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Abstract 

Background Previous studies have reported several genetic loci associated with lung function. However, the mediat-
ing mechanism between these genetic loci and lung function phenotype is rarely explored. In this research, we used 
a cross-tissue multi-omics post-GWAS analysis to explain the associations between DNA methylation, gene expres-
sion, and lung function.

Methods We conducted integration analyses of lung function traits using genome-wide association 
study (GWAS) summary data alongside expression quantitative trait loci (eQTLs) and DNA methylation quantitative 
trait loci (mQTLs) derived from whole blood, utilizing multi-omics SMR and Bayesian colocalization analysis. Consider-
ing the genetic differences of tissues, we replicated the shared causal signals of eQTLs and lung function in 48 diverse 
tissues and the shared causal signals of mQTLs and lung function in 8 diverse tissues. Multi-trait colocalization analy-
ses were utilized to identify the causal signals between gene expression in blood, blood cell traits, and lung function, 
as well as between cross-tissue gene expression in diverse tissues and lung function.

Results Eight genes from blood tissue were prioritized as FEV1 causal genes using multi-omics SMR analysis 
and COLOC colocalization analysis: EML3, UBXN2A, ROM1, ZBTB38, RASGRP3, FAIM, PABPC4, and SNIP1. Equally, five 
genes (CD46, EML3, UBXN2A, ZBTB38, and LMCD1) were prioritized as FVC causal genes and one gene (LMCD1) was pri-
oritized as FEV1/FVC causal genes. The causal signals between 8 genes (EML3, ROM1, UBXN2A, ZBTB38, RASGRP3, 
FAIM, PABPC4, and CD46) and lung function were successfully replicated in diverse tissues. More importantly, MOLCO 
colocalization analysis showed that 3 genes (CD46, LMCD1, and ZBTB38) expression in blood, blood cell traits, and lung 
function traits shared the same causal signals. Finally, through cross-tissue colocalization analysis of multiple traits, we 
found that the heart–lung axis EML3 expressions and lung function mediate the same causal signal.

Conclusion This study identified potential cross-tissue molecular targets associated with lung function traits from DNA 
methylation and gene expression of diverse tissues and explored the probable regulation mechanism of these molecular 
targets. This provides multi-omics and cross-tissue evidence for the molecular regulation mechanism of lung function 
and may provide new insight into the influence of crosstalk between organs and tissues on lung function.
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Background
Lung function is an important index for diagnosis and 
evaluation of respiratory diseases, including but not lim-
ited to chronic obstructive pulmonary disease (COPD), 
asthma, lung cancer, and COVID-19 [1]. Lung function, 
including forced expiratory volume in one second (FEV1), 
forced vital capacity (FVC), and their ratio (FEV1/FVC) 
is influenced by heredity and environment [2]. The vari-
ance in lung function phenotype remains incompletely 
explained by genetic variation, as it only accounts for 
heritability between 10 and 33%, implicating approxi-
mately 300 genetic loci [3–5]. The lung function trajecto-
ries of normal people change with the development and 
aging of lung in the whole life course [6]. Epigenetic mod-
ifications, such as DNA methylation, are established in 
early embryonic development and incorporate variation 
according to host genotype and changeable factors in 
the whole lifespan [7]. Previous large-scale studies have 
established significant associations between DNA meth-
ylation and lung function across both blood and lung 
tissue [8–10]. The impact of environmental exposure 
on respiratory health and lung function throughout the 
lifespan has been well recognized, notably in relation to 
factors such as cigarette smoke, environmental tobacco 
smoke, air pollution, and occupational exposures [11]. 
These environmental stressors have been shown to signif-
icantly affect DNA methylation patterns and gene expres-
sion in various tissues, including lung tissue. Owing to 
the complexity of epigenetics and genetics, clarifying 
the causal association between DNA methylation, gene 
expression, and lung function may provide new insights 
for explaining lung function and lung diseases.

Complex diseases and traits usually affect multiple tis-
sues or organs, and interestingly damage and repair of 
tissues or organs will in turn affect diseases and traits. As 
the hub of human organs and tissues, blood is involved 
in the communications of RNA, protein, and cells in 
the whole body. The association between diverse tissues 
(including whole blood) genetic loci, blood components, 
and complex traits is still unclear. Therefore, the analysis 
based on multi-tissue genetic loci and blood components 
can provide new insights into the complex genetic mech-
anism of lung function traits.

Large-scale genome-wide association studies (GWASs) 
have been employed to identify genomic loci associ-
ated with lung function [3, 4]. However, due to the com-
plicated linkage disequilibrium (LD) structure of the 
genome, the top associated variations may not be causal 
[12]. Furthermore, these genetic variations can poten-
tially regulate chromatin accessibility, DNA splicing, 
DNA methylation, gene expression, and protein level to 
affect complex diseases and traits (including lung func-
tion traits). Consequently, there is a key challenge in 

dissecting the causal variants in trait-associated loci and 
interpreting their biological mechanisms. Multi-omics 
integration analysis of GWAS data is a method of post-
GWAS analysis, which explains complex diseases and 
traits by identifying the genes and regulatory elements 
behind the associated loci of GWAS [13]. For instance, 
summary data-based Mendelian randomization (SMR) 
can integrate GWAS with various quantitative trait locus 
(QTLs) including gene expression quantitative trait loci 
(eQTL), methylation quantitative trait loci (mQTL), 
protein expression quantitative trait loci (pQTL), and 
chromatin accessibility quantitative trait loci (caQTL) 
to assess potential pleiotropic associations between the 
expression levels of QTLs and a complex trait of inter-
est [13, 14]. In addition, Bayesian colocalization analysis 
can identify the same causal signals of QTLs and complex 
traits to detect the causal association between the expres-
sion level of QTLs and a complex trait of interest. The 
integration of the two methods serves as a test and com-
pensation for each other.

