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Abstract 

Background  The Yunshang Black Goat, a distinguished meat goat breed native to China, is renowned for its supe-
rior reproductive capabilities. Despite this, there is considerable phenotypic variability within the breed. During 
the reproductive cycle, the uterus plays a pivotal role, with its functions evolving in line with the different stages 
of the cycle. This study focuses on the uterine tissues, including both the endometrium and myometrium, of Yun-
shang Black Goats with high fecundity (HF) and low fecundity (LF) during the proliferative (FP) and secretory (LP) 
phases of the estrous cycle. By examining these tissues, we aim to elucidate the underlying molecular and physiologi-
cal mechanisms of the observed differences in reproductive success.

Results  High-throughput sequencing was conducted, followed by bioinformatics analysis to identify the expres-
sion profiles of circRNAs. A total of 7,445 circRNAs were identified through the integration of findings from find_circ 
and CIRI2 software. Comparative analyses between the FPLF vs. FPHF and LPLF vs. LPHF revealed 149 differentially 
expressed (DE) circRNAs (94 up-regulated and 55 down-regulated) and 276 DE circRNAs (56 up-regulated and 220 
down-regulated), respectively. The enrichment analysis indicated that the primary pathways involved were the Sphin-
golipid signaling pathway, MAPK signaling pathway, and GnRH signaling pathway, all of which are closely associ-
ated with cellular growth and development. Additionally, several key candidate genes were identified, such as FGF2 
and MBTPS1. We also predicted a total of 281 miRNA-circRNA binding pairs, encompassing 263 circRNAs and 60 
miRNAs, and simultaneously, 14 coding circRNAs were anticipated.

Conclusion  Based on the analysis, we have established the expression profiles of circRNAs during the follicular 
and luteal phases, respectively. Furthermore, using various analytical methods and data from high- and low-yield 
experimental control groups over different periods, we have identified multiple circRNAs that affect the high repro-
ductive capacity of goats. Through enrichment analysis of the host genes of these circRNAs, we have discovered 
several key candidate genes. These findings provide fundamental data for the study of the molecular mechanisms 
underlying the fecundity of goats and pave the way for future genetic improvement strategies.
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Introduction
The goat (Capra hircus) as one of the earliest domesti-
cated livestock species, is renowned for its exceptional 
adaptability and versatility, making it a valuable livestock 
species worldwide. [1, 2]. It is believed to have origi-
nated from a domestication process involving various 
wild bezoar populations (Capra aegagrus) approximately 
11,000  years ago [3]. Since then, complex intraspecific 
hybridization, especially the genetic contribution of 
domestic goats, has contributed to the development of 
diverse goat breeds [4–6]. The Yunshang black goat, a 
distinguished meat goat breed from Yunnan Province, 
China [7], is a crossbreed of the Nubi and Yunling goats. 
This breed is characterized by its superior meat produc-
tion performance, robust adaptability, and notable fecun-
dity [8]. Given that fertility directly impacts the economic 
efficiency of livestock, understanding the mechanisms 
behind the high reproductive output of the Yunshang 
black goat is of paramount importance to those in the 
livestock industry.

Numerous factors influence the number of offspring 
produced by goats, with much research focusing on the 
differential development of ovaries and the variance in 
ovulated follicle numbers [9]. However, in ruminants, 
pregnancy loss is a significant factor affecting female fer-
tility [10, 11], which predominantly occurs during the 
implantation period. Embryo implantation is the process 
by which a blastocyst-stage embryo establishes structural 
and physiological connections with the endometrium 
after a period of free existence within the uterus [12]. The 
attachment phase of pregnancy is pivotal in the repro-
ductive process of female animals, with the potential to 
enhance reproductive efficiency by increasing embry-
onic implantation rates and offspring numbers [13]. The 
determinants of attachment include embryo viability, 
endometrial receptivity, and the interaction between the 
embryo and the mother. It is reported that approximately 
75% of natural conception pregnancy failures are due to 
an unsuitable uterine environment [14, 15]. Thus, the 
study of the female reproductive system, particularly the 
uterus, is crucial for improving offspring numbers.

The endometrial stromal and epithelial cells, influenced 
by estrogen and progesterone, proliferate and differenti-
ate, thus becoming receptive to embryonic adhesion [13]. 
Numerous genes are involved in regulating this process, 
with Labarta et  al. describing 140 endometrium-related 
genes, including GPX3, PAEP, and LIF [16]. Considering 
the dynamic expression of non-coding RNA (ncRNA) 
during the establishment of endometrial receptivity, it is 
essential to explore the regulatory role of ncRNA in this 
process. Circular RNAs (circRNAs) are a class of endog-
enous non-coding RNAs characterized by their closed 
loop structure, lacking free 5’ or 3’ ends, and are rich 

in mRNA regulatory elements (MREs), enabling them 
to perform various biological functions [13]. Study has 
indicated that circ-8073 acts as a molecular sponge for 
miR-449a, regulating centrosomal protein 55 (CEP55) 
and promoting the proliferation of endometrial epithe-
lial cells via the PI3K/AKT/mTOR pathway [17]. Cir-
cRNA-9119 downregulates miR-26 expression, which in 
turn affects the endometrial epithelial cells of dairy goats 
in  vitro by targeting the predicted sites and reducing 
the expression of prostaglandin-endoperoxide synthase 
2 (PTGS2), thereby enhancing endometrial receptivity 
[18]. Additionally, Shen et al. confirmed that circ-BACH1 
may influence endometrial receptivity as a competing 
endogenous RNA (ceRNA) for miRNAs [19]. Ma et  al. 
discovered that circ-9110 could enhance the expres-
sion of the homeobox A1 gene (HOXA1) by sequester-
ing miR-100-5p, subsequently regulating the PI3K/AKT/
mTOR and ERK1/2 pathways to induce apoptosis in goat 
uterine stromal cells, improve uterine receptivity, and 
ultimately facilitate the process of embryo implantation 
[20]. In goats, circRNA has been identified as a key reg-
ulator of ovarian follicle development, and studies have 
shown that there are differences in circRNA expression 
in large and small follicles in Leizhou goats, indicating 
their potential role in follicle development [21]. In addi-
tion, circRNA is also involved in regulating the prolifera-
tion of goat granulosa cells. circCFAP20DC significantly 
promotes the transition of goat granulosa cells from the 
G1 phase to the S phase, thereby enhancing their prolif-
eration [22]. These results provide valuable insights into 
the molecular regulation of mammalian endometrium 
and pregnancy in the future.

