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Abstract 

Background  Bats possess a uniquely adapted immune system that enables them to live with viral infections with-
out the expected maladies. The molecular basis and regulation of bats’ immune response is still not fully understood. 
Long non-coding RNAs (lncRNAs) represent an emerging class of molecules with critical regulatory roles in multiple 
biological processes, including immunity. We hypothesise that lncRNA-based regulation in bats may enable them to 
limit disease and live with viral pathogens.

Results  We developed a lncRNA prediction pipeline to annotate the long non-coding transcriptome across multiple 
bat tissues and at the population level. Characterisation of our lncRNA dataset based on 100 blood transcriptomes 
from wild Myotis myotis bats revealed lower and more tissue-specific expression compared with coding genes, 
reduced GC content and shorter length distributions, consistent with lncRNA profiles observed in other species. Using 
WGCNA network analyses and gene ontology, we identified two mRNA-lncRNA co-expression modules in Myotis 
myotis associated with distinct immune response: one linked to T-cell activation and vial processes, and the other 
to inflammation. From these immune-related lncRNAs, we selected four candidates with high translational potential 
for regulating viral infections and inflammation. These include a newly identified lncRNA, BatLnc1, with potential anti-
viral functions; the M. myotis ortholog of TUG1, implicated in viral-host interactions; and well-known lncRNAs MALAT1 
and NEAT1, recognised for their roles in inflammatory regulation.

Conclusions  We conducted the first ab initio prediction of lncRNAs in a non-model bat species, the wild-caught M. 
myotis. Our network analysis revealed significant variation in immune status among a subset of individuals, poten-
tially due to pathogenic conditions. From these variations, we identified lncRNAs most likely associated with immune 
response in bats. This initial exploration lays the groundwork for future experimental validations of lncRNA functions, 
offering promising insights into their role in bat immunity.
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Background
Bats (Order Chiroptera) are the only mammals capa-
ble of true self-powered flight and have evolved unique 
adaptations, including laryngeal-echolocation [1], unu-
sual longevity [2], and remarkable disease resistance [3]. 
Furthermore, bats can harbour some of the most diverse 
virospheres [4] without displaying the expected signs of 
disease or mortality. This suggests that bats have evolved 
a uniquely adapted immune system allowing them to live 
with these pathogens without the associated maladies [5]. 
This resilience has prompted scientists to investigate the 
immune adaptations that bats have evolved, both to iden-
tify novel therapeutic targets and to better understand 
how to limit infection-driven disease [6, 7].

Based on comparative genomics and initial functional 
assays [3], it has been suggested that bats have evolved 
two distinct immune strategies to limit disease: viral tol-
erance and enhanced antiviral defence. Their viral toler-
ance mechanisms arguably stem from dampened viral 
recognition pathways and a reduced pro-inflammatory 
response, effectively minimising excessive inflammation. 
This is achieved through adaptations in bat viral inflam-
matory responses, such as: different isoform expression 
of the intracellular sensor NLRP3 [8]; dampened activ-
ity of the interferon-response regulator STING due to a 
mutation of its serine residue (S358) [9]; the bat-specific 
loss of the entire PYHIN inflammasome gene family [10]; 
and positive selection of c-REL [11], a subunit of NF-KB 
and transcriptional repressor of TNFa-dependent inflam-
mation [12]. In parallel, some bats also exhibit a highly 
adapted antiviral defence system. This includes a robust 
and constant baseline expression of interferon and inter-
feron-response genes without stimulation [13–16], the 
expansion and selection of viral targeting genes such as 
the antiviral APOBEC3 enzyme family [17], the Mx pro-
teins lowering viral polymerase activity [18], and dupli-
cation of TRIM and tetherin antiviral proteins [19, 20]. 
These adaptations drive a finely tuned immune system 
capable of both tolerating and suppressing viral infec-
tions, contributing to bats’ unique ability to coexist with 
diverse viral pathogens without expected disease [21]. 
However, the regulatory mechanisms underlying bats’ 
viral tolerance and antiviral mechanisms remain poorly 
understood.

Long non-coding RNA (LncRNAs) are transcripts that 
can regulate biological processes [22], and can serve as 
biomarkers for tissues, pathologies [23, 24] and cell types 
[25]. To date, research into lncRNA in bat species has 
been limited, with only one published study [26] detailing 
bat lncRNA prediction from genomic sequences. In mice 
and humans, some lncRNAs can modulate key immune 
processes such as inflammation, pathogen recognition, 
and interferon signalling [27–29]. Several of the genes 

targeted by these lncRNAs are of particular interest in 
bats. For example, the LncRNA NEAT1 promotes the 
assembly of the NLRP3 inflammasome in mouse mac-
rophages by interacting with its caspase-1 p20 domain 
[30]. Similarly, MALAT1 increases NLRP3 expression 
by acting as a molecular decoy for inhibitor miRNA [31, 
32]. “LncRNA#32”, or LUARIS, stimulates an antiviral 
response by increasing the transcription of interferon-
stimulated genes, including APOBEC3A and APOBEC3G 
[33]. Other lncRNAs have also been reported as direct 
viral restriction factors, such as “LncRNA#61”, identified 
as anti-IAV (Influenza A virus) lncRNA by interacting 
with viral polymerases [34]. Therefore, lncRNA could 
contribute to the regulation of bat’s unique immune 
response.

To uncover lncRNAs in bats and predict their poten-
tial function, we developed a comprehensive bioinfor-
matic pipeline to annotate and quantify lncRNAs from 
RNA-Seq datasets encompassing five tissues of the 
greater mouse-eared bats (Myotis myotis). By analysing 
mRNA-lncRNA co-expression networks in 100 blood 
transcriptomes (n = 70) of M. myotis, we further identi-
fied key lncRNA candidates that may shape bat-specific 
immunity, distinguishing them from other mammals. 
These findings not only enhance our understanding of 
bat immunology but also pave the way for potential novel 
therapeutic targets in the fight against emerging zoonotic 
diseases.