In this research, we present a multi-omics-based post-
GWAS study using cis-mQTLs and cis-eQTLs to identify 
the putative causal effects and molecular mechanisms of 
heredity in lung function. Utilizing SMR methods, we 
integrated lung function GWAS summary statistics with 
mQTLs and eQTLs in diverse human tissues to explain 
the effects of DNA methylation and gene expression on 
lung function. Furthermore, we used Bayesian colocali-
zation analysis to verify the candidate genes of the same 
causal signals with lung function. For the key molecular 
targets obtained in blood, we replicated these results in 
the methylation of 8 human tissues and transcriptome of 
48 human tissues. Finally, we identified the cross-tissue 
molecular targets with the same causal signal by multi-
trait colocalization method in diverse tissues.

Methods
The design of this study is described in Fig.  1. In brief, 
we integrated cis-mQTLs in whole blood, cis-eQTLs in 
whole blood, and lung function through Multi-omics 
SMR and colocalization analysis to identify causal signals 
of DNA methylation, gene expression, and lung function 
traits. Then we replicated these causal signals in the other 
13 datasets to verify their stability. For the stable results 
obtained in the discovery datasets and replication datasets, 
we replicated SMR or colocalization between cis-eQTLs/
cis-mQTLs and lung function in diverse human tissues to 
verify the causal relationship between key genes and lung 
function in multiple tissues transcription and methyla-
tion levels. Finally, we conducted multi-trait colocalization 
analysis on multiple tissues cis-eQTLs and lung function 
to explain that cross-tissue gene expression affects lung 
function traits through cross-talk of diverse tissues.



Page 3 of 15Peng et al. BMC Genomics          (2025) 26:289  

1. Study population and data resources

No ethical approval was required for the present 
study, as all analyses utilized publicly available sum-
mary statistics and did not involve access to individ-
ual-level data. GWAS summary statistics of discovery 
sets for FEV1, FVC, and FEV1/FVC were derived from 
Shrine et al. 20194. The replication sets were 13 GWAS 

data of lung function of European ancestry from 
GWAS Catalog (https:// www. ebi. ac. uk/ gwas/) and IEU 
OpenGWAS project (https:// gwas. mrcieu. ac. uk/). The 
basic information of lung function datasets is shown in 
Table S1.

2. Data resources of cis-mQTLs, cis-eQTLs, and blood 
cell traits

Fig. 1 Study design of this work. FEV1: Forced expiratory volume in one second; FVC: Forced vital capacity; FEV1/FVC: Forced expiratory volume 
in one second and forced vital capacity ratio; QTL: Quantitative trait loci; GWAS: Genome-wide association study; GTEx: Genotype-Tissue 
Expression; SMR: Summary data-based Mendelian randomization; COLOC: Bayesian colocalization; MOLOC: Multiple-trait-coloc; HyPrColoc: 
Hypothesis Prioritisation for multi-trait Colocalization; FUMA: Functional mapping and annotation of genetic associations; FDR: False discover rate; 
HEIDI: Heterogeneity in dependent instrument; PPH4: Posterior probability of hypothesis 4; PPA: An overall posterior probability; PPMT: Posterior 
probability of multiple traits

https://www.ebi.ac.uk/gwas/
https://gwas.mrcieu.ac.uk/
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Summary statistics for blood cis-eQTLs were sourced 
from the eQTLGen Consortium, which includes genetic 
data on blood gene expression from a total of 31,684 indi-
viduals across 37 datasets [15]. Blood cis-mQTLs sum-
mary statistics were collected from a meta-analysis of 
Brisbane Systems Genetics Study (BSGS) and Lothian 
Birth Cohort (LBC) (n = 1980) [14, 16]. The data on tis-
sue-specific cis-eQTLs came from the Genotype-Tissue 
Expression (GTEx) v8 project (n = 838), which included 
eQTLs data for 49 different human tissues [17, 18]. In 
addition, the tissue-specific cis-mQTLs data was sourced 
from a study by Oliva et al. 2023 [19], encompassing 987 
human samples from the GTEx project, representing 
nine tissue types and 424 subjects. The GWAS data for 
blood cells was obtained from the Blood Cell Consortium 
(n = 563,946) [20]. Basic information about these datasets 
is presented in Table S2.

