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Abstract
Background  Topologically associating domains (TADs) are functional units that organize chromosomes into 
3D structures of interacting chromatin, and play a crucial role in regulating gene expression by constraining 
enhancer-promoter contacts. Evidence suggests that deletion of TAD boundaries can lead to aberrant expression of 
neighboring genes. In our study, we analyzed high-throughput chromatin conformation capture (Hi-C) datasets from 
publicly available sources, integrating 71 datasets across five tissues in six pig breeds.

Results  Our comprehensive analysis revealed 65,843 TADs in pigs, and we found that TAD boundaries are enriched 
for expression Quantitative Trait Loci (eQTL), splicing Quantitative Trait Loci (sQTL), Loss-of-Function variants (LoFs), 
and other regulatory variants. Genes within conserved TADs are associated with fundamental biological functions, 
while those in dynamic TADs may have tissue-specific roles. Specifically, we observed differential expression of the 
NCOA2 gene within dynamic TADs. This gene is highly expressed in adipose tissue, where it plays a crucial role in 
regulating lipid metabolism and maintaining energy homeostasis. Additionally, differential expression of the BMPER 
gene within dynamic TADs is associated with its role in modulating the activities of bone morphogenetic proteins 
(BMPs)—critical growth factors involved in bone and cartilage development.

Conclusion  Our investigations have shed light on the pivotal roles of TADs in governing gene expression and even 
influencing traits. Our study has unveiled a holistic interplay between chromatin interactions and gene regulation 
across various tissues and pig breeds. Furthermore, we anticipate that incorporating markers, such as structural 
variants (SVs), and phenotypes will enhance our understanding of their intricate interactions.
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Background
In eukaryotic cell nuclei, genomic DNA is organized 
into three-dimensional (3D) structures at various scales. 
In 2009, the development of high-throughput chroma-
tin conformation capture (Hi-C) technology enabled the 
genome-wide identification of interacting fragments by 
combining second-generation sequencing with chromo-
some conformation capture (3 C) and molecular labeling 
techniques [1]. Hi-C has provided insights into chroma-
tin interactions, revealing spatial hierarchical structures 
such as chromosome territories, compartments, and 
topologically associated domains (TADs) [2], as well as 
long-range interactions that play crucial roles in tran-
scriptional regulation [3]. TADs are discrete units of 
folded chromatin ranging in size from 200  kb to 1  Mb 
and serve as independent regulatory domains character-
ized by extensive self-interactions [4]. Studies in model 
organisms such as Drosophila have demonstrated a 
strong correlation between TADs and functional epi-
genetic domains defined by chromatin marks [4]. The 
structural features and mechanisms underlying TAD 
formation and the regulation of local gene expression 
are being elucidated [2, 4–9]. For example, CCCTC-
binding factors (CTCFs) and cohesion proteins, which 
are abundant at TAD boundaries, have been identified 
as essential for TAD localization and structural stability 
[10]. TAD boundaries are more evolutionarily conserved 
than the rest of the TADs and are enriched with CTCF 
and housekeeping genes, imposing genetic constraints 
on TADs [11, 12]. Moreover, TAD boundaries exhibit 
enrichment in various epigenetic makers such as histone 
modifications, DNA methylation sites, transcription start 
sites (TSSs), and transfer RNA (tRNA), which are closely 
associated with epigenetic regulation of transcriptional 
activity [8]. Disrupting the boundaries thus disrupts the 
interactions between protein-coding genes and their 
enhancers, leading to a decrease in gene expression lev-
els [13]. These studies have also highlighted the crucial 
roles of TAD boundaries in gene expression regulation of 
human and animals.

The domestic pig (Sus scrofa) serves as a significant 
source of meat worldwide and is widely used as an ani-
mal model for human diseases and xeno-transplantation 
[14–17]. Previous projects like ENCODE, Roadmap 

Epigenomics, and Functional Annotation of Animal 
Genomes (FAANG) have identified cis-regulatory ele-
ments involved in gene expression regulation in human, 
cattle and pig [18–23]. Studies have revealed that changes 
in 3D chromatin structure during growth and develop-
ment, as well as long-range interactions within specific 
breeds or tissues, play regulatory roles in gene expres-
sion [24]. In a comparison of Bama pigs and wild boar, 
chromatin architecture contributes to determining the 
regulatory mechanism of phenotypic differences between 
Bama pigs and wild boar [25]. Furthermore, the chroma-
tin architecture had contributed to the analyses of pig 
phenotypes [9, 26]. Research provides valuable compara-
tive epigenetic data, such as Hi-C, relevant to using pigs 
as models in human biomedical research [27]. However, 
a comprehensive characterization of chromatin architec-
ture associated with genes regulation and even traits in 
pigs is lacking.