Methods
Step 1: Ab initio prediction of lncRNAs
Tissue samples, RNA‑Seq datasets and metadata
The dataset used for lncRNA prediction consisted of 
stranded, ribo-depleted paired-end RNA sequencing 
public data from two main sources:1) Seven tissue sam-
ples from an injured bat that required euthanasia as 
detailed in Jebb et  al. 2020 study [35], specifically kid-
ney (n = 2), liver (n = 2), heart (n = 2), brain (n = 1); 2) 100 
globin-depleted whole blood RNA-Seq samples from 70 
female M. myotis, collected annually from four colonies 
in Brittany, France, with an age range of 0 to 7 + years 
(where “X + ” indicates a minimum age of X years) [36]. 
All bats were marked with transponders enabling us indi-
vidual identification on recapture and passive monitoring 
of roost entry and exit using antennas placed at the roost 
exit from 2014 to 2023 (methods as detailed in Touzalin 
et  al. 2023 [37]). This enabled us to ascertain the sur-
vival of individuals year to year. The sample information, 
RNA isolation and purification, and RNA sequencing 
have been described thoroughly in our previous studies 
[36, 38] [Sup File 1]. M. myotis genome sequences and 
annotation (GFF files) were obtained from Jebb et  al. 
2020. The mitochondrial genome and the corresponding 
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mitochondrial genes predicted by Jebb et  al. 2017 
(HLmyoMyo6, [35, 39]), Genbank reference KT901455.1, 
were downloaded and added to the FASTA and GFF files.

Read trimming & mapping
Illumina universal adapter sequences and low-quality 
regions were trimmed from the raw FASTQ files using 
TrimGalore v0.6.8 [40], with a default Phred quality 
threshold of 20. Sequencing quality and trimming effi-
ciency were assessed using FastQC [41] and MultiQC 
[42]. The trimmed paired-end FASTQ files were then 
mapped to the indexed M. myotis genome with STAR 
v2.7.10b-alpha [43] in 2-pass mode (–twopassMode 
Basic) with XS strand attributes generated (–outSAM-
strandField intronMotif ). For each sample, the read map-
ping file in ‘Binary Alignment Map’ (BAM) format was 
generated for downstream analyses.

LncRNA prediction
The ab  initio transcriptome assembly was constructed 
for each sample from its corresponding BAM file using 
Stringtie v2.2.1 [44]. The resulting Gene Transfer Format 
(GTF) files were merged through a two-step procedure 
using Portcullis v1.2.2 [45] and Mikado v2.3.4 [46] to 
control isoform numbers and extract primary isoforms. 
The canonical splice junctions were first extracted from 
each BAM file using Portcullis, and the resulting Browser 
Extensible Data (BED) files were merged with Portcul-
lis’ ‘junctools’ command using the “set union” parameter. 
The GTF files were then processed using Mikado, with 
two key customisations: 1) a custom parameter file that 
allowed mono-exonic isoforms to be classified as splice 
variants; and 2) a custom scoring file that excluded cod-
ing DNA sequences (CDS), ensuring that noncoding can-
didates were retained as principal isoforms.

LncRNA filtering and categorisation
The resulting GTF files were parsed using BEDTools [47] 
and custom in-house scripts (see github link in data avail-
ability) to separate the annotated coding transcripts from 
unannotated candidates. Genes with unknown function, 
designated with “LOC” in their FASTA header within the 
M. myotis annotation, were removed from the annotated 
coding intervals. Two categories of lncRNAs were identi-
fied from the unannotated candidates: 1) long intergenic 
lncRNAs or “lincRNAs”, which do not overlap with any 
annotated genes; and 2) overlapping antisense lncRNAs, 
or “loancRNA”, which overlap annotated genes on the 
antisense strand. To account for the extended 5’ and 3’ 
expression ranges of coding genes that extend beyond 
their genomic intervals, and address potential mislead-
ing predictions arising from UTRs, a two-step selection 
was applied. First, predicted lncRNAs located within 

500 nucleotides (nt) of coding genes, in the same ori-
entation were considered as extended coding intervals. 
Then, lncRNA within 5 kb of identically oriented coding 
intervals were removed. To distinguish true noncoding 
lncRNA from previously unannotated coding genes, the 
non-coding nature of the predicted principal isoforms, as 
indicated by Mikado, was validated using the consensus 
of three tools: CPC2 v1.79 with a coding probability cut-
off < 0.5 [48]; CPAT v3.0.4 using the mouse model with 
a coding cutoff < 0.44 [49]; and PLEK v 1.2 with negative 
coding score [50]. Candidates were classified as non-cod-
ing if identified as such by at least two of the three tools.

All steps of lncRNA characterisation are detailed in 
(Fig. 1).

Step 2: Quantification and characterisation of annotated 
genes and lncRNA
Annotated coding transcripts, predicted lincRNA, and 
loancRNA sequences from each sample were merged 
into a single reference file, then quantified at the gene 
level from the BAM files using FeatureCounts v2.0.3 
[51] with the following parameters: –countReadPairs, -p 
and -s 2. LncRNAs and annotated genes with an aver-
age expression level above 20 read counts in any tissue 
were considered to have significant expression. Only cod-
ing genes covered by reads on at least 20% of their full 
gene length were retained to minimise false-positive 
predictions from partial gene coverage. Gene expres-
sion normalisation was performed using Trimmed Mean 
of M-values (TMM) using the NOISeq package [52]. To 
characterise previously identified lncRNAs, the princi-
pal isoform of each lncRNA, as indicated by Mikado, was 
compared against the NONCODE database v6 [53], and 
the RefSeq viral genomes database [54] using BLASTn 
[55]. Valid matches were selected based on the thresh-
olds of e-value below 0.001 and query coverage above 
60%. lncRNAs were annotated as overlapping an endog-
enous retrovirus (ERV) if more than 50% of their length 
overlapped an ERV region annotated in the M. myotis 
genome browser. The effect of factors including sampling 
year, site, sequencing batch, and individual bat was ana-
lysed from TMM-normalised expressions using the vari-
ance Partition R package [56].