3. Summary data-based Mendelian randomization 
analysis

The SMR multi-tool (version 1.3.1) was utilized to 
assess whether the effects of single nucleotide polymor-
phisms SNPs on lung function phenotypes are mediated 
by molecular traits, including DNA methylation lev-
els, gene expression, and protein expression [14]. This 
framework allows for the exploration of causal relation-
ships between genetic variants and phenotypic traits by 
integrating multi-omics data. Multi-omics SMR analy-
sis used the SMR multi-tool to determine the causal 
inference of genes and the 1000 Genomes European 
reference to calculate LD [21]. The steps of perform-
ing multi-omics SMR analysis include: first, SNPs were 
instruments, gene expressions were exposure, and lung 
function (FEV1, FVC, FEV1/FVC) was outcome; second, 
SNPs were instruments, DNA methylations were expo-
sure, and lung function (FEV1, FVC, FEV1/FVC) was 
outcome; finally, for the important signals from step 1 
and step 2, SNPs were instruments, DNA methylations 
were exposure, and gene expressions were outcome [22]. 
The top associated cis-QTLs were selected by consider-
ing a window centered around the corresponding gene 
(± 500 kb) and a P value threshold of 5.0 ×  10–8. Hetero-
geneity in the dependent instrument (HEIDI) test was 
used to distinguish pleiotropy of linkage, the results of 
PHEIDI < 0.05 were considered pleiotropy, so the results 
of PHEIDI > 0.05 were retained. The P values were 
adjusted to control the false discovery rate (FDR) < 0.05 
by the Benjamini–Hochberg method. The final candidate 
signals were excluded if the SNPs were located within 
the Major Histocompatibility Complex (MHC) region 
(chr6:25.5–34.0 Mb) due to its complex structure of link-
age disequilibrium.

4. Bayesian colocalization analysis

We conducted Bayesian colocalization (COLOC) to 
distinguish causality from confounding by LD using 
the “coloc” R package [23]. The colocalization analysis 
included five hypotheses: 1) there was no causal variant for 
either QTLs or lung function (H0); 2) there was one causal 
variant for QTLs only (H1); 3) there was one causal vari-
ant for lung function only (H2); 4) there were two distinct 
causal variants for QTLs and lung function, one for QTLs 
and one for lung function (H3); 5) there was a shared 
causal variant for QTLs and lung function (H4). For each 
QTL, we included SNPs within a ± 500 kb window around 
the gene position. We used the default COLOC priors of 
p1 =  10−4, p2 =  10−4, and p12 =  10−5, where p1 is the prob-
ability that a given variant is associated with GWAS, p2 is 
the probability that a given variant is a significant QTL, 
and p12 is the probability that a given variant is significant 
in both GWAS and QTL [23]. When the phenotype was 
a continuous variable, the parameter “quant” was selected. 
A posterior colocalization probability (PPH4) ≥ 0.80 was 
used to denote a shared causal signal.

5. Multi-trait colocalization analysis by MOLOC

For the robust results of SMR (SMR PFDR < 0.05, 
HEIDI P > 0.05) and colocalization (PPH4 > 0.80), we 
explored whether these causal variations are shared in 
gene expression, blood cell traits, and lung function 
traits. We employed the multiple-trait-coloc (MOLOC) 
implemented in the “moloc” R package for our analy-
sis24. In this approach, we utilized default prior prob-
abilities set to  10−4 for any single layer of association, 
 10−6 for any two layers of associations, and  10−7 for colo-
calization involving all three layers of associations. These 
parameters were applied in the colocalization analysis 
to assess whether the association signals of the multiple 
traits were derived from the same genetic variants within 
the tested region [24]. To infer colocalization, we con-
sidered an overall colocalization probability of the three 
traits calculated as (PPA, Pa,bc + Pab,c + Pac,b + Pabc) ≥ 
0.80. This threshold indicates that the evidence is strong 
enough to suggest that the three association signals are 
likely to colocalize within the specified genomic region, 
supporting the hypothesis that they may share a common 
underlying genetic basis. We use the “gassocplot” R pack-
age (https:// github. com/ jrs95/ gasso cplot) to visualize the 
results of multi-trait colocalization.

6. FUMA GENE2FUNC analysis

To evaluate the expression profiles of the identified 
genes across various human tissues, we utilized the 

https://github.com/jrs95/gassocplot
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FUMA (Functional mapping and annotation of genetic 
associations) GENE2FUNC tool to generate a gene 
expression heatmap [25]. This heatmap visually repre-
sents the expression levels of the selected genes, high-
lighting their presence in different tissues. The heatmap 
displays zero mean normalized log2 transformed expres-
sion values; deeper shades of red signify higher expres-
sion levels, while deeper shades of blue indicate lower 
expression levels. The construction of the gene expres-
sion heatmap relied on data from the Genotype-Tissue 
Expression v8 project, following established methodolo-
gies to ensure accuracy and reliability.

7. Cross-tissue colocalization analysis by HyPrColoc

We conducted a colocalization analysis of eQTLs from 
diverse human tissues related to lung function to inves-
tigate whether the genetic association between gene 
expression in diverse human tissues and lung function 
was caused by the same causal variation. We estimated 
the posterior probability of multiple traits sharing the 
same causal SNP by employing the multi-trait colocali-
zation approach known as Hypothesis Prioritisation for 
multi-trait Colocalization (HyPrColoc) [26]. This method 
enhances the established COLOC framework by provid-
ing a more refined estimation of the colocalization poste-
rior probability. Specifically, HyPrColoc approximates the 
true posterior probability of colocalization based on the 
posterior probability associated with a single causal vari-
able while considering multiple traits simultaneously. By 
integrating information from different traits, HyPrColoc 
allows for a more robust inference regarding the poten-
tial shared genetic basis of the traits under investigation. 
This approach not only improves the sensitivity of detect-
ing colocalization among multiple traits but also helps to 
clarify the relationships between SNPs and the pheno-
typic outcomes, ultimately advancing our understanding 
of the complex genetics involved in these traits. Prior to 
colocalization analysis, all variants on each dataset were 
included within a ± 500 kb window around gene position 
and harmonized to the same effect allele. The posterior 
probability of multiple traits (PPMT) ≥ 0.50 would sug-
gest that the multiple association signals were to share 
the same causal SNP simultaneously. The “HyPrColoc” R 
software package was used to perform the colocalization 
analysis.

