessions with TaGGR-
6A-hap II exhibited significantly higher chlorophyll con-
tent (P < 0.05) compared to those of TaGGR-6A-hap II in 
two different environments (Fig.  9c, Table S11). There-
fore, the TaGGR-6A-Hap II haplotype may be an elite 
haplotype for improving flag leaf chlorophyll content.

Selection of TaGGR-6A haplotypes in wheat breeding
The wheat breeding process enabled the gradual accu-
mulation of excellent haplotypes through steps such as 
parent selection, hybridization, descendant selection and 
evaluation, stabilization and purification of superior hap-
lotypes. The geographic distribution of the two alleles 
of TaGGR-6A using 242 wheat accessions indicated that 
the haplotype TaGGR-6A-hap II with high SPAD were 
predominant in major wheat-growing regions of China, 
including Hebei (77%), Henan (72%), Shanxi (72%), Shan-
dong (57%), and Shaanxi (56%) (Table S12, Fig. 10a). To 
further determine whether TaGGR-6A-Hap II has been 

positively selected during the course of wheat breeding 
in China, the frequency of the TaGGR-6A haplotype in 
117 historical wheat populations was examined at decade 
intervals (Table S13). The results showed that the fre-
quency of TaGGR-6A-Hap II was not as high as that of 
TaGGR-6A-Hap I before 2000, while the frequency of 
TaGGR-6A-Hap II increased from the pre-1981 (33%) 
to the post-2010 (71%) with a continuous increase 
(Fig. 10b). The results suggested that the TaGGR-6A-Hap 
II gene has been positively selected during wheat breed-
ing to optimize wheat photosynthetic characteristics.

Discussion
Characteristics of QTL and MQTL related to wheat 
photosynthetic efficiency
Over the past few decades, numerous QTLs associated 
with wheat photosynthetic efficiency traits have cre-
ated favorable conditions for elucidating the genetic 
basis of wheat photosynthetic efficiency. In this study, 
588 QTLs related to photosynthesis parameters and 775 
QTLs affecting photosynthesis-related traits from 66 
independent QTL mapping studies were integrated with 
GWAS data for MQTL analysis; subsequently, CGs were 
screened using transcriptome data (Fig. ).

Compared with previous studies on photosynthetic 
efficiency [31–33], the MQTL analysis demonstrated 
significant advantages. In terms of coverage and number 

Fig. 6  Gene ontology (GO) terms for 1,043 putative candidate genes (CGs) from meta-quantitative trait locus (MQTL) regions
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of QTLs, a larger number of initial QTLs were utilized, 
ensuring the comprehensiveness and accuracy of genetic 
locus localization. In our study, the 718 initial QTLs were 
unevenly distributed onto 21 wheat chromosomes. This 
uneven distribution may be the result of a combination 
of various factors such as gene density, gene interac-
tions, selection pressure, and genetic linkage. Most of the 
QTLs were concentrated in subgenomes A and B (about 
78.94%). This finding aligns with previous research [32], 
validating the reliability of the mapping method.

The advantage of MQTL analysis lies in its ability to 
exclude the interference of factors such as genetic back-
ground, population type, and cultivation environment 
on QTLs, effectively integrating QTL data from differ-
ent backgrounds [26]. In this study, this advantage was 
fully leveraged by increasing the number of initial QTLs, 
significantly enhancing the accuracy of MQTL analysis 

results [34]. Specifically, 718 initial QTLs were suc-
cessfully mapped onto the consensus map and further 
refined into 74 MQTLs. Notably, 70.27% of the MQTLs 
were composed of more than 11 initial QTLs, and three 
MQTLs were based on over 50 initial QTLs, a proportion 
significantly higher than that in previous studies [31–33]. 
Furthermore, a detailed comparison of the MQTL analy-
sis results with those of previous studies based on physi-
cal positions revealed that 55 out of the 74 MQTLs were 
co-located with previous findings [31–33]. This high 
degree of consistency not only validates the accuracy of 
the MQTL analysis but also further highlights the reliabil-
ity of the QTL localization and analysis. Our study also 
revealed extensive overlap between direct phenotypic 
traits and derived traits for photosynthetic efficiency 
in MQTL. This finding highlights the complexity of the 
genetic architecture underlying photosynthetic efficiency, 

Fig. 7  Top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways for 1,043 putative candidate genes (CGs) from meta-quantitative 
trait locus (MQTL) regions
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indicating that multiple traits interact in a coordinated 
way to optimize photosynthetic performance. Further 
investigating the connections between these MQTL and 
traits associated with photosynthetic efficiency will be 
helpful in developing wheat varieties that exhibit higher 
photosynthetic efficiency and increased yield.