Therefore, we compiled a comprehensive dataset com-
prising 71 publicly available Hi-C data from 5 tissues in 
6 pig breeds (Table 1). Leveraging this extensive dataset, 
we constructed a mini-atlas consisting of 65,843 TADs 
to provide a detailed map of TADs in pigs. Our study 
encompasses multiple objectives. Firstly, we examine the 
interplay between TADs and functional regulatory ele-
ments derived from the Pig Genotype-Tissue-Expression 
(PigGTEx) and FAANG, including expression quanti-
tative trait loci (eQTL), splicing quantitative trait loci 
(sQTL), loss-of-function variants (LoFs) datasets and 
other regulatory elements. Secondly, we conduct inter-
tissue and inter-species comparisons of TADs across 
different tissues and breeds. Furthermore, in order to 
deepen our understanding of the regulatory impact of 
TADs, we identify candidate genes that are likely influ-
enced by changes of TADs and are associated with tissue- 
or breed-specific functions. These findings contribute to 
unraveling the complex regulatory landscape of the pig 
genome and offer potential avenues for future research in 
pig genetics.

Methods
Data collection
The high-throughput sequencing datasets contained 5 
tissues and 6 breeds and were all collected from public 

Table 1  The numbers of breeds and tissues for 71 public Hi-C samples
breed number adipocytes liver ear muscle embryo
Large White 51 2 8 2 9 30
Bamaxiang 13 6 7
Luchuan 3 3
Rongchang 2 2
Meishan 1 1
Tibetan 1 1
Total 71 8 15 8 10 30
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datasets (Table S1). The public datasets were retrieved 
from the National Center for Biotechnology Informa-
tion (NCBI) Sequence Read Archive (SRA), and the 
corresponding SRA accession numbers can be found in 
Table S1. The genome annotation data, eQTL, sQTL, 
CTCF signals, top 1% predicted effect score of 13 tissues, 
and gene expression matrices were obtained from Pig-
GTEx and FAANG [9, 26]. The chromatin states of the 
pig genome can be accessed through the UCSC Genome 
Browser (​h​t​t​p​​:​/​/​​g​e​n​o​​m​e​​.​u​c​​s​c​.​​e​d​u​/​​s​/​​z​h​y​​p​a​n​​/​s​u​s​​S​c​​r​1​1​​_​
1​5​​_​s​t​a​​t​e​​_​1​4​_​t​i​s​s​u​e​s​_​n​e​w) [9]. Additionally, the ​h​i​g​h​-​t​h​
r​o​u​g​h​p​u​t sequencing data generated for four tissues in 
this study are available in the Gene Expression Omnibus 
(GEO) under the accession number GSE158430.

Hi-C data processing and TAD calling
The Hi-C reads were processed using the Juicer software 
(version 1.5) [28]. Briefly, the high-quality Hi-C reads 
were mapped to the pig reference genome (susScrofa11.1, 
access date:2021-08-28) using BWA (v0.7.15) [29, 30] 
with default parameters. Unaligned read pairs and PCR 
duplicates were filtered out using Juicer, and alignments 
with low quality (MAPQ < 30) were also discarded.

Subsequently, intra-chromosomal contact matrices at 
50 kb resolution were generated independently for each 
sample using valid read pairs. These matrices were then 
quantile normalized using the Knight-Ruiz algorithm 
[31]. Additionally, inter-chromosomal contact matri-
ces at 1  Mb resolution were generated using the KR 
algorithm and normalized using log-counts per million 
(CPM), which represents the average abundance across 
all libraries.