Results
Multi‑omics integration SMR and colocalization analysis 
identify the association among blood cis‑mQTLs, blood 
cis‑eQTLs, and lung function
We screened the possible association of blood cis-
mQTLs, blood cis-eQTLs, and lung function (FEV1, 

FVC, and FEV1/FVC) by multi-omics integration SMR 
(Fig. 2A-F). Then the gene loci with the same causal sig-
nal were identified by colocalization analysis. In concrete, 
we integrated cis-eQTLs from the eQTLGen Consor-
tium (n = 31,684) and FEV1 GWAS summary statistics 
to result in 701 genes by SMR analysis (SMR PFDR < 0.05, 
HEIDI P > 0.05) (Table  S3). Meanwhile, the SMR analy-
sis of cis-mQTLs from a meta-analysis of the BSGS and 
LBC data (n = 1,980) and FEV1 GWAS summary statis-
tics resulted in 3913 CpG sites (SMR PFDR < 0.05, HEIDI 
P > 0.05) (Table S4). Further integration of putative FEV1 
causal cis-mQTLs and cis-eQTLs prioritized 2368 CpG 
sites near 186 genes. With the above multi-omics SMR 
method, there are 186 genes and 2368 CpG sites coe-
qually involved in the association between cis-eQLT and 
FEV1 GWAS summary statistics, as well as cis-mQTL 
and FEV1 GWAS summary statistics (Table S5). We per-
formed Bayesian colocalization analysis on these 186 
genes to report the probability that the eQTLs and FEV1 
GWAS shared the same variant, referred to as hypothesis 
4 (PPH4) (Table S6). This analysis found that 28 of the 186 
genes provided evidence of genetic colocalization based 
on a PPH4 ≥ 0.80, indicating that play important roles in 
FEV1. Similarly, we conducted multi-omics integration 
SMR and colocalization analysis on FVC and FEV1/FVC. 
The multi-omics integration SMR analysis found 192 
genes were related to FVC. After colocalization analysis, 
33 gene shares causality with FVC (Table  S7, Table  S8, 
Table  S9, Table  S10). For FEV1/FVC, the multi-omics 
SMR analysis and colocalization analysis found 19 genes 
were related to this association (Table  S11, Table  S12, 
Table S13, Table S14). As one of these robust results, we 
mapped the common genetic locus of DNA methylation 
and gene expression of ZBTB38 by SMR multi-omics tool 
and colocalization map (Fig.  3). In addition, the multi-
omics SMR mappings of LMCD1 and lung function (FVC 
and FEV1/FVC) were shown in Figure S1 and Figure S2.

Replicate the results of multi‑omics integration SMR 
and colocalization in multiple lung function data sets
In our previous findings, we performed a verification 
of existing publicly available GWAS data on lung func-
tion in the European population using SMR analysis and 
colocalization analysis. Our focus was on lung function 
data that were suitable for SMR and Bayesian colocali-
zation analyses, while excluding datasets that did not 
meet the required criteria for these analyses (Table S15, 
Table S16, and Table S17 for replication sets details). Our 
analysis successfully replicated causal signals for eight 
genes associated with FEV1: EML3, FAIM, PABPC4, 
RASGRP3, ROM1, SNIP1, UBXN2A, and ZBTB38 (SMR 
PFDR < 0.05, HEIDI P > 0.05, and PPH4 ≥ 0.80). Addition-
ally, we confirmed findings for five genes related to FVC: 
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CD46, EML3, LMCD1, UBXN2A, and ZBTB38 (SMR 
PFDR < 0.05, HEIDI P > 0.05, and PPH4 ≥ 0.80). Moreover, 
we identified LMCD1 associated with the FEV1/FVC 
(SMR PFDR < 0.05, HEIDI P > 0.05, and PPH4 ≥ 0.80). The 
results of replication are shown in Fig. 2G.

The shared causal effect between gene expression, blood 
cell traits, and lung function
For the intricate nature of blood components, we hypoth-
esize that eQTLs in blood may impact lung function by 
regulating blood cells. To explore this, we performed 
a multi-trait colocalization analysis involving eQTLs 
from the eQTLGen Consortium (n = 31,684), blood cell 
traits from Blood Cell Consortium (n = 563,946), and 
lung function traits (Table  S18). Our findings revealed 

that a shared causal signal influenced the expression of 
the CD46 in blood, monocyte count (PPA = 0.87), white 
blood cell count (PPA = 0.87), and lung function (Fig. 4A 
and B). Additionally, LMCD1 expression in blood, white 
blood cell count, and the FEV1/FVC ratio were also asso-
ciated with the same causal signal (PPA = 0.83) (Fig. 4C). 
Moreover, ZBTB38 expression, lymphocyte count, and 
FEV1 were also mediated by a common causal signal 
(PPA = 0.91) (Fig. 4D).