MQTL analysis can integrate QTL information from 
different genetic backgrounds, thereby effectively reduc-
ing the CI of QTLs and improving the accuracy of 
CG prediction. Compared with the initial QTLs, the 

average CI of MQTLs was reduced by approximately 
20.46 times, a significant reduction compared to previ-
ous study results [31–33], providing strong support for 
more accurate CG prediction and localization. Wheat 
photosynthetic efficiency is controlled by multiple genes 
and is easily influenced by environmental conditions. 
Identifying genomic regions closely related to and stable 
for photosynthetic efficiency is a prerequisite for utiliz-
ing molecular marker-assisted crop breeding. Based on 
the selection criterion, 15 MQTLs were selected in this 

Fig. 8  Expression patterns of 186 candidate genes in different tissues at different stages. From blue to red, the expression value goes from low to high. 
Z10: One-leaf stage; Z23: Early tiller stage; Z30: Booting stage; Z32: Early jointing stage; Z39: Late jointing stage; Z65: Mid-flowering stage; Z71: 2 d after 
flowering
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study as the primary CG search intervals (Table 1). The 
genetic intervals of these MQTLs are less than 1 cM, and 
the physical intervals are less than 20 Mb, with an aver-
age PVE and number of initial QTLs of 11.17% and 27, 
respectively. These core MQTLs lay a solid foundation 
for exploring their application in enhancing wheat photo-
synthetic efficiency.

CGs in MQTL and their roles in influencing photosynthetic 
efficiency
This study further confirmed that approximately 72.97% 
of the MQTLs matched the MTAs in GWAS. These 
results suggested that the influence of these genomic 
regions on photosynthetic efficiency traits may be less 
restricted by genetic background. On the other hand, 
the lack of correspondence with MTAs in GWAS may 
be attributed to genotype-environment interactions and 
variations in trait measurement, which could explain 

the discrepancy. These matching MQTLs and MTAs 
obtained through GWAS studies provide a foundation 
for effectively identifying CGs that regulate wheat photo-
synthetic efficiency.

Based on functional annotations and expression char-
acteristics, 1043 key CGs showing high expression 
(TPM ≥ 2) at different developmental stages in leaves, 
spikes, and stems were selected for further analysis. The 
GO and KEGG analysis indicated that the most enriched 
metabolic pathways include porphyrin metabolism, gly-
oxylate and dicarboxylate metabolism, carbon metabo-
lism, photosynthesis-antenna proteins, etc. Porphyrin 
metabolism, the cornerstone of chlorophyll synthesis, is 
essential for plants to effectively absorb and convert light 
energy [35]. Its proper functioning has a direct and criti-
cal impact on photosynthetic efficiency. Meanwhile, the 
smoothness of carbon metabolism and the photosyn-
thetic carbon fixation pathway directly relate to plants’ 

Fig. 9  Analysis of TaGGR-6A gene structure, genotyping and association with SPAD. (a) Schematic TaGGR-6A gene structure and main cis-element distri-
bution of promoter. (b) kompetitive allele-specific PCR (KASP) genotyping scatter cluster diagram of TaGGR-6A. (c) Association analysis of TaGGR-6A allelic 
variation and SPAD in different environments
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efficiency in utilizing carbon dioxide and their ability to 
synthesize organic compounds, serving as essential driv-
ers for enhancing photosynthetic efficiency [36]. Further-
more, the photosynthesis-antenna protein pathway plays 
an irreplaceable role in light energy capture and transfer, 
and its functional integrity is vital for maintaining effi-
cient photosynthesis [37].