Step 3: mRNA‑lncRNAs co‑expression network creation
Weighted Gene Co‑expression Network Analysis
Weighted Gene Co-expression Network Analysis 
(WGCNA) was performed on TMM-normalised expres-
sion counts using the WGCNA R package [57]. The 
optimal soft threshold power for the analysis was deter-
mined as 9 using the pickSoftThreshold function, and 
this threshold was applied to construct an adjacency 
matrix [Sup file 2]. This adjacency matrix was then used 
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to construct a Topological Overlap Matrix (TOM). Hier-
archical clustering (“hclust” function with “average” 
method) was performed on the TOM to identify co-
expression modules, grouping genes into modules based 
on their connectivity. Modules were determined using 
the dynamic tree cut “hybrid” method (cutreeDynamic 
function), which integrated hierarchical clustering and 
the dissimilarity matrix. Modules with high similarity 
(dissimilarity below 0.2) were merged into a new module.

Gene ontology analyses and unsupervised exploration 
of co‑expression modules
Gene ontology and enrichment analyses were conducted 
on the coding gene content of every module using the 
ClusterProfiler R package [58]. The predominant cell 
types in the modules were identified with ‘marker genes’ 
from the CellMarker2 database (limited to normal cells 
and excluding scRNA-Seq-derived data) via the com-
pareCluster function, applying a p-value cutoff of 0.01. 
To uncover representative pathways in each module, 
we utilised the EnrichGO function with the following 
parameters: minGSSize = 50, maxGSSize = 200, pval-
ueCutoff = 0.01, ont = "BP" (Biological Process only). To 
reduce pathway redundancy, we employed the simplify 
function from the same package, using the following 
parameters: cutoff = 0.6, by = "p.adjust", select_fun = min, 
measure = "Wang", and semData = NULL.

Principal Component Analysis (PCA) was performed on 
TMM-normalised log-transformed counts of all predicted 
lncRNAs and all coding genes across all samples using the 
PCATools package. Modules’ global expression was assessed 
by calculating eigengenes, defined as the first principal com-
ponent that summarises the expression of all genes (cod-
ing or non-coding) within each module. Spearman’s rank 
correlation was used to analyse the relationship between 
eigengenes and age, with ages exceeding seven years labelled 
as seven. Inter-module correlations were evaluated using the 
plotEigengeneNetworks, with the “signed = TRUE” option.

Step 4: Exploration of lncRNAs‑mRNA co‑expression 
network and candidates selection
The strength and number of the correlations between 
annotated genes and lncRNAs were quantified from the 
network table exported from the initial adjacency matrix, 
using an adjacency threshold of 0.05, through the export-
NetworkToCytoscape function. Candidates selected for a 
focused overview were ranked based on having the high-
est number of co-expressed genes and/or the highest 
expression levels. Immune gene lists were extracted from 
the Human collection C7 from GSEA MSigDB, to assess 
the proximity between predicted lncRNAs and genes 
involved in immunity in humans.

To assess the sequence conservation of predicted lncR-
NAs loci, Phastcons scores were generated from the “15 

Fig. 1  The ab initio lncRNA prediction pipeline. A) 100 whole-blood RNA-Seq datasets and 7 solid samples (2 kidneys, 2 livers, 2 hearts, 1 brain) 
from M. myotis are downloaded for this study; B) Quality control of RNA-Seq and reads mapping; C) The core lncRNA prediction steps; D) LncRNA 
filtering steps
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mammals” Multiz alignment MAF file available on the 
Senckenberg genome browser [59]. For accessibility rea-
sons these scores were processed with the PHAST tool 
[60] using the 470  MultiZ phylogenetic model available 
on genome browser [61], for which only the correspond-
ing 15 species were used for scoring.

The genomic intervals and exonic structures of the 
selected lncRNAs were visualized using BAM and GFF3 
files with the Gviz packages [62]. Selected lncRNAs 
candidates, along with the top 20 most correlated cod-
ing genes (based on adjacency scores), were extracted 
for further analysis. Their expression levels, represented 
as Z-scored TMM-normalised values, were visualised 
alongside relevant metadata using the ComplexHeatmap 
package [63].

Results
Characterisation of the lncRNA set
We employed the chromosome-level assembly of M. 
myotis published by the Bat1K consortium to identify and 
quantify protein-coding genes and lncRNAs in bats. To 
validate our quantification method using this new anno-
tation, we compared the expression of 5,545 protein-cod-
ing genes in blood samples, which were also predicted 
by Huang et al. 2019 using the Myotis lucifugus genome 
(MyoLuc2.0) as reference. A strong correlation between 
the two studies was observed (R = 0.94, P < 2.2e−16, Spear-
man’s correlation test), confirming the reliability of the 
quantification part of our pipeline (Fig. 2A).

We annotated a total of 9,236 lncRNA genes, includ-
ing 3,761 intergenic lncRNAs (2,207 monoexonic and 
1,554 polyexonic) and 5,475 overlapping antisense 
lncRNAs (3,502 monoexonic and 1,973 polyexonic), all 
expressed in at least one tissue in the dataset. This rep-
resents a 65.4% increase in the total number of annotated 
expressed genes (n = 14,115), highlighting the expanded 
scope and depth of our lncRNA predictions (Fig. 2B).

The predicted lncRNAs were generally shorter than 
annotated coding genes, with an average length of 
1,853nt compared to 2,086nt for coding genes. However, 
the length distribution varied significantly depending on 
the lncRNA type and number of exons (Fig. 2C). Mono-
exonic lncRNAs exhibited a binomial distribution with 

two distinct peaks, representing short and long forms. 
Surprisingly, polyexonic loancRNA were the shortest 
across all groups, with their distribution peaked around 
the minimum length threshold of 200nt, while mono-
exonic lncRNAs were the longest, with a median length 
surpassing that of coding genes (Fig.  2C). Although all 
predicted lncRNA types had a lower median GC con-
tent than coding genes, polyexonic lncRNAs from both 
groups showed higher median GC percentages (48.7 for 
intergenic and 50.5% for antisense) compared to their 
monoexonic counterparts (43.9% and 44.5%, respec-
tively) (Fig. 2D).

The predicted lncRNAs exhibited tissue specific-
ity, with the brain having the highest number of tissue-
specific lncRNAs (1,386), followed by the kidney (904), 
blood (731), Liver (333) and Heart (252). A small subset 
of lncRNAs were shared amongst all tissues. Notably, a 
marked contrast between solid tissues and blood: the 4 
solid tissues collectively expressed a high proportion 
of their lncRNAs (2,651), while most of the lncRNAs in 
blood were tissue-specific (Fig.  2E). As expected, pre-
dicted lncRNAs showed lower expression levels than 
annotated coding genes across all tissues. Blood exhib-
ited lower overall expression levels compared to other 
tissue types, but with higher maximum expression lev-
els (Fig.  2F). Interestingly, loancRNAs in solid tissues 
showed slightly higher expression than their intergenic 
counterparts.