Identify the association between methylation/transcription 
in diverse tissues and lung function by SMR analysis
To provide a broader explanation of how DNA meth-
ylation and gene expression regulate lung function in 
human tissues, we identified the associations between 

Fig. 2 SMR and colocalization analysis of discovery sets and replication sets. Volcano map shows the results of SMR analysis of mQTL/eQTL 
to lung function discovery sets (FEV1, FVC, and FEV1/FVC); FDR < 0.05 and beta < 0 are negatively correlated; FDR < 0.05 and beta > 0 are positively 
correlated; FDR > 0.05 is no significance. The thermogram shows the colocalization results of gene expression and GWAS data of lung function 
replication sets; The color gradient represents the value of PPH4; Robust results obtained in the replication sets are highlighted in red boxes. A SMR 
from eQTLs in blood to FEV1; B SMR from eQTLs in blood to FVC; C SMR from eQTLs in blood to FEV1/FVC; D SMR from mQTLs in blood to FEV1; E 
SMR from mQTLs in blood to FVC; F SMR from mQTLs in blood to FEV1/FVC; G colocalization of gene expression and 13 replication lung function 
data; *: pass all three steps of multi-omics SMR (all three steps FDR < 0.05); Beta: effect value of SMR analysis; FDR: false discover rate; PPH4: posterior 
probability of hypothesis 4
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mQTLs in 8 diverse tissues and eQTLs in 48 diverse tis-
sues with lung function traits by SMR analysis (Figure S3, 
Figure S4, and Figure S5). The results showed that DNA 
methylation and gene expression in four tissues except 
for blood jointly affect lung functional traits: transverse 
colon, lung, skeletal muscle, and prostate (Fig. 5). Among 
them, the DNA methylation and expression of UXNB2A 
in transverse colon, lung, and skeletal muscle were 
related to FEV1 and FVC.

Colocalization of tissue‑specific cis‑eQTLs and lung 
function
Considering the intricate nature of lung function traits, 
we propose that diverse tissue-specific eQTLs may collec-
tively influence lung function. To examine the impact of 
gene expression levels across various tissues and organs 
on lung function, we conducted a colocalization analy-
sis of homologous cis-eQTLs and lung function traits in 
48 different tissues (Fig. 6A). Our findings revealed that 
the causal relationships between the expression of seven 
genes (EML3, UBXN2A, ROM1, ZBTB38, RASGRP3, 
FAIM, and PABPC4) and FEV1 were consistently repli-
cated across distinct tissues (PPH4 ≥ 0.80). Additionally, 
we observed that the causal signals linking the expres-
sion of three genes (CD46, EML3, and UBXN2A) to FVC 
were also replicated across various tissues (PPH4 ≥ 0.80). 
In short, EML3 cis-eQTLs were identified in 28 different 
human tissues, FAIM cis-eQTLs in 6 tissues, PABPC4 
cis-eQTLs in 1 tissue, RASGRP3 cis-eQTLs in 1 tissue, 
ROM1 cis-eQTLs in 16 tissues, UBXN2A cis-eQTLs in 

11 tissues, and ZBTB38 cis-eQTLs in 13 tissues, all dem-
onstrating the same causal signals with FEV1. For FVC, 
CD46 cis-eQTLs were observed in 14 tissues, EML3 cis-
eQTLs in 27 tissues, and UBXN2A cis-eQTLs in 13 tis-
sues, all sharing similar causal signals. Details of the 
colocalization of gene expression in 48 diverse tissues 
and lung function are shown in Table S21.

In addition, we used FUMA GENE2FUNC to gener-
ate a gene expression heat map to test if the identified 
genes that shared causal signals with lung function are 
expressed in diverse human tissues based on the GTEx 
v8 project (Fig. 6B). All these genes are relatively highly 
expressed in the lung. CD46, EML3, and PABPC4 are 
relatively highly expressed in almost 49 tissues. UBXN2A 
is relatively moderately expressed in transverse colon, 
lung, skeletal muscle, and prostate. However, LMCD1 
and ZBTB38 are relatively low expressed in whole blood.

Cross‑tissue eQTLs colocalization identified the causal 
association between the cardiopulmonary axis and lung 
function
Lung function is influenced by the condition of vari-
ous tissues and organs throughout the body. To identify 
shared causal signals between multi-tissue eQTLs and 
lung function, we utilized multi-traits colocalization 
analysis. The SMR and colocalization analysis indicated 
that increased levels of FEV1 and FVC were associated 
with higher expression levels of EML3 in aorta (FEV1: 
 BetaSMR = 0.12, 95%CI 0.08–0.16, PPH4 = 0.95; FVC: 
 BetaSMR = 0.11, 95%CI 0.07–0.15, PPH4 = 0.96), atrial 

Fig. 3 Drawing SMR multi-omics integration map and multi-omics colocalization map, taking ZBTB38 as an example. A Multi-omics integration 
map of SMR analysis; B Correlation of methylation, gene expression, and FEV1, respectively; C multi-omics colocalization map



Page 8 of 15Peng et al. BMC Genomics          (2025) 26:289 

appendage (FEV1:  BetaSMR = 0.14, 95%CI 0.10–0.18, 
PPH4 = 0.96; FVC:  BetaSMR = 0.12, 95%CI 0.08–0.16, 
PPH4 = 0.98), left ventricle (FEV1:  BetaSMR = 0.20, 95%CI 
0.13–0.27, PPH4 = 0.94; FVC:  BetaSMR = 0.18, 95%CI 
0.11–0.24, PPH4 = 0.98), and lung (FEV1:  BetaSMR = 0.12, 

95%CI 0.08–0.16, PPH4 = 0.95; FVC:  BetaSMR = 0.10, 
95%CI 0.07–0.13, PPH4 = 0.94) (Fig. 7B). We discovered 
that EML3 eQTLs in aorta, atrial appendage, left ventri-
cle, and lung jointly shared the same causal signal with 
lung function, which were mediated by SNPs such as 