This study identified a CG, TaGGR-6A, associated with 
porphyrin metabolism within the MQTL interval. This 
gene affects the catalysis of geranylgeranyl diphosphate 
reduction to phytyl diphosphate, providing phytol for 
tocopherol and chlorophyll synthesis, and plays a cru-
cial role in chlorophyll synthesis. Previous studies have 
shown that chlorophyll, composed of a porphyrin head 
group which contains magnesium, and of phytol, a pre-
nyl side chain bound in ester linkage, is the most criti-
cal photosynthetic pigment in plants [35]. By searching 
for SNP variation sites within the TaGGR-6A gene in the 
Wheat Variation Database, corresponding KASP mark-
ers were developed to distinguish between the two hap-
lotypes of TaGGR-6A. The genotyping results confirmed 
that this marker exhibited DNA polymorphism within 
the tested population, with clear genotyping, making it 
suitable for distinguishing different genotypes in wheat 
germplasm resources. Association analysis revealed that 
wheat varieties carrying TaGGR-6A-Hap II had signifi-
cantly higher chlorophyll content in their flag leaves than 

those carrying TaGGR-6A-Hap I. The presence of unique 
transcription factor binding sites, MYB and ARE, in the 
TaGGR-6A-Hap II promoter sequence may be the rea-
son for its advantageous characteristics. Relevant stud-
ies have shown that MYB-related transcription factors 
regulate the expression of genes related to chloroplast 
biosynthesis by binding to their promoter regions [38]. 
These genes are involved in various processes such as 
chlorophyll biosynthesis, CO2 fixation, photorespira-
tion, and photosystem assembly and repair. TaGGR-6A-
Hap II positively influenced the chlorophyll content of 
wheat flag leaves across various environments, thereby 
enhancing the stabilization and improvement of wheat 
yield. In order to understand the function of this gene 
more comprehensively, promoter-reporter gene detec-
tion and gene editing using advanced technologies such 
as CRISPR/Cas9 are planned. This will help to verify the 
specific effects of these SNPs on gene expression and 
comprehensively analyze the role of TaGGR-6A in wheat 
physiological processes, providing more precise genetic 
information and breeding strategies for future wheat 
breeding.

Conclusion
In this study, we succeed in deciphering key genomic 
regions and CGs related to photosynthetic efficiency in 
wheat by integrating MQTL analysis and GWAS. A total 

Fig. 10  Selection of TaGGR-6A haplotypes in wheat breeding in China. (a) Geographic distribution of varieties with TaGGR-6A haplotypes in China. (b) 
Variation of the proportion of haplotypes of TaGGR-6A with breeding age
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of 74 MQTLs associated with photosynthetic efficiency 
were identified while more than half of these MQTLs 
were validated through MTA in 18 GWAS, with 11 being 
confirmed as core MQTLs. As many as 3,102 CGs were 
identified within the MQTL regions where 1,043 CGs 
with more than 2 TPM were highly expressed in leaves, 
spikes, and stems and 186 CGs involved in the top 20 of 
KEGG enrichment pathways. Among these, the key CG 
TaGGR-6A related to porphyrin metabolism was selected 
for the further haplotype analysis. The positive selection 
for dominant haplotype TaGGR-6A-Hap II with high flag 
leaf chlorophyll content was validated and a functional 
KASP molecular marker for TaGGR-6A was developed 
that could be directly applied to wheat molecular marker-
assisted selection breeding. This work will help to lay a 
foundation for the great application potential in molecu-
lar genetic improvement of photosynthetic efficiency of 
these key CGs.

Materials and methods
QTL data collection
For QTLs controlling for photosynthetic efficiency traits, 
a comprehensive screening of studies published between 
2007 and 2024 was conducted using the Web of Science 
(https://www.webofscience.com, Accessed April 2024) 
and China National Knowledge Infrastructure Network 
(https://www.cnki.net/, Accessed April 2024). The ​i​n​i​t​i​a​
l​l​y screened QTLs are closely related to photosynthetic 
efficiency. The QTLs related to photosynthetic efficiency 
mainly include photosynthetic parameters and photo-
synthetic-related traits. Among them, the parameters of 
photosynthesis mainly include Pn, Gs, Tr, Ci, SPAD, chlo-
rophyll content (Chl), photosynthetic pigments: Chla, 
Chla/b, chlorophyll b (Chlb), carotenoids (Car), and 
chlorophyll fluorescence parameters, including Fm, Fv/
Fm, CCI, initial fluorescence (Fo), variable fluorescence 
(Fv), potential activity index of PSII reaction center (Fv/
Fo). The morphological traits of leaves and stomatal-
related characteristics that significantly impact photosyn-
thetic efficiency were selected as follows: FLL, FLW, FLA, 
FLANG, SL, flag leaf perimeter (FLP), flag leaf length/
width ratio (FLR), stomatal width (SW), stomatal density 
(SD), and stomatal area (SA) (Fig. 1c).