Identification of predicted lncRNAs
A BLAST search was performed to determine the iden-
tity and homology of the lncRNAs by comparing them 
with human lncRNAs from the NONCODEv6 database. 
Both intergenic and overlapping antisense lncRNAs 
showed similar numbers of significant hits, with 477 and 
466 matches, respectively [Sup file 3]. Several lncRNAs 
were identified as orthologs of well-known and highly 
conserved lncRNAs, including XIST, NEAT1, MALAT1, 
GAS5 and HOTAIR, among others [Sup file 4].

Despite the high content of viral sequences in the M. 
myotis genome, only a small number of hits (n = 8) were 
found in the RefSeq database of viral genomes or corre-
sponded to endoviral loci within the M. myotis genome 

Fig. 2  The landscape of predicted protein-coding and lncRNA across tissues. A) Spearman correlation of gene expression between the current 
study and Huang et al. 2019 estimated from 100 blood M. myotis samples. 5,545 common genes identified in both studies were used in the analysis. 
B) The distribution of expressed protein-coding and lncRNAs identified in this study. LncRNAs were subcategorised into monoexonic lincRNAs, 
monoexonic loancRNAs, polyexonic lincRNAs, and polyexonic loancRNAs. C) Distribution of the length of expressed coding and lncRNAs 
across tissues. D) GC content distribution of coding and lncRNAs across tissues. E) Upset plot showing the number of expressed lncRNAs that were 
shared across tissues or tissue-specific. F) The distribution of coding and lncRNA gene expression across tissues. The raw expression counts were 
TMM-normalised

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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(n = 6). Among these, two hits matched an endogenous 
virus originally found in Desmodus rotundus, the com-
mon vampire bat. Five of the eight viral hits were against 
retroviruses, including the reticuloendotheliosis virus 
(avian retrovirus), Wooly monkey sarcoma virus, bovine 
herpesvirus 6, and Friend murine leukemia virus. All 
lncRNAs overlapping endogenous viral sequences were 
associated with gammaretroviral types [Sup file 5].

The WGCNA gene‑lncRNA modules in M. myotis blood 
reveal lncRNAs linked to immunity
To identify potential regulators of immune function in 
M. myotis, we assessed the variation in the expression of 
the 7,701 annotated coding genes and the 1,178 predicted 
lncRNAs expressed in the 100 whole-blood samples 
from bats aged 0 to 7 + years. We first conducted a vari-
ance analysis based on blood gene expression to identify 
the primary factor contributing to expression variation. 
When examining the effect of factors such as age, sam-
pling year, site, sequencing batch, and individual bat, we 
found that age explained the greatest proportion of vari-
ation. This result aligns with previous findings by Huang 
et  al. (2019) which focused on coding genes [36]. Both 
types of lncRNAs showed a slightly smaller contribution 
of age to their expression variation compared to coding 
genes. Other factors, excluding residuals, had minimal 
impact, suggesting that other unknown factors excluding 
age, RNA coding attributes, and technical batch effects 
explain a significant part of the expression variation in 
bat blood within this wild population [Sup file 6].

Next, we performed a weighted gene co-expression 
network analysis (WGCNA) to identify modules of co-
expressed annotated coding genes and lncRNAs (Fig. 3A) 
in M. myotis blood. A large proportion of the anno-
tated genes expressed in blood, along with the majority 
of expressed lncRNAs in each category, were assigned 
to one of the identified modules: 6,097 annotated genes 
(79.1%), 549 lincRNAs (60.5%), and 148 loancRNAs 
(54.4%) (Fig.  3B). In total, 12 modules were identified 
and assigned unique identifiers (MEs), ordered by mod-
ule size (Fig. 3C). The largest module, “ME1”, contained 
2,109 genes, followed by “ME2” with 1,939 genes, and 
then “ME3” with 739 genes. The presence of at least one 

lncRNA in each of these modules suggests the potential 
involvement of lncRNAs in the different functions of M. 
myotis blood cells.

To determine which co-expressed modules are involved 
in the immunity of M. myotis, we preformed over-repre-
sentation analysis using cell type markers and pathways 
databases on the annotated genes within each module 
(Fig. 3D-F). The first three modules were associated with 
pathways involved in immunity, cell cycle regulation and 
DNA repair. The largest module, “ME1”, exhibited signifi-
cant enrichment in cell markers from almost all immune 
cell types, including both myeloid and lymphoid cells, 
excluding neutrophils. This enrichment is particularly 
strong for T lymphocytes. “ME3” showed enrichment for 
markers associated with the innate immune system, such 
as macrophages, neutrophils, monocytes, and natural 
killer cells (Fig. 3D).

ME1 appears to be strongly associated with adaptive 
immunity, particularly lymphocyte activation and func-
tion. The most significantly enriched pathways include 
“alpha–beta T-cell activation” (GO:0046631) and the 
“T cell receptor signaling pathway” (GO:0050852) 
(Fig.  3E), supported by other notable pathways like 
“chaperone-mediated protein folding” (GO:0061077), 
“viral gene expression” (GO:0019080), “B cell prolif-
eration” (GO:0042100), and “lymphocyte apoptotic 
process” (GO:0070227) [Sup file 7] further supporting 
these observations. ME2, in contrast, is predominantly 
enriched for pathways linked to longevity that were 
previously highlighted from the same data as the path-
ways responsible for maintaining M. myotis unusual 
longevity [36]. Key pathways include “recombinational 
repair” (GO:0000725), “cell cycle checkpoint signaling” 
(GO:0000075), “telomere organization” (GO:0032200), 
and “positive regulation of autophagy” (GO:0010508). 
ME3 is enriched for pathways central to innate immu-
nity and inflammatory responses, indicating a distinct 
role in first-line immune defense. This includes key reg-
ulators of inflammation such as tumor necrosis factor 
production pathways (GO:0071706), the “positive regu-
lation of NF-κB” (GO:0051092) (Fig. 3E), and “interferon 
signaling” (GO:0140888), with notable genes such as 
IFNAR2 and IFNGR2 contributing to antiviral defense. 