The aim of this manuscript is to investigate the expres-
sion profiles and regulatory roles of circRNAs in the 
uterus of Yunshang black goats with different fecundity 
levels during the estrous cycle. Specifically, we aim to 
identify differentially expressed circRNAs and elucidate 
their potential molecular mechanisms in regulating uter-
ine receptivity and embryo implantation, thereby provid-
ing fundamental data for understanding the molecular 
basis of fecundity in goats.

Results
Results of goat uterine tissue morphology test
Collected uterine tissues were paraffin-embedded and 
stained, with the results depicted in Fig. 1. Morphologi-
cal analysis revealed distinct differences in endometrial 
morphology between the follicular and luteal phases, evi-
dent in gland count, endometrial thickness, and uterine 
caruncle shape. The distance from the endometrial sur-
face to the highest point of the caruncle was measured to 
determine uniform thickness. Statistical analysis revealed 
significant differences in gland count and endometrial 
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thickness between the follicular and luteal phases, with 
the luteal phase having approximately twice the number 
of glands and endometrial thickness compared to the fol-
licular phase (Fig. 1B, E). However, no significant differ-
ences were observed between high- and low-yield groups, 
although there was a trend towards higher gland counts 
and endometrial thickness in the high-yield group.

Summary of sequencing quality control results in uterine 
tissue
Twenty cDNA libraries were constructed from uter-
ine tissue samples of goats with high and low fecundity, 
collected during both the proliferative and secretory 
phases. High-throughput sequencing was performed 
using an Illumina Hiseq 2500 sequencer. The samples 
were divided into four groups, each with five replicates: 
the high-fecundity proliferative phase group (FPHF-1 
through −5), the low-fecundity proliferative phase group 
(FPLF-1 through −5), the high-fecundity secretory phase 
group (LPHF-1 through −5), and the low-fecundity 
secretory phase group (LPLF-1 through −5). Before ana-
lyzing the sequencing data, the raw data were subjected 
to a stringent quality control and filtering process. The 
results of the filtering are shown in Fig. 1. The sequenc-
ing quality was assessed in three aspects: inspection of 

the base quality value distribution (Fig. 2A), assessment 
of the GC content distribution (Fig. 2B), and examination 
of the base content distribution (Fig. 2C) to ascertain the 
final clean reads. The results showed that the sequencing 
quality met the standards, and the clean reads were suit-
able for subsequent bioinformatics analysis.

The comprehensive evaluation results for the clean 
reads are presented in Table  1. On average, the quality 
control process generated 121.1 million clean reads. Of 
these, 96.88% successfully aligned with the Capra hircus 
reference genome (ARS1). Additionally, the proportion 
of sequencing reads that aligned to multiple positions on 
the reference sequence averaged 5.39%, while those that 
aligned to unique positions accounted for 91.50%. Since 
the primary goal of this study is to identify circular RNAs 
(circRNAs), the number of junction reads, which are 
essential for circRNA identification, was also recorded, 
averaging 28.04%. Together, these clean reads meet the 
criteria for subsequent analysis. Further filtering criteria 
were applied to identify circRNA candidates, with details 
provided in Supplementary Table S1.

Identification of circRNA in uterine tissues
A comprehensive analysis using both find_circ and 
CIRI2 software identified a total of 7,445 circRNAs after 

Fig. 1  Histological sections of uterine tissue and statistical analysis of endometrial thickness and gland number. The figure shows H&E stained 
histological sections of uterine tissue from low and high yield samples at different stages. ’L’ denotes the uterine lumen, ’Uc’ represents the uterine 
caruncle, the black arrows indicate endometrial glands, ’En’ stands for the endometrium, ’My’ is the myometrium, ’Ua’ signifies uterine arteries, 
and ’Pe’ is the perimetrium. The circles and squares represent the uterine caruncle during the follicular and luteal phases, respectively. Scale bar: 
500 μm. ’NS’ indicates no significant difference, while ’***’ indicates a highly significant difference (p < 0.001)
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mapping to reference sequences and excluding linear 
RNA species (refer to Supplementary Table  S2, Fig.  2D 
for details). All identified circRNAs were classified and 
annotated. The predominant category of circRNAs 
originated from exons, with each circRNA potentially 
containing one or more exons. Additionally, circRNAs 
were detected within intronic and intergenic regions, 
where multiple circRNAs could originate from the same 
genomic locations. Consistent with previous findings, 
this study revealed that over 95% of circRNAs were exon-
derived on average (Fig. 3A).

Length calculations indicated that the sequence lengths 
of circRNAs predominantly ranged from 200 base pairs 
(bp) to 10,000 bp (Fig. 3B). A chromosome-wise density 
analysis revealed that circRNAs were primarily distrib-
uted across chromosomes 1 through 11, with the highest 
density observed on chromosomes 1, 2, 3, and 11, which 
collectively accounted for approximately 22% of the cir-
cRNAs (Fig. 3C and Supplementary Table S2).

To provide a more nuanced view of the distribution, a 
detailed radar map of circRNA density was constructed, 

illustrating the distribution patterns of circRNAs among 
the 20 individuals across the ten chromosomes with the 
densest circRNA presence (Supplementary Fig.  1). This 
visualization aids in understanding the genomic land-
scape of circRNAs and their potential regulatory roles in 
the context of goat uterine tissue.

Results of expression analysis of DEcircRNA
Given the unique nature of circRNAs, their expression 
levels are conventionally estimated by counting the num-
ber of junction reads that span their splicing sites. For 
this study, circRNA expression levels were quantified for 
each sample and normalized to spliced reads per billion 
mapping (SRPBM). Violin plots depicting SRPBM for all 
transcripts were used to compare expression levels across 
various samples. The uniform widths of the violin plots in 
Fig. 4A indicate equivalent numbers of transcripts among 
the samples (Supplementary Table S3).