Fig. 4 MOLOC colocalization analysis identified the association signals of gene expression, blood cell traits, and lung function. A CD46 expression 
in blood, monocyte count, and FVC shared the same causal signal (PPA = 0.87); B CD46 expression in blood, white blood cell count, and FVC shared 
the same causal signal (PPA = 0.87); C LMCD1 expression in blood, white blood cell count, and FEV1/FVC shared the same causal signal (PPA = 0.83); 
D ZBTB38 expression in blood, lymphocyte count, and FEV1 shared the same causal signal (PPA = 0.91). eQTL: expression quantitative trait loci; FEV1: 
Forced expiratory volume in one second; FVC: Forced vital capacity; FEV1/FVC: Forced expiratory volume in one second and forced vital capacity 
ratio; PPA: An overall posterior probability of the three traits (PPA ≥ 0.80 was considered to share causal signals)
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rs2849031 (PPMT = 0.54) (Fig.  7C). In short, SNPs such 
as rs2849031 promote the expression of EML3 in aorta, 
atrial appendage, left ventricle, and lung to jointly con-
tribute to FEV1 and FVC (Fig. 7A).

Discussion
Tissue-specific DNA methylation and gene expression 
quantitative trait locus could provide new insights for 
exploring the genetic mechanism of complex diseases 

and traits in post-GWAS analysis. In this research, we 
performed multi-omics SMR analysis and Bayesian colo-
calization analysis to integrate lung function GWAS with 
cis-eQTLs and cis-mQTLs from diverse human tissues. 
We identified eight genes in whole blood that were asso-
ciated with FEV1: EML3, FAIM, PABPC4, RASGRP3, 
ROM1, SNIP1, UBXN2A, and ZBTB38. Additionally, five 
genes in whole blood were associated with FVC: CD46, 
EML3, LMCD1, UBXN2A, and ZBTB38. Furthermore, 

Fig. 5 SMR analysis showed that gene expression and DNA methylation in four tissues were involved in the regulation of lung function. A SMR 
analysis between eQTLs in four diverse tissues and lung function traits; B SMR analysis between mQTLs in four diverse tissues and lung function 
traits. Chr: chromosome; Beta: effect value of SMR analysis; FDR: false discover rate
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one gene, LMCD1, was associated with the FEV1/FVC, 
supported by multi-omics evidence. In the SMR analysis 
of tissue-specific eQTLs/mQTLs and lung function, the 
multi-omics evidence for UBXN2A was replicated in tis-
sues such as the lung, colon, and skeletal muscle. Moreo-
ver, the causal relationships between eight genes (CD46, 
EML3, FAIM, PABPC4, RASGRP3, ROM1, UBXN2A, 
and ZBTB38) and lung function were confirmed through 
colocalization analyses of tissue-specific cis-eQTLs, 

showing replication in at least one human tissue other 
than whole blood.

Experimental studies have indicated that CD46 (Com-
plement regulatory protein), as a Treg-activated costimu-
latory molecule, may help to inhibit asthma inflammation 
together with the production of IL-10/granzyme B [27]. 
The higher expression of CD46 protects former smok-
ers from emphysema and chronic obstructive pulmonary 
disease by eliminating inflammation that hinders the 

Fig. 6 The causal association between cross-tissue gene expression and lung function. A Colocalization map of tissue-specific eQTLs and lung 
function; The size of the point represents the value of PPH4. B The FUMA GENE2FUNC tool generated a gene expression heatmap in diverse human 
tissues of 10 genes associated with lung function; The heatmap displays zero mean normalized log2 transformed expression values; deeper shades 
of red signify higher expression levels, while deeper shades of blue indicate lower expression levels. PPH4: Posterior probability of hypothesis 4
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proliferation and necrosis of CD8( +) T cells [28]. Our 
findings further substantiated the importance of CD46 
in respiratory health, demonstrating that genetically 
predicted levels of CD46 methylation and expression in 
whole blood, lung, and prostate tissues were significantly 
associated with FVC. Notably, CD46 expression in whole 
blood, monocyte count, and FVC shared the same causal 
signal (PPA = 0.87, Fig. 4A). These results underscore the 
potential of CD46 as a novel immune target for respira-
tory diseases and lung function. However, the underly-
ing mechanisms through which CD46 exerts its effects 
remain to be thoroughly investigated. Future research 
should focus on elucidating these mechanisms in practi-
cal settings to validate the therapeutic potential of CD46 
in the context of respiratory disease management and 
prevention.

EML3 (Echinoderm Microtubule Associated Protein 
Like 3) is a nuclear microtubule-binding protein, which 
is necessary for the correct arrangement of chromosomes 
in metaphase [29]. As reported, EML3 is related to bio-
logical processes such as mitosis, embryonic develop-
ment, and methylation regulation [29–31]. Additionally, a 

Mendelian randomized analysis on smoking-related DNA 
methylation and lung function showed that cg12616487 
(EML3) had a causal relationship with FEV1 [32]. A lat-
est genome-wide association study of preserved ratio 
impaired spirometry (PRISm), defined as FEV1 < 80% 
predicted and FEV1/FVC ratio ≥ 0.70, showed that EML3 
is a heritable component for the development of PRISm 
[33]. In our research, the DNA methylation and gene 
expression of EML3 are causally related to FEV1 and 
FVC. Moreover, EML3 cis-eQTLs in 28 diverse human 
tissues shared the same causal signals with FEV1, and 
EML3 cis-eQTLs in 27 diverse human tissues shared the 
same causal signals with FVC. An observational study 
has reported that decreased FEV1 was associated with 
the risk of coronary artery disease (CAD) [34]. However, 
a Mendelian randomized analysis found that FVC, not 
FEV1, was independently related to the risk of CAD [35]. 
Notably, we identified the causal association between the 
cardiopulmonary axis of EML3 cis-eQTLs and FEV1 or 
FVC (PPMT = 0.54, Fig. 7), which seemingly explains the 
causal relationship between lung function and cardiopul-
monary diseases from a cross-tissue perspective.