(See figure on next page.)
Fig. 3  Weighted gene co-expression network analysis of 100 M. myotis blood RNA-Seq samples. A) Clustering dendrograms showing 
the expression patterns of both coding genes and lncRNAs. The first band represents the different co-expression modules initially identified, 
while the second band indicates merged modules that were integrated by modules with similar expression patterns. The gene clusters in white 
indicate that these genes cannot be assigned to any modules. B) Number of coding genes and lncRNAs assigned to the identified modules. C) The 
distribution of coding genes and lncRNAs in each identified module. D) Enrichment analysis of cell-type markers (coding genes) in each module. 
The numbers in circles indicate the numbers of cell-type marker genes identified in each module. E) Gene ontology analysis of the coding genes 
in each module. The numbers in circles indicate the numbers of genes in that pathway for each module
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Fig. 3  (See legend on previous page.)
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Additionally, ME3 is enriched for “Toll-like receptor 
(TLR) signaling” (GO:0071706), involving TLR1, 2, 4, 6, 
and 8, reinforcing its role in pathogen recognition and 
immune activation. Interestingly, the presence of “nega-
tive regulation of immune response” (GO:0050777) [Sup 
file 7] suggests that this module may also be involved 
in fine-tuning immune reactions to prevent excessive 
inflammation.

Overall, our results suggest that lncRNAs detected 
in ME1 and ME3 could be implicated in the immune 
response in M. myotis by association, with ME1 lncR-
NAs potentially involved in lymphocytic activity and 
ME3 lncRNAs potentially linked to innate immunity and 
inflammation. Noticeably, the percentage of lncRNAs in 
these immune-related modules exceeds that in ME2, sug-
gesting that more lncRNAs are converging on immunity 
regulation in M. myotis [Sup file 8].

ME1 co‑expression module reveals regulatory lncRNAs 
of antiviral T cells activity in M. myotis
To identify the most relevant immune-related lncRNAs 
and investigate their potential roles in immune func-
tions, we assessed the global expression of genes from the 
ME1 and ME3 across the blood datasets and investigated 
the relationships between coding genes and lncRNAs 
through their co-expression network. To visualise the dif-
ference of expression of ME1 across the bat population, 
we mapped the expression pattern (eigengene) of ME1 
as a color gradient onto the blood PCA, which revealed 
its expression pattern changing along the PC1 (hori-
zontal axis). Interestingly, this overexpression was most 
prominent in 0 or 1 year old individuals (Fig. 4A). These 
younger individuals, expressing higher levels of ME1, 
were detected by the radio antenna system at least one 
year after the original sampling, showing no immediate 
impact of this possible immune challenge on their sur-
vival [Sup File 9]. Additionally, some top loadings of the 
PCA aligning with PC1 and ME1 expression patterns are 

linked to cytotoxic lymphocytes, such as SAMD3 [64], 
KLRK1 [65] and VCAN [66] [Sup file 10].

As expected, ME1 expression showed a negative cor-
relation with bat age (R = −0.54, p-value  = 1.9e − 7) 
(Fig.  4B) and demonstrated a strong inverse correla-
tion with M2 expression (R = −0.8, p-value = 4e − 27) 
(Fig.  4C). In contrast, ME2 which is positively corre-
lated with age, exhibited a reversed expression pattern 
along the PC1 (horizontal axis) compared to ME1 [Sup 
Fig. 11] suggesting an antagonistic relationship between 
DNA repair and T-cell/antiviral activity. ME1 expression 
showed a weak positive correlation with ME3 (R = 0.29, 
p-value = 3e - 3) and a stronger positive correlation with 
ME5 (R = 0.62, p-value = 6e − 13), a module with an as-
yet-unknown function.

By assessing the relationships between coding genes 
and lncRNAs in ME1, we observed that lncRNAs did not 
uniformly co-express across the network. Instead, they 
were co-expressed connected in number to a limited 
number of central ‘hub’ coding genes involved in lym-
phocyte immune regulation, some of which possess anti-
viral properties. These ME1 “hub” genes include ARID5B, 
CELF2, SEPT6, SATB1 (Fig. 4D).

To identify the most central lncRNAs potentially reg-
ulating bat lymphocyte immune function in ME1, we 
ranked candidate lncRNAs based on four criteria: expres-
sion level, number of co-expressed coding genes, orthol-
ogy with human lncRNA and genomic proximity to 
immune genes (Fig. 4E). Most of the candidate lncRNAs 
were located near (within 50  kb) of an immune-related 
gene (94/162), suggesting a potential involvement to 
immune function regulation. Using expression level and 
number of correlated genes as criteria, we identified two 
standout lncRNAs candidates from ME1. The lncRNA 
with the highest number of co-expressed genes (num-
ber  co-expressed genes = 505) and the second highest 
expression level (average TMM = 421) in ME1 is a poly-
exonic lncRNA located between EPHB6 and TRBV29-1, 

Fig. 4  Analysis of the ME1 co-expression module. A) PCA of the blood expression patterns in the wild M. myotis samples Principal component 
analysis (PCA) using all the coding genes and lncRNAs characterised in the ME1 module. Color gradient represents the global expression of the ME1 
module (eigengene calculated by WGCNA); B) Spearman’s correlation analysis between the ME1 global expression (eigengene) and age of the bat 
in the M. myotis population. Only the samples with known ages and the samples over 7 years old were selected for this analysis. Samples over 7 
years old (e.g. 7+) were treated as 7 years old when calculating Spearman’s correlation. C) Spearman correlations between ME1 and the other 
11 modules’ global expressions. D) Top 10 Coding genes with the highest number of co-expressed lncRNAs in ME1; E) Scatter plot showing 
the relationship between the number of co-expressed coding genes and expression levels of each lncRNA in ME1. F) Genomic visualisation 
of predicted lncRNA: BatLnc1. The top session shows the genomic location of BatLnc1 visualised using the genome browser; the below session 
shows the expression level and splicing variants of BatLnc1 using an individual bat sample (MMY612) as an example, PhastCon scores indicate 
the conservation level of each nucleotide of BatLnc1.G) Expression heatmap of top 20 coding genes that were co-expressed with BatLnc1 
across 100 M. myotis blood samples. The expression counts were TMM-normalised, and further converted to z-scores. The metadata of these 
samples, such as age, site, year-of-capture, were color-coded (left). For age, blue dots indicate the samples with known age, while the red dots 
indicate a minum of “+” age (right). Adjacency scores between BatLnc1 and other genes are displayed (top)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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both of which are crucial for lymphocyte function. This 
lncRNA, renamed “BatLnc1”, does not have a known 
ortholog in human. However, its exons overlap genomic 
regions with high PHAST conservation scores compared 
to introns or surroundings regions (Fig.  4F), indication 
potential functional constraints. BLAST analysis indi-
cates that this lncRNA may be a pseudogene derived 
from a TCR beta chain [Sup file 12]. The second promi-
nent lncRNA is a conserved ortholog of the human 
lncRNA TUG1 (number co-expressed genes = 482, aver-
age TMM = 203). Similar to its human ortholog, bat 
TUG1 appears to function as a bidirectional lncRNA, 
positioned on the reverse strand of the promoter region 
of MORC2, an important antiviral restriction factor [Sup 
file 13].