Additionally, correlation analysis was performed on 
the samples based on their expression profiles to vali-
date the scientific rationale of the sample grouping and 

Fig. 2  Quality assessment of sequencing data. A Each base in the sequencing data has a corresponding quality value, which directly determines 
the accuracy of sequencing. B Distribution of GC content in the sequencing data. The GC content affects the efficiency of PCR amplification 
during library construction, so the sequencing process has a certain preference for fragments with different GC content. However, the overall GC 
content of the sequencing results should be consistent with the GC content of all expressed genes in the species. C Distribution of base content 
in the sequencing data. The distribution of ATGC can reflect the normality of the sequencing to some extent. D Schematic of the basic principle 
of find_circ software
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the overall reliability of the experiment from a molecu-
lar standpoint. The clustering results revealed that sam-
ples FPLF-5, LPHF-4, and LPLF-2 did not conform to 
the grouping criteria, whereas the remaining samples 
were suitable for further analysis (Fig. 4B).

Differential expression analysis was used to iden-
tify circRNAs with significant expression differences 
between comparison groups. The genes targeted by 
these differentially expressed circRNAs may contribute 
to distinct phenotypes. Volcano plots were used to vis-
ually represent the number of differentially expressed 
circRNAs identified through various comparisons, pri-
marily based on log2 fold change and p-value. A total of 
149 differentially expressed (DE) circRNAs (94 up-reg-
ulated and 55 down-regulated) and 276 DE circRNAs 
(56 up-regulated and 220 down-regulated) were identi-
fied in the comparisons of FPLF versus FPHF and LPLF 
versus LPHF, respectively (Fig.  4C, D; Supplementary 
Table S4). The circRNAs derived from individual sam-
ples were consolidated to determine the differential 
expression profiles across various treatment cohorts. 
As depicted in Fig. 4E, the comparative analysis reveals 
distinct expression patterns between the disparate 
groups, which are both visually evident and statistically 
significant.

Enrichment analysis of the host gene for circRNA
Enrichment analysis of differentially expressed genes is 
crucial for deciphering gene functions and their broader 
biological implications. In this study, we performed 
enrichment analyses on differentially expressed genes 
across various comparison groups, identifying distinct 
counts of Gene Ontology (GO) terms and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways. 
Enrichment was considered significant for GO terms 
with a Q-value ≤ 0.05 and for KEGG pathways with 
a P-value ≤ 0.05, based on our established screening 
criteria.

In the FPLF vs. FPHF comparison group, we identified 
3,754 GO terms, of which 19 terms showed significant 
enrichment. These included categories such as biological 
process (n = 4), cellular components (n = 8), and molecu-
lar functions (n = 7). Similarly, in the LPLF vs. LPHF com-
parison, we identified 4,133 GO terms, of which 4 terms 
were significantly enriched. The top ten GO terms for 
biological process (BP), cellular components (CC), and 
molecular functions (MF) from both comparisons are 
depicted in Fig.  5 (upper panel). Notably, GO:0005622 
and GO:0044424 were significantly enriched in the FPLF 
vs. FPHF comparison and also featured among the top 
ten terms in the LPLF vs. LPHF group. Although their 

Table 1  Summary of mapping data from the uterine tissues

NOTE: FP and LP represent the proliferative and secretory phases of the uterus, respectively. LF and HF represent the low-fecundity and high-fecundity groups, 
respectively

Group Clean reads Mapped rate Multiple mapped Uniquely mapped Junction reads

FPHF-1 114,278,598 97.22% 5,940,311 (5.2%) 105,155,916 (92.02%) 38,566,127 (33.75%)

FPHF-2 140,788,452 96.74% 8,748,659 (6.21%) 127,444,208 (90.52%) 36,108,519 (25.65%)

FPHF-3 114,783,120 96.86% 8,379,225 (7.3%) 102,794,478 (89.56%) 33,624,799 (29.29%)

FPHF-4 100,002,864 96.96% 5,954,569 (5.95%) 91,010,704 (91.01%) 26,587,176 (26.59%)

FPHF-5 146,338,162 97.10% 9,129,382 (6.24%) 132,967,454 (90.86%) 32,090,967 (21.93%)

FPLF-1 116,625,272 96.86% 10,025,562 (8.6%) 102,932,135 (88.26%) 30,291,056 (25.97%)

FPLF-2 126,602,416 97.29% 10,515,876 (8.31%) 112,661,138 (88.99%) 40,000,583 (31.6%)

FPLF-3 116,408,604 96.97% 6,862,624 (5.9%) 106,012,984 (91.07%) 38,341,201 (32.94%)

FPLF-4 105,324,250 96.56% 5,831,466 (5.54%) 95,869,980 (91.02%) 29,119,629 (27.65%)

FPLF-5 101,908,238 97.14% 6,843,861 (6.72%) 92,150,791 (90.43%) 28,074,436 (27.55%)

LPHF-1 104,508,336 97.22% 3,279,901 (3.14%) 98,096,119 (93.86%) 23,166,379 (22.17%)

LPHF-2 121,894,622 96.74% 4,121,456 (3.38%) 114,044,888 (93.56%) 26,970,810 (22.13%)

LPHF-3 106,063,792 96.86% 2,591,222 (2.44%) 100,056,861 (94.34%) 27,672,025 (26.09%)

LPHF-4 105,412,248 96.96% 3,677,658 (3.49%) 98,548,882 (93.49%) 26,794,337 (25.42%)

LPHF-5 103,828,502 97.10% 5,578,015 (5.37%) 94,907,248 (91.41%) 29,736,946 (28.64%)

LPLF-1 103,355,394 96.86% 5,189,533 (5.02%) 95,057,590 (91.97%) 30,277,251 (29.29%)

LPLF-2 160,572,800 97.29% 9,722,250 (6.05%) 145,798,505 (90.8%) 51,647,889 (32.16%)

LPLF-3 141,708,478 96.97% 7,175,375 (5.06%) 129,658,109 (91.5%) 42,702,905 (30.13%)

LPLF-4 162,750,156 96.56% 5,744,414 (3.53%) 150,905,989 (92.72%) 52,348,120 (32.16%)

LPLF-5 129,488,302 97.14% 5,502,520 (4.25%) 119,859,754 (92.56%) 38,526,922 (29.75%)
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Q-values exceeded our threshold, their P-values were 
remarkably low, as low as 0.0005. Ultimately, 26 terms 
were retained in the low-yield group, including biologi-
cal processes (n = 14), cellular components (n = 5), and 
molecular functions (n = 7) (Supplementary Table S5).