For each initial QTL related to photosynthetic effi-
ciency, the following key information was collected: (1) 
The type and size of the population used for QTL map-
ping; (2) LOD; (3) PVE or R2 value of the QTL; (4) Flank-
ing markers or markers closely linked to QTL. QTLs 
lacking LOD and R2 values were assumed to be 3 and 
10%, respectively [25, 39]. For QTLs with missing CI, the 
following standard formulas were used to re-estimate 
the CI for each initial QTL based on different population 
types and sizes: (1) For F2 populations, CI = 530 / (N × 
PVE); (2) For RIL populations, CI = 163 / (N× PVE); (3) 

For DH populations, CI = 287 / (N× PVE). Here, N rep-
resents the size of the mapping population used for QTL 
analysis, and PVE represents the contribution of the ini-
tial QTL to phenotypic variation [40].

Consensus map construction and QTL projection
The high-density reference genetic map obtained from 
two dense genetic maps contained 14,548 markers 
including SSR, DArT, SNP and other types of mark-
ers [41–43]. The total length of the reference map was 
4813.72  cM, with individual chromosome lengths rang-
ing from 155.6 cM to 350.11 cM in the 21 linkage groups. 
From 66 independent QTL studies, 76 independent 
genetic maps were extracted originating from 76 map-
ping populations. BioMercator V4.2.3 [28] is capable of 
integrating and analyzing QTL data from different stud-
ies and mapping populations, identifying consensus 
QTLs through MQTL analysis methods. The ConsMap 
program provided by BioMercator v4.2.3 [44] was uti-
lized to project individual maps from each QTL study 
onto the reference map. The information of the initial 
QTL, including QTL name, position (on the original 
genetic map), CI value, R2, and LOD value were extracted 
from corresponding studies. Using the QTLProj program 
in BioMercator v4.2.3, each QTL was mapped from its 
position on the original genetic map to the correspond-
ing position on the consensus map. QTLs that could not 
be mapped onto the consensus map were excluded due 
to the lack of corresponding common markers on the 
consensus map or because their positions were outside 
the range of the consensus map. This step effectively 
eliminates QTL that may introduce errors due to uneven 
marker density or other inconsistencies, by only includ-
ing QTL with corresponding common markers on the 
consensus map.

MQTL analysis
The MQTL analysis was conducted for each chromo-
some using the integrated consensus map and initial 
QTLs by BioMercator v4.2.3 software. Based on the 
number of initial QTLs mapped on each chromosome, 
two different methods were employed for MQTL analy-
sis: (1) When the number of initial QTLs was less than 
10, the method proposed by Goffinet and Gerber was uti-
lized [45]. This method allowed for the derivation of five 
MQTL models, each with an Akaike Information Crite-
rion (AIC) value of 1, 2, 3, 4, or N. The model with the 
smallest AIC value was selected to determine the MQTL 
region. (2) When the number of initial QTLs on a chro-
mosome exceeded 10, the “two-step method” proposed 
by Veyrieras was used for calculation [44]. In the first 
step, potential MQTL numbers were estimated based 
on selection criteria, including AIC (Akaike Information 
Criterion), corrected AIC (AICc), AIC model 3 (AIC3), 

https://www.webofscience.com
https://www.cnki.net/
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Bayesian Information Criterion (BIC), and Approximate 
Weight of Evidence (AWE). Subsequently, among the five 
models, the one that achieved the lowest value in at least 
three criteria was selected as the best MQTL model. In 
the second step, based on the best model selected in the 
first step, the peak position and 95% CI for each MQTL 
were calculated. Genomic regions containing two or 
more initial QTLs were defined as MQTLs.