To further investigate the potential functions of these 
two lncRNA candidates, we analysed their expression 
patterns alongside the top 20 most correlated annotated 
genes. The expression pattern of BatLnc1 closely mirrors 
that of the ME1 eigengene, with enhanced expression in 
the blood of only a subset of young bats (aged 0–1 years). 
The top correlated gene, LGALS9CL, is known for its 
critical regulatory role during viral infection, and other 
highly correlated genes are involved in antigen-recog-
nising T-cell receptor (TCR) activity and viral defense, 
such as LCK, CD247, CD3G, GPR171, IL32L, NONO, 
CD28, DYRK2, and CRLF3 (Fig. 4G). A similar expression 
pattern is observed for the TUG1 ortholog with differ-
ent top 20 correlations. The majority of these correlated 
genes are HIV-related genes such as: CCNT2, ZFYVE16, 
HNRNPH1, SF3B1, PRKCQ, DOCK10, ANKRD10, 
ADD3, or antiviral genes like UBR5 and PTAR1 [Sup File 
13].

ME3 co‑expression modules reveal regulatory lncRNAs 
of inflammation in M. myotis
Using the same approach, we examined the genes and 
lncRNAs in the proinflammatory ME3 module. The 

global expression of ME3 transposed on the PCA showed 
that ME3 is overexpressed only in a few individuals, par-
ticularly in one outlier, along the PC2 (vertical axis), with 
no apparent association with age (Fig. 5A). As for ME1, 
the individuals overexpressing this module were detected 
at least one year after, suggesting they survived their pro-
inflammatory event [Sup File 9].

Additionally, some top loadings of the PCA aligning 
with PC2 and ME3 expression patterns [Sup file 10] are 
linked to sepsis like ACVR1B and VNN3 [67, 68].

ME3 expression showed a weak negative correlation 
with age (R = −0.28, p-value = 1.3e - 2) (Fig.  5B), sug-
gesting that the proinflammatory expression profile does 
not increase with age in M myotis, consistent with previ-
ous observations [36]. ME3 also showed a weak inverse 
correlation with the genome protection module ME2 
(R = −0.4, p-value = 3e − 5) and a strong positive correla-
tion with the module ME5 (R = 0.76, p-value = 2e − 22), 
respectively (Fig. 5C).

As in ME1, a few “hub” ME3 coding genes are con-
nected to a substantial number of co-expressed lncRNA, 
indicating their central role in the network. Interestingly, 
the NF-KB subunit c-REL possesses the largest number 
of co-expressed lncRNAs. Other “hub” coding genes 
include both negative and positive regulators of inflam-
mation, such as SULF2, the hyaluronan receptor CD44, 
SVIL, LYST, and IQGAP1 (Fig. 5D).

We observe a correlation between maximum TMM 
expression (to account for the few individuals over-
expressing this module) and the number of genes 
co-expressed with the lncRNAs in ME3. A group of lncR-
NAs, distinguished by their exceptionally high expres-
sion, were identified as orthologs of MALAT1 (max. 
TMM = 47,303, number co-expressed genes = 226) and 5 
different subparts of NEAT1 (framed in [Fig.  5E]) com-
ing from the same locus [Sup file 14], from which 3 parts 
are not reported in our analysis as conserved (NEAT1:25 
is the fragment with most co-expressed genes; max. 

(See figure on next page.)
Fig. 5  Analysis of the ME3 co-expression module. A) PCA of the blood expression patterns in the wild M. myotis samples Principal component 
analysis (PCA) using all the coding genes and lncRNAs characterised in the ME3 module. Color gradient represents the global expression of the ME3 
module (eigengene calculated by WGCNA); B) Spearman’s correlation analysis between the ME3 global expression (eigengene) and the age of bat 
in the M. myotis population. Only the samples with known ages and the samples over 7 years old were selected for this analysis. Samples over 7 
years old (e.g. 7+) were treated as 7 years old when calculating Spearman’s correlation. C) Spearman correlations between ME3 and the other 
11 modules’ global expressions. D) Top 10 Coding genes with the highest number of co-expressed lncRNAs in ME3; E) Scatter plot showing 
the relationship between the number of co-expressed coding genes and expression levels of each lncRNA in ME3. F) Genomic visualisation 
of predicted lncRNA: MALAT1. The session shows the expression level and genomic location of MALAT1 visualised using the genome browser, 
using an individual bat sample (MMY664) as an example, PhastCon scores indicate the conservation level of each nucleotide of MALAT1.G) 
Expression heatmap of top 20 coding genes that were co-expressed with MALAT1 across 100 M. myotis blood samples. The expression counts 
were TMM-normalised, and further converted to z-scores. The metadata of these samples, such as age, site, year-of-capture, were color-coded 
(left). For age, blue dots indicate the samples with known age, while the red dots indicate a minimum of “+” age (right). Adjacency scores 
between MALAT1 and other genes are displayed (top)
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TMM = 1,946, number  co-expressed genes = 317). These 
NEAT1 and MALAT1 orthologs, located between the 
genes FRMD8 and SCYL1, share the same syntenic 
genomic region as in the human genome, thereby con-
firming their orthology (Fig. 5F).