For KEGG pathway enrichment analysis, a strategy 
analogous to GO enrichment was used. We identified 
154 pathways in the FPLF vs. FPHF comparison and 158 
pathways in the LPLF vs. LPHF comparison. The 20 most 
enriched pathways from each comparison were selected 
to create the KEGG bubble map (Fig.  5, lower panel). 
Among these, the Sphingolipid signaling pathway was 
significantly enriched in both comparisons. Ultimately, 
12 pathways were retained in the high-yield group and 
30 pathways in the low-yield group (Supplementary 
Table S6).

Gene set enrichment analysis for source mRNA of circRNA
Based on the KEGG enrichment results, we catego-
rized the host genes of differentially expressed circRNAs 
and established distinct gene sets for further analysis. 
In the FPLF vs. FPHF comparison, 154 gene sets were 

formulated, excluding those with fewer than five genes. 
Ultimately, Gene Set Enrichment Analysis (GSEA) was 
performed on 39 gene sets. The analysis revealed that 
10 gene sets were up-regulated in the FPLF group, but 
none met the significance threshold (P-value < 0.05, 
FDR < 0.25). Conversely, 10 gene sets were up-regulated 
in the FPHF group, with the gene set KO04141 signifi-
cantly enriched (P-value = 0.03, FDR < 0.23; Fig.  6). The 
KEGG pathway associated with this gene set is "Protein 
processing in the endoplasmic reticulum," with genes 
MAPK8, MBTPS1, SIL1, and NPLOC4 identified as the 
core enrichment genes.

Similarly, for the LPLF vs. LPHF comparison, the 158 
KEGG-enriched pathways were transformed into gene 
sets, and 27 gene sets were selected for GSEA analysis. 
Eight gene sets were up-regulated in LPHF, with only one 
gene set, KO04360 (Axon guidance), crossing the signifi-
cance threshold (P-value = 0.03, FDR = 0.24). The genes 
TRPC6, TRPC1, PAK3, and PTK2 were identified as the 
core enriched genes within this set.

Subsequently, 19 gene sets were up-regulated in the 
LPLF group, with only those surpassing the significance 

Fig. 3  Summary of circRNA identification. A Based on the identification results, the sources of circRNAs were mainly divided into exon, intron, 
and intergenic regions, and pie charts were generated to show their proportions. B Length distribution of circRNAs in four groups of uterine tissues. 
C Chromosome distribution of identified circRNAs in uterine tissues
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Fig. 4  Analysis of circRNA expression levels: (A) Violin plot comparing SRPBM expression levels across different experimental groups. B Correlation 
matrix showing the expression level relationships between samples; a correlation coefficient closer to 1 indicates greater similarity in expression 
patterns. C Differential circRNA volcano plot for high- and low-yield groups during the proliferative phase; the topic shown here is host gene. D 
Differential circRNA volcano plot for high- and low-yield groups during the secretory phase. E Union of DEcircRNAs from each group
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threshold depicted in Fig. 6. Genes such as FGF2, FLT1, 
PRKCB, RAP1B, VEGF, CREB5, PRKCE, and ARHGDIB 
recurred across various pathways, indicating their piv-
otal roles. The analysis concluded that these genes are 
central to the enrichment of the respective pathways 
and may influence the biological processes associated 
with fecundity in goats. These findings underscore the 
complexity of gene regulation and the multifaceted 

roles of non-coding RNAs in gene expression and cel-
lular function (Supplementary GSEA).

Interaction regulation network about miRNA‑circRNA
CircRNA molecules, rich in microRNA (miRNA) binding 
sites, act as miRNA sponges in cells, thereby alleviating 
the inhibitory effects of miRNAs on their target genes. 
Therefore, we conducted miRNA binding site analysis for 

Fig. 5  GO term and KEGG enrichment analysis of the host gene for circRNA. Display content is consistent with the title of each figure
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the identified circRNAs to further investigate their func-
tions. We predicted 281 miRNA-circRNA binding pairs, 
comprising 263 circRNAs and 60 miRNAs. These bind-
ing pairs include differentially expressed circRNAs from 
different comparison groups, such as FPLF vs. FPHF (3 
up-regulated, 1 down-regulated) and LPLF vs. LPHF (1 
up-regulated, 5 down-regulated), as shown in Fig. 7 and 
Supplementary Table S7.

Identifying the coding potential of circRNAs
Although circRNA has been widely studied as a non-cod-
ing RNA, some studies have found that its coding ability 
is more stable than that of mRNA. Therefore, explor-
ing the coding ability of circRNA is very important. The 
study of coding ability first requires IRES (internal ribo-
some entry site) prediction. We predicted IRES sites in 
all 7445 identified circRNAs, and 5014 circRNAs were 
found to have this site. Finally, we used three software 
tools to predict coding ability, and through CNCI anal-
ysis, 3027 circRNAs were found to have coding ability. 
CPC2 and CAPT identified relatively few circRNAs with 
coding potential, with 204 and 1001 circRNAs identified, 
respectively. Finally, the results of the four software tools 
were integrated, and the 14 condensable circRNAs jointly 
identified are shown in Fig. 8B.

Validation of RNA sequencing using RT‑qPCR
To verify the accuracy and stability of the sequenc-
ing results, RT-qPCR was used to validate the RNA-
seq data. The results showed that the quantitative 
results of circRNA were consistent with the sequencing 
results (Fig.  9), thereby confirming the reliability of the 

sequencing data. Relative gene expression was calculated 
using the 2−△△ct method.