Localization of MQTL on wheat genome and GWAS 
validation
The markers at both ends of the MQTL CIs were man-
ually identified to retrieve their flanking or primer 
sequences using resources such as URGI Wheat (​h​t​t​p​​:​/​/​​
w​h​e​a​​t​-​​u​r​g​​i​.​v​​e​r​s​a​​i​l​​l​e​s​.​i​n​r​a​.​f​r, Accessed May 2024), ​G​r​a​i​n​
G​e​n​e​s (​h​t​t​p​​s​:​/​​/​w​h​e​​a​t​​.​p​w​​.​u​s​​d​a​.​g​​o​v​​/​G​G​3​/, Accessed May 
2024), DArT (​h​t​t​p​​s​:​/​​/​w​w​w​​.​d​​i​v​e​​r​s​i​​t​y​a​r​​r​a​​y​s​.​c​o​m, Accessed 
May 2024), and the official Illumina website ​(​​​h​t​t​p​s​:​/​/​w​w​
w​.​i​l​l​u​m​i​n​a​.​c​o​m​​​​​, Accessed May 2024). Subsequently, the 
integrated JBrowse tool in the Wheat Genome Database (​
h​t​t​p​​:​/​/​​w​h​e​a​​t​o​​m​i​c​​s​.​s​​d​a​u​.​​e​d​​u​.​c​n, Accessed May 2024) was 
utilized to pinpoint the precise physical locations of the 
MQTL flanking markers on the reference genome of Chi-
nese Spring wheat, annotated by IWGSC_v1.0.

The 18 GWAS datasets on photosynthesis efficiency-
related traits published between 2014 and 2024 were col-
lected to validate the accuracy of these MQTL regions. 
These studies were conducted in six countries, with the 
wheat population varying from 96 to 543. When the posi-
tion of a MTA overlaps with the position of an MQTL, 
it is considered that the MQTL and MTA were physi-
cally overlapped. The information on the physical posi-
tions of MTAs in these studies was sourced from relevant 
research or databases.

Homology-based CG identification and expression pattern 
analysis
In this study, the following specific strategies and steps 
were taken to identify CGs within MQTL regions: (1) 
A homology analysis strategy between wheat and rice 
was employed to identify key CGs within each MQTL 
region. To achieve this, relevant gene information closely 
related to rice photosynthetic rate was collected from 
the National Rice Data Center ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​r​i​c​e​d​a​t​a​.​
c​n​/​​​​​, Accessed June 2024). Subsequently, the Triticeae-
GeneTribe database (http://wheat.cau.edu.cn/TGT/, 
Accessed June 2024) was used to find the homologous 
genes in wheat [46]. After screening, these wheat homol-
ogous genes located within MQTL intervals were con-
sidered important CGs affecting wheat photosynthesis 
rate [29]. (2) Homology alignment methods were utilized 
to explore the remaining MQTL CGs, which were then 
screened and calculated based on the following strict 
criteria: Firstly, core MQTLs were selected following the 

selection criteria proposed by Venske et al. (2019) [39]. 
These core MQTLs needed to meet the following condi-
tions: (a) The initial number of mapped QTLs must be 
greater than 2; (b) The physical distance of the MQTL 
should be less than 20  Mb; (c) The genetic distance 
should be less than 1.0 cM. Next, for MQTLs within the 
remaining CI, the formula proposed by Saini et al. (2022) 
was used to accurately calculate the peak physical posi-
tions of the MQTLs [47]. Based on this, CGs discovered 
within a physical interval of less than 2  Mb (i.e., within 
a range of 1 Mb on either side of the peak) were further 
identified and considered as CGs closely associated with 
wheat photosynthetic rate traits. The peak physical posi-
tion of an MQTL was calculated using the following 
formula:

	

Peak position (bp) =
start position (bp)+{

[end position (bp) − start position (bp)
[end position (bp) − start position (bp)

}

(
CI(95%)

2

)