Genes highly co-expressed with MALAT1 in M. myo-
tis blood included key inflammation-regulating genes 
such as c-REL, TRIB1, CD44, SULF2, along with other 
regulators of immunity like NABP1, PTPRC (CD45), 
RASA2, PSTPIP1 and ARHGAP26  (Fig.  5G). NEAT1 
showed correlations with active inflammation regula-
tors such as ARHGAP26, SULF2, LYST, KDM6B, CSF3R, 
LYN, SKAP2, BCL6, FCMR (receptor for IgM), INPP4A, 
LPCAT2, CCR1 [Sup File 14, See discussion].

Discussion
Recent studies suggest that bats’ immune systems have 
evolved distinctly from those of other mammals, grant-
ing them remarkable tolerance and resilience to viral 
infections [3, 5, 7]. Despite this, the regulation of immu-
nity by long-non coding RNA (lncRNAs) has never been 
explored in bats. In this study, we address for the first 
time this gap, by predicting and quantifying the expres-
sion of lncRNAs in bat solid tissues, and in blood at the 
population level, including individuals at different ages 
and biological states, using our newly developed pipe-
line of ab  initio prediction and isoform validation. This 
approach was applied to our previously published 100 
RNA-Seq data from whole blood sampled from bats of 
known ages sampled over six years in Brittany, France 
[36], and seven RNA-Seq M. myotis datasets from four 
non-blood tissues (Heart, Liver, Brain and Kidney) 
obtained from an euthanized bat [35].

Our first initial analysis revealed that bat’s predicted 
lncRNAs share several similar characteristics with those 
of other species. These include: predominance of mono-
exonic lncRNAs, smaller size, lower GC content com-
pared to coding genes, and tissue-specific expression 
patterns, with a majority of specific tissue-lncRNAs in 
the brain. Interestingly, our results support other studies 
as brain is known to be enriched in tissue-specific lncR-
NAs in humans [69] and in brain part-specific in mouse 
models [70], with possible reasons among the diversity of 
cell types and functions concentrated in this organ. Other 
studies suggest that lncRNAs are important in the evo-
lution of brain structure and function in mammals [71], 
and  our catalogue could open the path to studying the 
role of lncRNAs in specific neuronal functions such as 
echolocation in bats. Notably, the high number of blood 
specific lncRNAs relative to the other solid tissues sug-
gests the presence of lncRNAs specific to immune cells, 
which are abundant in blood. The identification of mul-
tiple conserved lncRNAs including the well-established 

lncRNAs like XIST, NEAT1, MALAT1 and HOTAIR, 
validates our methods and confirms the conservation and 
expression of some key bat lncRNAs previously reported 
by Mostajo et al. [26]. However, our pipeline employed a 
simple BLASTn search against human lncRNA databases 
to identify potential homologs. Given the known lack of 
sequence conservation in lncRNAs across evolutionary 
distant taxa [72], our methods likely underestimated the 
number of conserved lncRNAs in M. myotis. In addition, 
genomic synteny analyses would be required to confirm 
1:1 orthology between human and bat lncRNAs and 
could provide more functional implications in the future.

One surprising finding was the scarcity of lncRNAs 
containing viral sequences or overlapping ERV loci 
across all bat tissues. An unexpected feature, given the 
high level of endogenous retroviral sequences in the 
M. myotis genome, the documented expression of ERV 
in human blood [73], and the significant expression of 
ERV sequences reported in M. myotis IPS cells [74]. This 
observation suggests that pervasive transcription of these 
ERVs may be repressed in M. myotis tissues.

To select the lncRNAs with potential immune func-
tion from the blood sampled from our wild bat popula-
tion, we were faced with two challenges. First, as bats 
do not typically show external signs of disease, we were 
unsure of their disease or immune status. However, we 
overcame this by performing an unsupervised analysis to 
identify immune co-expression gene networks changing 
expression across the bat population. Second, determin-
ing the exact function of a lncRNA remains challenging 
as most lncRNAs predicted have unknown functions and 
are generally poorly conserved in sequence and biological 
mechanism. This second challenge was addressed by con-
structing a co-expression network including both anno-
tated coding genes and lncRNAs. This network allowed 
us to identify two major co-expression modules repre-
senting both adaptive and innate immune responses, 
which in turn enabled us to attribute their respective 
lncRNAs to these two mechanisms. The first immune 
module, ME1, contained 256 lncRNAs related to lym-
phocyte T activation and viral gene expression, while the 
second immune module, ME3, included 136 lncRNAs 
related to inflammation.

The global expression of these two modules ena-
bled us to identify a few individuals withing the wild 
M. myotis population exhibiting significant changes 
of immune state, plausibly linked to pathogen expo-
sure. These individual bats were detected by antenna 
in the subsequent years, indicating that these immune 
responses and gene expression changes are typical 
and not indicative of terminal illness. This may also 
reflect a difference in the maturation of immune sys-
tem between juveniles and adults.The T-cell activation 
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and viral related gene in ME1 overexpressed in a few 
young individuals may suggest an activation of antiviral 
immunity [75] in few susceptible, yet immunologically 
naive members of the colony after exposure  to poten-
tial viral pathogen. The strong overexpression of ME3 
observed in only a small number of individuals sam-
pled from the same roost and year suggests an inflam-
matory response to a shared condition. Additionally, 
we observed an antagonistic relationship between the 
lymphocyte activity of ME1 and DNA repair pathways 
(ME2), while the expression of both of these modules 
were correlated to the age of the bats. This antagonism 
could reflect a trade-off between immune reaction 
and DNA repair pathways, as T-cells undergo multi-
ple cycles of continuous duplications after pathogen 
exposure [76]. Alternatively, if  the ME1 expression 
network is driven by a viral infection as suspected, it 
could indicate that viruses hijack DNA repair mecha-
nisms to facilitate replication and immune escape [77]. 
This potential antagonism should be considered in the 
future analyses of longevity in wild bats, as shifts of 
immune status could impact gene expression patterns 
related to ageing.