Fig. 7 Cross-tissue EML3 expression jointly affects lung function through the cardiopulmonary axis. A Schematic diagram of common genetic 
loci promoting the expression of EML3 in the cardiopulmonary axis and then affecting the expression of lung function (Drawing by Figdraw). B 
SMR and colocalization analysis showed that the expression of EML3 in aorta, atrial appendage, left ventricle, and lung respectively had a causal 
association with FEV1 and FVC. C HyPrColoc colocalization analysis showed that EML3 in aorta, atrial appendage, left ventricle, and lung jointly 
had a causal association with FEV1 and FVC. Chr: chromosome; Beta: effect value of SMR analysis; p_SMR: P value of SMR analysis; PPH4: posterior 
probability of hypothesis 4
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LMCD1 (LIM and cysteine-rich domains 1, also named 
Dyxin) is a member of the LIM domain family of zinc 
finger proteins that act as transcription co-regulators. 
LMCD1 plays a key regulatory role in a variety of cell 
functions, such as gene expression, cell growth, cell adhe-
sion, cell differentiation, and cytoskeleton remodeling 
[36, 37]. LMCD1 has been reported to be involved in 
pulmonary fibrosis in systemic sclerosis-related inter-
stitial lung disease [38]. Previously, genome-wide asso-
ciation studies found that LMCD1 was the key genetic 
locus of mitral valve prolapse [39, 40]. Findings from our 
multi-omics investigation suggested that DNA methyla-
tion of cg08935301 and cg08804258 in whole blood may 
decrease the gene expression of LMCD1 in whole blood 
and thus decrease the level of FVC, while DNA methyla-
tion of cg24259363 in whole blood may increase the gene 
expression of LMCD1 in whole blood and thus increase 
the level of FVC (Figure S1). Meanwhile, the hypermeth-
ylation levels of cg08935301 and cg08804258 and the 
underexpression of LMCD1 in whole blood are protec-
tive factors for FEV1/FVC, while the hypermethylation 
level of cg24259363 and the overexpression of LMCD1 
in whole blood are damaging factors for FEV1/FVC (Fig-
ure S2). Moreover, we found that LMCD1 gene expres-
sion in whole blood, white blood cell count, and FEV1/
FVC shared the same causal signal (PPA = 0.83, Fig. 4C). 
In brief, LMCD1 is a potential target of FVC and FEV1/
FVC, and further regulation mechanisms need to be veri-
fied in practice.

UBXN2A (Ubiquitin-like-domain-containing protein 
2A) serves as a ubiquitin-like protein-coding gene to 
be involved in several processes, including autophago-
some assembly, nuclear membrane reassembly, and 
proteasome-mediated ubiquitin-dependent protein cat-
abolic process. In colon cancer, UBXN2A was reported 
to be able to competitively bind mot-2 with p53, thus 
saving p53 tumor suppressor function and recon-
structing the inactivated p53-dependent apoptosis 
pathway [41]. According to our research, DNA meth-
ylations of cg04619854 in transverse colon, cg04619854 
in lung, cg08212172 in lung, cg08212172 in skeletal 
muscle, cg01809281 in whole blood, cg01853276 in 
whole blood, cg00058708 in whole blood, cg08466982 
in whole blood, and cg09048186 in whole blood were 
associated with FEV1 and FVC. Meanwhile, UBXN2A 
expressions in transverse colon, lung, skeletal muscle, 
and whole blood were associated with FEV1 and FVC. 
It seems to suggest the importance of UBXN2A in the 
lung-colon axis for the respiratory system.

ZBTB38 (Zinc finger and BTB domain containing 
38) is a methyl-CpG binding protein, binding to and 
repressing methylated DNA. In a multi-omics analysis, 

ZBTB38 mRNA expression and DNA methylation were 
found to be related to cisplatin resistance in non-small 
cell lung cancer [42]. Based on our findings, DNA 
methylation of cg27288595 may decrease the gene 
expression of ZBTB38 and thus decrease the level of 
FEV1 (Fig.  3B). Furthermore, we found that ZBTB38 
gene expression in whole blood, lymphocyte count, 
and FEV1 shared the same causal signal (PPA = 0.91, 
Fig. 4D). For colocalization of tissue-specific cis-eQTLs 
and lung function, ZBTB38 cis-eQTLs shared the same 
causal signals with FEV1 in 13 diverse human tissues 
including lung, heart, and colon. Further studies are 
needed to better elucidate the role of ZBTB38 in FEV1 
and respiratory diseases.