The detailed information about the CGs within the 
MQTL regions was identified by utilizing the WheatG-
map database (http://www.wheatgmap.org/) [48]. The 
expression analysis was performed using the Hexaploid 
Wheat Expression Database from the Wheat Genom-
ics Database (​h​t​t​p​​:​/​/​​w​h​e​a​​t​o​​m​i​c​​s​.​s​​d​a​u​.​​e​d​​u​.​c​n, Accessed 
June 2024) [49]. This expression database stores RNA-
Seq data of genes in the Chinese Spring wheat (Triti-
cum aestivum) variety at different developmental stages 
(such as seedling, tillering, jointing, booting, heading, 
and grain filling) and in different tissues/organs (such as 
roots, stems, leaves, spikes, and grains) [50]. GO annota-
tion and KEGG pathway analysis were performed using 
the GENEDENOVO cloud platform (website: ​h​t​t​p​s​:​/​/​w​w​
w​.​o​m​i​c​s​h​a​r​e​.​c​o​m​​​​​)​. During the analysis of transcriptional 
expression levels, CG genes with at least 2 transcripts 
per million (TPM ≥ 2, based on standards established by 
Wagner et al., 2013) were selected [51]. Subsequently, 
TBtools software [52] was used to intuitively display the 
expression characteristics of these CG genes in the form 
of heatmaps based on TPM values.

Development of a specific KASP marker for polymorphism 
identification of key CG
By analyzing key CG sequences through the Wheat 
Union database (​h​t​t​p​​:​/​/​​w​h​e​a​​t​.​​c​a​u​​.​e​d​​u​.​c​n​​/​W​​h​e​a​t​U​n​i​o​
n​/, Accessed July 2024), SNP loci within coding regions 
and promoters were identified [53]. A specific SNP (A/G) 
located at 2,464  bp downstream from the initiation 
codon of TaGGR-6A was converted into a KASP marker 

http://wheat-urgi.versailles.inra.fr
http://wheat-urgi.versailles.inra.fr
https://wheat.pw.usda.gov/GG3/
https://www.diversityarrays.com
https://www.illumina.com
https://www.illumina.com
http://wheatomics.sdau.edu.cn
http://wheatomics.sdau.edu.cn
https://www.ricedata.cn/
https://www.ricedata.cn/
http://wheat.cau.edu.cn/TGT/
http://www.wheatgmap.org/
http://wheatomics.sdau.edu.cn
https://www.omicshare.com
https://www.omicshare.com
http://wheat.cau.edu.cn/WheatUnion/
http://wheat.cau.edu.cn/WheatUnion/
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for genotyping. The KASP marker was designed using the 
WheatOmics 1.0 platform (​h​t​t​p​​:​/​/​​w​h​e​a​​t​o​​m​i​c​​s​.​s​​d​a​u​.​​e​d​​u​.​c​
n​/) (Table S14). Genotypic data were obtained using the 
variant information query module, with the upstream 
and downstream extension length set to 2000  bp. Sub-
sequently, the Cis-acting Regulatory Elements Database 
(​h​t​t​p​​s​:​/​​/​b​i​o​​i​n​​f​o​r​​m​a​t​​i​c​s​.​​p​s​​b​.​u​​g​e​n​​t​.​b​e​​/​w​​e​b​t​​o​o​l​​s​/​p​l​​a​n​​t​c​a​r​
e​/​h​t​m​l​/, Accessed July 2024) was utilized to predict the 
number and types of cis-regulatory elements within the 
promoter region of CGs [54].

This study focused on exploring the correlation 
between important CGs and flag leaf chlorophyll content 
using 252 wheat germplasm resources located at the Ton-
gwei farm station (105°19′ E, 35°11′ N, altitude 1750 m) 
and Zhuanglang farm station (105°98′ E, 35°37′ N, alti-
tude 2110  m), Gansu, China, during the period from 
2021 to 2022. The two planting sites were denoted as E1 
(Tongwei, 2022) and E2 (Zhuanglang, 2022). The field 
trials were conducted using a randomized block design 
with three replicates with a row spacing 20 cm and a row 
length of 1 m, and each row was planted with 60 seeds. 
At 14- day after flowering, three plants with consistent 
growth and normal development were selected from 
each variety. The SPAD-502 chlorophyll meter was used 
to measure the chlorophyll content of the wheat flag 
leaves (Table S11).
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