Through co-expression analyses, we showed that 
numerous lncRNAs were co-regulated with key immune 
pathways in M. myotis blood, with many of these lncR-
NAs co-expressed with central immune regulators of 
antiviral activity or inflammation: ARID5B, CELF2, 
SEPT6 and SATB1 for the antiviral activity of ME1 and 
REL (c-REL), SULF2, CD44, SVIL, LYST, and IQGAP1 
for the inflammation regulation of ME3. The substantial 
number of lncRNAs co-expressed with c-REL further 
highlighted its role as a major regulator of bat inflamma-
tion and suggest that part of its regulatory mechanisms 
could involve lncRNAs. In lncRNA research, it is com-
mon practice to select a few high-priority candidates 
for future functional validations based on their potential 
for biological relevance. For this purpose, we selected 
four lncRNAs of high translational potential: BatLnc1 (a 
newly characterised lncRNA) and TUG1 for ME1, and 
MALAT1 and NEAT1 for ME3. These candidates were 
prioritised based on outstanding conservation, number 
of co-expressed genes in the network and/or expression 
level.

BatLnc1 is a polyexonic lncRNA that exhibits a high 
sequence conservation score, suggesting that it may be 
derived from part of the beta chain of the M1-specific 
chain of the T-cell receptor. The expression of BatLnc1 
was most strongly correlated with the Galectin9C-like 
(LGALS9CL), a copy gene of the immunomodulatory 
lectin GALECTIN9. GALECTIN9 is a suggested marker 
of diverse viral infections [78–80] with crucial roles in 
viral infection regulation, through mechanisms such as 

limiting immunopathological damage [81–83], regulat-
ing interferon response [84–87], or by direct viral restric-
tion [88–90]. In addition, BatLnc1 expression is strongly 
correlated with other genes involved in T cell activation 
(LCK, CD247, CD3G, GPR171, CD28), and antiviral 
interferon signalling (IL32L, NONO, DYRK2 and CRLF3) 
[91–94]. Based on these associations, we concluded that 
BatLnc1 could be an important non-coding regulator of 
antiviral defense in M. myotis.

The second candidate selected from ME1 was the bat 
ortholog of TUG1. TUG1 is an ubiquitous expressed 
lncRNA that is highly conserved in humans and mice. 
Initially discovered in the study of murine retina devel-
opment [95], TUG1 has recently been implicated in viral 
biology: its expression has been observed increasing in 
cases of viral infection of COVID-19 [96] or HIV [97, 98] 
and to have a positive or negative action on HIV physio-
pathological effects, replication, or reactivation [97–99]. 
Surprisingly, some key genes co-expressed with TUG1 
have been shown to directly or indirectly interact with 
HIV biology and transcription, or have been found to 
change expressions under HIV contamination: CCNT2 
[100], HNRNPH1 [101], SF3B1 [102], PRKCQ [103], 
ZFYVE16 [104], DOCK10 and ANKRD10 [105]. Though 
our current knowledge on TUG1 does not provide 
enough evidence to conclude if  this bat-TUG1 acts as a 
repressor of retroviral activity or as a target facilitating 
viral degradation, our findings suggest that TUG1 is a key 
player in the bat virus-host relationship. Further investi-
gation in bats and other model organisms is required.

In ME3, we identified two highly conserved and well 
known ncRNAs: MALAT1 and NEAT1. These two lncR-
NAs, which colocalised between FRMD8 and SCYL1, 
are known for their extreme expression level and high 
conservation across the entire animal kingdom [106], as 
was also observed in our results. Their involvement is 
most likely pro-inflammatory, as indicated by their co-
expressions with inflammation-related genes. NEAT1 is 
known to activate inflammation by interacting with key 
regulators such as NFKB and TLR4 [107], and inflama-
some components like NLRP3, NLRC4, and AIM2 [30]. 
MALAT1, on the other hand, has both pro-inflammatory 
[107–110] and anti-inflammatory [111, 112] roles. Inter-
estingly, our alignments and predictions reported splice 
variants of MALAT1 which are not typically observed 
in other species, suggesting that alternative splicing of 
MALAT1 in bats may drive new functional outcomes.

In this study, we developed a comprehensive pipeline to 
identify and quantify lncRNAs across tissues and discov-
ered a few key lncRNAs associated with immunity in M. 
myotis that distinguish them from other mammals. More 
research is required to ascertain if these immune asso-
ciated lncRNAs are unique to Myotis myotis or shared 
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across all bats. A recent study [113] comparing 115 mam-
mal genomes showed extensive and excessive selection 
acting on immune coding genes in the ancestral lineage 
of bats. We could hypothesise that similar evolutionary 
selection pressures apply to our discovered lncRNAs 
given their associated role in bat immune response and 
therefore maybe a shared ancestral adaptation. With 
future genome and transcriptomic datasets from other 
species, our pipeline can be used for future multi-species 
comparative analyses of lncRNAs in bats to determine 
conserved and lineage specific immune bat lncRNAs of 
interest.

As with all in silico characterisations, our analyses can-
not fully address the functional potential of these lncR-
NAs [114], and in vitro validations are ultimately required 
to confirm whether these lncRNAs perform the predicted 
function especially in the context of bats. As the frag-
mented nature of the NEAT1 prediction revealed, pre-
dicting exact isoforms from short-read RNA-Seq remains 
a challenge, and exact splice variants events in our can-
didates such as NEAT1 and MALAT1, would need to be 
further explored by ribo-depleted long-read sequencing. 
In addition, the lack of complete knowledge about the 
disease status of these bats means that we cannot fully 
identify the pathogens responsible for these immune-
expression changes observed in this subset of individuals. 
More focused pathogen detection and further research 
on immune markers in our M. myotis colony are required 
to clarify the immune responses in wild bats. While we 
focused on four key lncRNAs, there  are  others among 
the hundreds of potential candidates that could also have 
immune-related functions (Table 1). 

Conclusions
In summary, we have identified and characterised a novel 
landscape of lncRNA in one of the long-lived bat species 
M. myotis. This has extended the transcriptome annota-
tion for this new emerging model species for immune 
and longevity studies. We have characterised these 
lncRNA in form and correlated them with traits of inter-
est, including immunity. We have provided both a novel 
pipeline to identify lncRNA in bats and new lncRNAs of 
interest for future functional assays and ultimately thera-
peutic potential, shedding light on the regulation of bats’ 
unusual immune response.
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