In previous research, the genes SNIP1, PABPC4, FAIM, 
and RASGRP3 have emerged as significant players in the 
context of lung cancer. Notably, SNIP1 (Smad Nuclear 
Interacting Protein 1) has been shown to enhance the 
migration and invasion of lung cancer cells through its 
interaction with actin filament-associated protein 1 anti-
sense RNA 1 (AFAP1 − AS1), which is a long noncoding 
RNA known for its role in cancer progression [43]. Addi-
tionally, PABPC4 (Poly(A) Binding Protein Cytoplasmic 
4) has been identified through quantitative proteomic 
analysis as a promising biomarker for lung adenocarci-
noma, highlighting its potential as a target for therapeutic 
strategies [44]. A study showed that knocking out FAIM 
(Fas apoptosis inhibitor molecule) can induce autophagy 
in lung adenocarcinoma cells by inhibiting the mTOR 
pathway, suggesting a mechanism by which cancer cells 
evade apoptosis [45]. Furthermore, RASGRP3 (RAS Gua-
nyl Releasing Protein 3) has been implicated in promot-
ing the risk of lung cancer, as evidenced by findings from 
SNP microarray analyses that evaluated genomic insta-
bility in airway epithelial cells [46]. This highlights RAS-
GRP3’s potential role as a biomarker in lung cancer risk 
assessment. Taken together, these studies not only under-
scored the importance of these molecular targets in lung 
cancer development but also paved the way for further 
investigations into their mechanisms and potential thera-
peutic implications. As we delve deeper into the impact 
of these findings, we can better understand the relation-
ships between these genes and lung function, ultimately 
leading to more effective interventions in lung cancer 
treatment and prevention.

One of the key strengths of our research lies in the 
integration of methylation and transcriptomic evidence 
through multi-omics SMR. This approach enhances the 
understanding of the relationships between individual 
omics components and lung function. By merging data 
from different omics layers, we were able to provide 
a more comprehensive perspective on the biological 
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mechanisms influencing lung health. Furthermore, we 
employed colocalization analysis to evaluate the causal 
effects of gene expression on lung function, which helps 
to mitigate potential confounding factors arising from 
linkage disequilibrium. This methodological rigor solidi-
fies our findings, ensuring that the observed associations 
are more likely to reflect true biological relationships 
rather than artifacts of genetic correlation. To enhance 
the robustness of our results, we replicated the find-
ings from both the multi-omics SMR and colocalization 
analysis across several large datasets of lung function 
data. This replication in diverse datasets added credibil-
ity to our conclusions and underscored the reliability of 
our findings. Additionally, we examined tissue-specific 
cis-eQTLs and cis-mQTLs to further elucidate the com-
munication between different organs and tissues in the 
context of omics regulation. This exploration not only 
strengthens our understanding of how various tissues 
interact to influence lung function but also emphasizes 
the importance of a systems biology approach in studying 
complex traits like lung function. Overall, our research 
contributes to a more nuanced understanding of the 
regulatory networks that underpin lung function, provid-
ing new insight for future studies aimed at exploring the 
intricate interplay between genetic and epigenetic factors 
of lung function.

Our research does have several limitations that should 
be acknowledged. First, the impact of racial and eth-
nic differences on the genetic determinants of lung 
function cannot be overlooked. The majority of large 
genome-wide association studies on lung function have 
primarily focused on populations of European descent. 
Consequently, the generalizability of our findings to 
other populations may require further investigation and 
discussion to ensure broader applicability. Second, our 
analysis was limited to cis-eQTLs. While these provide 
valuable insight into local regulatory variations, trans-
eQTLs have the potential to exert widespread influ-
ence on gene regulatory networks that could be equally 
significant but were not addressed in this study. Future 
research should consider examining trans-eQTLs to gain 
a more comprehensive understanding of gene regula-
tion. Third, Bayesian colocalization analysis is a power-
ful tool for identifying shared genetic signals between 
traits; however, it is important to note that this method 
does not confirm causality. While colocalization can sug-
gest that traits may be influenced by the same genetic 
variant, it does not establish a direct causal relationship. 
Further experimental validation and complementary 
approaches are necessary to elucidate the causal mecha-
nisms underlying these associations. Fourth, the explora-
tion of the effects of methylation on gene expression was 

limited to just nine diverse tissues, constrained by the 
availability of mQTLs data from other tissues. This limi-
tation restricts our ability to fully elucidate the relation-
ships between methylation and gene expression across a 
wider range of biological contexts. Expanding the dataset 
to include additional tissues could provide a more thor-
ough understanding of the implications of methylation 
in gene regulation and lung function. Finally, despite the 
advancements in understanding the genetic and epige-
netic factors influencing lung function, there remains 
a significant gap in identifying mQTLs with single-cell 
resolution. Current studies predominantly focus on bulk 
tissue analyses, which can obscure the heterogeneity pre-
sent within cellular populations. The lack of single-cell 
resolution in mQTL studies limits our ability to associ-
ate specific methylation changes with cellular phenotypes 
and functions accurately.

Conclusion
In this study, the causal effect among tissue-specific DNA 
methylation, tissue-specific gene expression, and lung 
function were identified through multi-omics integra-
tion analysis. Leveraging methylation and transcriptome 
genetic databases, we identified several genes associated 
with lung function and explained them in terms of DNA 
methylation and gene expression from diverse human tis-
sues. This not only provides multi-omics evidence for the 
regulation mechanism of lung function but also provides 
a new insight into the influence of crosstalk between 
organs and tissues on lung function. Furthermore, our 
study identifies potential molecular targets that could 
facilitate cross-tissue therapeutic strategies aimed at 
improving lung function and addressing lung diseases in 
the future.
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