Discussion
The reproductive traits of goats, which are economic 
traits, involve complex physiological processes and are 
controlled by various factors such as environment and 
genes [23, 24]. Currently, improving fecundity is the main 
breeding goal in goat breeding. With the rapid develop-
ment of high-throughput sequencing technology, molec-
ular marker-assisted breeding has been significantly 
enhanced. As a research hotspot in recent years, circRNA 
plays a significant role in various molecular processes in 
animals and plants [25]. It is an important regulator of 
gene expression, involved in transcriptional regulation, 
post-transcriptional translation, and affecting miRNA 
expression and other activities [26]. Several studies have 
analyzed the expression profiles of circRNAs in goat ova-
ries at different stages, identifying many differentially 
expressed circRNAs. Among them, key circRNAs can act 
as sponges for miRNAs, thereby regulating their expres-
sion and affecting gene transcription [27–29]. Addi-
tionally, the circRNA expression profile of the pituitary 
glands of sheep and goats was studied, and the differen-
tial circRNAs of sheep and goats with different fecundity 
were explored, providing a theoretical basis for high-yield 
research[30, 31].

The goat uterus is one of the most important organs of 
the reproductive axis. We fully excavated the circRNA 
expression profile of the goat uterus by high-throughput 
sequencing. A total of 7445 circRNAs were identified in 
this study, which was nearly 1400 and 3400 more than 

Fig. 6  GSEA enrichment analysis for each pathway. Nominal p-value: represents the p-value and characterizes the credibility of the enrichment 
results. FDR stands for Q-value, which is the p-value corrected by multiple hypothesis tests. Note that GSEA uses p-value < 0.05 and q-value < 0.25 
to filter the results. ES stands for Enrichment score, and Normalized ES represents the normalized Enrichment score
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those identified in the ovary and fallopian tube by Liu 
et  al., who previously studied Yunshang black goat [29, 
32]. Additionally, Song et al. identified 21,813 circRNAs 
in the endometrial circRNA expression profile of Xinong 
Saanen dairy goats during early pregnancy [33]. In our 
study, 95% of the circRNAs in each comparison group 
originated from exon splicing, but in Song’s study, the 
proportion of exon splicing was significantly lower, only 
nearly 50%. We infer that this difference may be due to 
different bioinformatics analysis methods. Song et  al. 
mainly used TopHat-Fusion [34] for prediction and the 
FPKM normalization method, which is different from 
our software (find_circ, CIRI2) and SRPBM normaliza-
tion method [25, 35, 36]. In summary, these differences, 
whether among different tissues of the same variety or 
between different varieties of the same tissue, suggest 
that circRNA plays a significant role in reproduction and 
exhibits species-tissue specificity.

A total of 149 DE circRNAs (94 up-regulated and 55 
down-regulated) and 276 DE circRNAs (56 up-regulated 
and 220 down-regulated) were identified in the FPLF 
vs. FPHF and LPLF vs. LPHF comparisons, respectively. 
After comparing the overlap of up-regulated and down-
regulated genes between the two periods, we found that 
7 circRNAs were significantly differentially expressed 
in both the proliferative and secretory phases. They 
are derived from genes ROS1, VWA9, FGF2, MBTPS1, 
PRKD1, and PICALM, respectively. Orphan receptor 
tyrosine kinase ROS1 has a unique extracellular domain, 
consisting of fibronectin III repeat (FN-III), β propel-
ler module (YWTD repeat) domain, and intracellular 
tyrosine kinase domain [37]. Study has shown that ROS1 
plays an important role in epithelial cell differentiation 
and cell-to-cell signal communication [38]. The proteins 
encoded by the Vwa9 gene belong to the von Wille-
brand factor type A (vWA) domain family [39]. Proteins 

Fig. 7  Interaction regulation network of miRNA-circRNA. A Targeted miRNAs were predicted based on differentially expressed circRNAs. B The 
square represents miRNA, the blue outer circle represents downregulated circRNA, and the red outer circle represents upregulated circRNA. The 
thickness of the wire represents the absolute value of the predicted interaction correlation, while the color inside the circle indicates the p-value
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Fig. 8  Predicted results for the coding potential of circRNAs. A Results predicted by the four software tools. The second half shows the statistics 
of the total results predicted by each software. B Specific information of the 14 circRNAs identified by all four software tools after overlap

Fig. 9  Comparison of real-time quantitative PCR (RT–qPCR) and RNA-seq results about validation of differentially expressed circRNA, 
*p < 0.05,**p < 0.01
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containing these domains are involved in various bio-
logical events, such as cell adhesion and migration [40]. 
We are all familiar with FGF2 genes, most of which are 
closely related to cell proliferation [41]. Through genome-
wide association analysis of dairy goats, researchers 
found that the FGF2 gene contributes to animal ovary 
development and promotes corpus luteum angiogenesis 
and vascular endothelial cell differentiation [42]. There 
are special studies on the changes in FGF2 gene expres-
sion in the endometrium of goats during pregnancy. The 
data show that FGF2 and FGFR2 may play an important 
role in regulating uterine angiogenesis in the early stage 
of pregnancy [43, 44]. The differentially expressed cir-
cRNAs affect reproductive rates by influencing embryo 
implantation, growth, and differentiation. For exam-
ple, circ-8073 acts as a molecular sponge for miR-449a, 
thereby regulating the proliferation of endometrial epi-
thelial cells and affecting endometrial receptivity [17]. 
Additionally, circRNA-9119 downregulates miR-26 
expression, thereby affecting endometrial epithelial cells 
by targeting PTGS2 and enhancing endometrial receptiv-
ity [18]. These findings underscore the role of circRNAs 
in modulating the uterine environment, thereby influenc-
ing embryo implantation rates and offspring numbers.

MBTPS1 is a member of a larger family of pro-protein 
convertases subtilisin kexins, responsible for the cleav-
age and activation of various protein substrates [45]. It is 
mainly located in the cis/medial Golgi apparatus, which 
is responsible for the cleavage of membrane-binding 
transcription factors and activation of proproteins [46]. 
Some studies have shown that it is expressed in the pla-
cental syncytiotrophoblast, which is the main component 
of the placenta and is mainly related to the mother [47]. 
Therefore, the differential expression of this gene in dif-
ferent reproductive groups is an important candidate 
gene to explore high fecundity. Serine/threonine-protein 
kinase D1 is an enzyme encoded by the PRKD1 gene, a 
member of the protein kinase D (PKD) family, and plays a 
role in many extracellular receptor-mediated signal trans-
duction pathways [48, 49]. Several studies have found 
that PRKD1 is related to the first estrus in sows and plays 
an important role in affecting litter size [50, 51]. Steroids 
play a very important role in mammalian reproduction, 
controlling the transcription of most reproduction-
related genes. Some studies have shown that PICALM, a 
receptor for clathrin-mediated endocytosis [52], is sensi-
tive to estrogen in reproductive tissues, so whether it is 
related to the phenotype of our study needs to be further 
verified [53].

We then enriched and analyzed the host genes of dif-
ferentially expressed circRNAs, including GO, KEGG, 
and GSEA. In the FPLF vs. FPHF comparison group, GO 
enrichment identified major cellular components such 

as cellular component organization, intracellular orga-
nelles, and organelle-related pathways, indicating that 
the main reason for the difference in high and low yield 
in the proliferative phase is the differential differentiation 
of uterine tissue cells that needs to be further explored. 
In the LPLF vs. LPHF comparison group, GO enrichment 
identified the main GTPase activator activity and GTPase 
regulator activity pathways. GTPases are a large family 
of hydrolase enzymes that bind to guanosine triphos-
phate (GTP) and hydrolyze it to guanosine diphosphate 
(GDP) [54]. They are involved in various cell processes 
and can respond to signal transduction activated by cell 
surface receptors and regulate cell differentiation and 
proliferation [55]. Among the overlapping GO pathways 
in our two comparison groups, only the intracellular 
components were significantly enriched. In the KEGG 
enrichment analysis, the pathways enriched in the pro-
liferative phase included the Sphingolipid signaling path-
way, MAPK signaling pathway, GnRH signaling pathway, 
and Apoptosis-fly, while the main enriched pathways in 
the secretory phase included Focal adhesion and Sphin-
golipid signaling pathway. Both analyses included the 
Sphingolipid signaling pathway. Sphingolipids are one of 
the important components of cell membranes, and the 
Sphingolipid signaling pathway is one of the most impor-
tant secondary signal transduction systems in cells [56]. 
In particular, the balance regulation between ceramide 
and sphingosine 1-phosphate (S1P) is the rheostat of 
cell growth and programmed cell death [57]. Some stud-
ies have shown that S1P participates in Ca2+ movement 
and causes human airway smooth muscle contraction by 
phosphorylating myosin light chain kinase and forming 
stress fibers [58]. It is well known that the myometrium is 
a type of smooth muscle, and its role during pregnancy is 
self-evident. Thus, whether the movement ability of uter-
ine smooth muscle in ewes can explain high fecundity is 
worth exploring. In the GSEA enrichment analysis, we 
defined the gene sets based on KEGG results to identify 
hub genes in the pathways. Finally, by overlapping differ-
ent genes, we identified FGF2 and MBTPS1 as key candi-
date genes.

In addition to elucidating the functions and pathways 
of the host genes of differentially expressed circRNAs, we 
further explored whether these circRNAs possess miRNA 
binding sites and can function as miRNA sponges to 
modulate mRNA expression. A total of 281 miRNA-cir-
cRNA binding pairs were identified. Among them, circ-
ARHGEF28 has been demonstrated to significantly drive 
bladder cancer (BC) progression by acting as a miRNA 
sponge. Specifically, circ-ARHGEF28 sequesters miR-
548, thereby alleviating the inhibitory effects of miR-548 
on its target gene KIF2C [59]. This interaction is particu-
larly critical because miR-548 has been widely reported 
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to function as a tumor suppressor in various cancers, 
including breast cancer, prostate cancer, and pancreatic 
cancer [60]. By sequestering miR-548, circ-ARHGEF28 
effectively upregulates KIF2C expression, which in turn 
promotes cell proliferation, migration, and invasion in 
bladder cancer cells [59]. Similarly, circ-CSPP1 has been 
identified as a key player in both hepatocellular carci-
noma (HCC) and renal cell carcinoma (RCC) by acting 
as a sponge for miR-493-5p. In HCC, circ-CSPP1 seques-
ters miR-493-5p, leading to the upregulation of HMGB1, 
a protein involved in inflammation and carcinogen-
esis [61]. The interaction between circ_CSPP1 and miR-
493-5p is significant importance because miR-493-5p has 
been shown to suppress tumor progression by targeting 
oncogenic genes [62]. By sequestering miR-493-5p, circ-
CSPP1 enhances HMGB1 expression, thereby promoting 
HCC development [61]. In RCC, circ-CSPP1 similarly 
sequesters miR-493-5p, resulting in the upregulation of 
RAC1, a protein involved in cell proliferation and metas-
tasis [63].

Because circRNA has a ring structure composed of 
exons, some circRNAs contain open reading frames and 
IRES. Therefore, researchers speculate that under certain 
conditions, a large amount of circRNA can be converted 
into protein [64]. Fourteen circRNAs with coding poten-
tial were identified using IRESfinder, CPC2, CNCI, CPAT, 
and PLEK software. It is worth noting that the biological 
functions of these circRNAs need to be further explored 
from the perspective of protein translation.

Conclusions
This study identifies and characterizes differentially 
expressed circRNAs in the uterine tissues of Yunshang 
black goats with varying fecundity levels. Our findings 
highlight the involvement of circRNAs in key biological 
pathways related to cell growth and development, such 
as the Sphingolipid signaling pathway, MAPK signaling 
pathway, and GnRH signaling pathway. The identifica-
tion of potential miRNA-circRNA interactions and cod-
ing circRNAs further underscores their regulatory roles 
in reproductive processes. These results provide valu-
able insights into the molecular mechanisms underlying 
fecundity in goats and pave the way for future genetic 
improvement strategies.

Materials and methods
Animals and ethics statement
Ethics approval (No. IAS2019-63) was granted by the 
Animal Ethics Committee of the Institute of Animal Sci-
ences, Chinese Academy of Agricultural Sciences (IAS-
CAAS), Beijing, China. A cohort of 20 non-pregnant, 
adult Yunshang black doe-goats, aged 3 to 5  years and 
weighing 41 to 63  kg, was randomly selected from the 

Yixingheng Animal Husbandry Technology Co., Ltd’s 
Tuanjie Township Base in Kunming City, Yunnan Prov-
ince, China (24° 23′ North latitude).

These goats were divided into two groups based on 
their historical kidding records: the high-fecundity 
group (HF group, n = 10) with an average kidding num-
ber of 3.40 ± 0.42, and the low-fecundity group (LF group, 
n = 10) with an average kidding number of 1.80 ± 0.27. 
The difference in kidding numbers between the two 
groups was statistically significant (p < 0.01, T-test).

To synchronize estrus, all goats were administered a 
Controlled Internal Drug Releasing device (CIDR) con-
taining 300 mg of progesterone (Inter Ag Co., Ltd., New 
Zealand). The CIDRs were removed after 16 days, mark-
ing the beginning of the experimental timeline at 0  h. 
Five goats from each group were humanely euthanized 
at 48 h (proliferative phase, FP groups), and the remain-
ing ten goats were euthanized at 240 h (secretory phase, 
LP groups). For euthanasia, the goats were first anes-
thetized with 100  mg/kg sodium pentobarbital admin-
istered intravenously. Following anesthesia, the animals 
were exsanguinated to ensure a rapid and humane death. 
Blood samples were collected from these goats for hor-
mone level determination using the competitive radioim-
munoassay method, ensuring rigorous and scientifically 
valid data collection and analysis.

Sample collection, total RNA preparation and HE staining
Uterine tissues from the goats were immediately frozen 
in liquid nitrogen and stored at −80  °C for subsequent 
RNA extraction. Following established protocols from 
prior research [65]. total RNA for RNA sequencing was 
extracted from 20 uterine tissue samples, including both 
endometrium and stroma, using TRIzol reagent (Invit-
rogen, Carlsbad, CA, USA) according to the manufac-
turer’s guidelines. The purity and concentration of the 
RNA samples were assessed using the NanoDrop 2000 
spectrophotometer (Thermo Scientific, Wilmington, 
DE, USA), and their integrity was confirmed by standard 
denaturing agarose gel electrophoresis to check for deg-
radation and contamination. All samples exhibited an 
OD 260/280 ratio ranging from 1.8 to 2.2, indicating high 
purity. The integrity of the RNA samples was further vali-
dated using the Agilent Bioanalyzer 2100 system (Agilent 
Technologies, Palo Alto, CA, USA) with the RNA Nano 
6000 Assay. All samples had an RNA Integrity Number 
(RIN) value above seven, ensuring their suitability for 
downstream analyses.

Thaw the frozen uterine tissues in pre-warmed saline 
containing antibiotics and antifungal drugs at 4 °C. Once 
thawed, trim the tissues to an appropriate size (includ-
ing parts of the uterine horn and body) and fix them in 
10% neutral buffered formalin for more than 48 h. Rinse 
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the tissues in distilled water for 5  min. Dehydrate the 
uterus through a graded ethanol series (70%, 80%, 95%, 
and absolute ethanol), adjusting the time as needed based 
on the size of the uterus. After dehydration, clear the 
uterus in xylene until fully transparent, then immerse 
it in molten paraffin until saturated. Finally, embed the 
saturated tissue in a cassette. Use a rotary microtome to 
prepare 5-micron sections. Place the sections on a slide 
warmer until fully spread, then transfer the paraffin sec-
tions to microscope slides. Dry and stain them using the 
Hematoxylin and Eosin Staining Kit (Beyotime Co., Ltd., 
Beijing, China).

RNA library preparation and sequencing
The RNA library construction began with 3 μg of high-
quality RNA using the NEBNext® UltraTM Directional 
RNA Library Prep Kit for Illumina® (NEB, Ipswich, MA, 
USA), following the manufacturer’s protocol closely. 
Ribosomal RNA (rRNA) was first removed using the 
Epicenter Ribo-Zero™ Removal Kit (Epicenter, Madison, 
WI, USA), and the rRNA-depleted residue was purified 
through ethanol precipitation. The UNG enzyme was 
then used to degrade the second strand of the U-contain-
ing cDNA, followed by PCR amplification to generate the 
RNA library. The library products were purified using the 
AMPure XP system, and the library quality was assessed 
using the Agilent Bioanalyzer 2100 system. Finally, the 
RNA library was sequenced using a paired-end 150  bp 
(PE150) strategy on the Illumina Novaseq platform (Illu-
mina, San Diego, CA, USA). All sequencing operations 
were conducted by Wuhan Frasergen Gene Information 
Co., Ltd. (Wuhan, China), ensuring professional data 
generation and management.

Data processing and transcriptome assembly
The imaging data from sequenced fragments generated 
by the high-throughput sequencer are converted into 
digital sequence data, known as reads, using CASAVA’s 
base-calling algorithm. These reads are stored in fastq 
format, which includes both the sequence information 
and the corresponding quality metrics of the sequenced 
fragments. Prior to further analysis, the raw data undergo 
a critical filtration process:1) Reads containing adapter 
sequences were removed. 2) Reads with more than 1% of 
their length consisting of undetermined nucleotides (Ns) 
were removed, along with their paired-end counterparts. 
3) Low-quality reads, where bases with a quality score of 
20 or below constituted over 50% of the read length, were 
filtered out, along with their paired-end mates.

fter filtering, the quality of the clean reads was 
assessed, including calculations of quality score dis-
tributions (Q20 and Q30) and base composition, 

particularly GC content. The qualified clean reads were 
then aligned to the reference genome using HISat2 
(version 2.1.0), and StringTie (version 1.3.5) was used 
for transcript assembly [66, 67]. HISat2 was executed 
with parameters tailored for strand-specific RNA-
seq data, using options "-x –no-unal –un-conc", "-rna 
-strandness RF", and "-dta -t -p 4". StringTie was run 
with "-e -B", "-G ref.gtf -rf −1", and other parameters 
set to their default values, ensuring accurate and effi-
cient mapping and assembly of the reads..

Identification and quantitation of uterine circRNA
Given the high rate of false positives in circRNA identi-
fication, we used a dual-software approach to rigorously 
screen and intersect the identification results based on 
the chromosomal positions of circRNAs. The find_circ 
software operates based on Bowtie2 alignment results, 
extracting a 20-nt anchor sequence from both ends of 
unaligned reads. These anchors are then re-examined 
against the reference sequence. A read is considered 
a candidate circRNA if the 5’ end of the anchor aligns 
to the reference sequence with defined start and end 
sites (marked A3 and A4, respectively), the 3’ end aligns 
upstream of this site (marked A1 and A2), and there 
is a canonical splice site (GT-AG) between A2 and A3 
on the reference sequence. Only candidates with read 
counts of two or more are confirmed as identified cir-
cRNAs. The detailed parameters for the find_circ soft-
ware are as follows: find_circ.py –genome = /path/
to/ARS1.fa –prefix = chi_ –name = my_test_sample –
stats = stats.txt –reads = splice_reads.fa > spliced_sites.
bed.

Concurrently, CIRI2 detects PCC (paired-end map-
ping with a convergent signal) and PEM (pair-end map-
ping) signals, as well as junction reads indicative of 
the splicing event from the BWA alignment results. It 
then leverages dynamic programming alignment out-
comes, along with circRNA read support numbers and 
genomic annotations, to refine the list of candidate cir-
cRNAs. The detailed parameters for the CIRI2 software 
are as follows: CIRI2.pl -T 20 -F ARS1.fa -A ARS1.gtf -I 
align.sam -O circRNA.xls.

For quantification, the spliced reads per billion 
mapped reads (SRPBM) for each circRNA were calcu-
lated, considering the number of junction reads span-
ning the circRNA’s splice site [59]. The count of reads 
aligning to each transcript across samples was deter-
mined using StringTie software and subsequently 
normalized to ensure accurate representation and com-
parison of circRNA expression levels. This methodical 
approach ensures a more reliable and accurate identifi-
cation of circRNAs, reducing the risk of false positives.
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Enrichment analysis of host genes and DEcircRNA
Differential expression analysis was conducted using 
the DESeq2 R package [68]. Genes were considered 
differentially expressed if they had a p-value < 0.05 and 
an absolute log2 fold change > 1.5. Subsequently, we 
performed Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analy-
ses for the parental genes associated with differentially 
expressed circRNAs. These analyses were performed 
using GOSeq (Release 2.12) and KOBAS (version 3.0) 
software [69]. The hypergeometric test was used to 
identify significantly enriched GO terms and KEGG 
pathways, with significance defined by adjusted Q-val-
ues < 0.05 or P-values < 0.01. Furthermore, Gene Set 
Enrichment Analysis (GSEA) was used to explore the 
differentially regulated pathways for distinct traits. The 
analysis was performed using the default parameters 
of the GSEA software, with significance determined 
by a p-value threshold < 0.05 and a false discovery rate 
(FDR) < 0.25. This comprehensive approach facilitates 
a deeper understanding of the biological functions 
and pathways influenced by differentially expressed 
circRNAs.

Prediction analysis of the targeting miRNA of DE circRNA
CircRNAs act as miRNA sponges, modulating gene 
expression by binding to miRNAs and thereby affect-
ing their regulatory capacity. The miRanda algorithm is 
a valuable tool for predicting miRNA binding sites on 
circRNAs in animals, aiding in the exploration of these 
critical interactions. By analyzing circRNA-miRNA 
interactions, we can uncover the roles and mechanisms 
through which circRNAs regulate gene expression and 
their potential contributions to various biological pro-
cesses. For the miRanda algorithm, we used the default 
sequence alignment threshold of 140 for the parameter 
-sc and the default free energy threshold of −10 for the 
parameter -en, ensuring that our predictions are based 
on established criteria.

Coding potential prediction of circRNA
To ascertain the protein-coding potential of circR-
NAs, we used four software tools: IRESfinder, CNCI, 
CPAT, and CPC2. Our approach began with IRES-
finder, which predicts ribosome recruitment sites using 
its default parameters. We retained predictions with 
scores exceeding 0.5 for further analysis. Subsequently, 
we used CPC2 and CNCI for sequence-based predic-
tions, following their default settings. For CPAT, we 
constructed predictive models using caprine coding 
sequences and non-coding RNA sequences, and then 
applied the software’s default parameters for prediction.

The coding capacity of circRNAs was evaluated based 
on several criteria: the presence of an open reading 
frame (ORF) of sufficient length (three or more amino 
acids), ORF coverage (≥ 0.6), TESTCODE statistics 
(≥ 1.2), and hexamer usage bias (≥ 0.5). These metrics 
collectively indicate the likelihood of a circRNA encod-
ing proteins. In conclusion, we determined the final set 
of circRNAs with coding potential by intersecting the 
predictions from all four software tools. This rigorous, 
multi-faceted approach ensures a high level of confi-
dence in identifying circRNAs with potential protein-
coding capabilities.

Verification of circRNA expression profiles with RT–qPCR
Several differentially expressed circRNAs were randomly 
selected to verify the reliability of the sequencing data 
and were confirmed by RT-qPCR, using RPL19 as the ref-
erence gene. For the RT–qPCR analysis, synthetic-detec-
tion templates were prepared using the PrimeScript™ RT 
reagent kit (TaKaRa). RT–qPCR was performed using a 
Roche Light Cycler® 480 II system (Roche Applied Sci-
ence, Mannheim, Germany). The primers were syn-
thesized by Shanghai Sangon Biotech (Supplementary 
Table  S8). RT–qPCR analysis of circRNA expression 
was conducted using the following procedure: 95  °C for 
5 min, followed by 40 cycles of 95 °C for 5 s and 60 °C for 
30 s. The data were analyzed using the 2−∆∆Ct method.

Statistical analysis
GraphPad Prism (version 5.0) software (San Diego, CA, 
United States) was used for statistical analyses of the RT-
qPCR results and graphs. The statistical significance of 
the data was tested using paired t-tests. The results are 
presented as the means ± SEMs of three replicates, with 
statistical significance indicated by p values (*p < 0.05; 
**p < 0.01).
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