Criteria for filtering samples
To ensure the quality and consistency of the Hi-C data-
sets used in this study, we implemented several filtering 
steps. Firstly, we excluded Hi-C samples with sequencing 
depths below the average sequencing depth of 48.3 ×  as 
higher sequencing depth is known to yield more reliable 
results for high-resolution Hi-C maps and 3D chroma-
tin structure prediction. The interquartile range (IQR) 
method was employed to define the upper and lower lim-
its of outliers. Datasets with sequencing depths outside 
the range of 30 (lower limit) and 208.8 (upper limit) were 
excluded, based on the criteria of data points above the 
third quartile (Q3) + 1.5 × IQR or below Q1 − 1.5 × IQR 
(Fig. S2).

To maintain consistency in comparisons, we removed 
any unique Hi-C datasets with read lengths different from 
the majority of the datasets (read length of 150), specifi-
cally those with a read length of 100. Trim Galore (v0.6.7) 
[32] was used to trim sequences with a Phred quality 
score below 20, setting the threshold at 20. Sequences 
shorter than 15 nucleotides were discarded, and the first 

3 nucleotides at the 5’ end of Read 2 were trimmed (--q 
20 --paired --max_n 15 --clip_R2 3).

Furthermore, we calculated the percentage of Hi-C 
contact reads out of all reads. After applying the afore-
mentioned filtering steps, the remaining Hi-C datasets 
exhibited a balanced number and coverage of TADs.

Principal component analysis (PCA) and correlation 
analysis
After a unified analysis pipeline and rigorous filtering 
of Hi-C samples, we performed Principal Component 
Analysis with the PCA module of FAN-C (0.9.28) [33], 
and then assessed the reproducibility of Hi-C data using 
a stratum-adjusted correlation coefficient of HiCReppy (v 
0.1.0) [34].

Down-sampling analysis
To ensure equal representation and comparability within 
each comparison group, down-sampling was performed 
on each sample. Initially, All Valid Reads of each sample 
were using for down-sampling, and then we utilized HiC-
Pro (v2.11.4) [35] to convert the matrix files back to the 
Juicer format for subsequent analysis. Down-sampling 
was conducted on the Hi-C interaction matrix following 
the method described by Carty [36].

In summary, the counts of each element in the matrix, 
representing pairs of genomic loci, were converted into a 
list of paired-end reads, where the size of the list matched 
the counts. Through a random subsampling procedure 
without replacement, reads were selected from this list 
and reassigned to create a new downsized dataset. This 
down-sampling process ensured that each sample within 
the comparison group had an equal number of valid read 
pairs, facilitating fair and unbiased comparisons.

Functional enrichment analysis of genes
To conduct gene function enrichment analysis, we uti-
lized the biomaRt (v2.52.0) [37] R package. This pack-
age facilitated the conversion of swine gene Ensemble 
IDs to swine Entrez IDs. The obtained Entrez IDs were 
then inputted into clusterProfiler (v4.2.2) [38], enabling 
us to retrieve GO [39] and KEGG [40] enrichment 
annotations.

In order to gain deeper insights into the functional roles 
of genes within the conserved TADs, we conducted GO 
and KEGG enrichment analyses. These analyses aimed to 
identify significant enriched GO terms and KEGG path-
ways, respectively, providing valuable information about 
the functional characteristics of genes within the identi-
fied TADs.

Identification of conserve and differential TADs
Our study focused on six comparative groups: muscle tis-
sue and adipose tissue, adipose tissue and ear tissue, liver 

http://genome.ucsc.edu/s/zhypan/susScr11_15_state_14_tissues_new
http://genome.ucsc.edu/s/zhypan/susScr11_15_state_14_tissues_new
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tissue and adipose tissue, Large White pig and Rongchang 
pig, muscle tissue and ear tissue, and Bama Xiang pig 
and Large White pig (Table  2). Differential interactions 
regions for each group were detected using CHESS (v 
0.3.7) [41]. Differential TADs were defined that TADs 
overlapped with the regions of differential interactions.

When analyzing differential TADs, we took into 
account that the TAD regions identified by the Arrow-
head algorithm [42] contained overlapping regions 
between TADs. To accurately calculate the frequency dis-
tribution of TADs throughout the genome, we assigned a 
frequency of 2 to the overlapping regions, while assign-
ing a frequency of 1 to the non-overlapping regions. 
This approach ensured an accurate representation of 
TAD occurrences in the genome. TADs with a frequency 
of 24 (equal to the number of samples) were defined as 
conserved TADs, while all other TADs within each com-
parison group, excluding the differential TADs, were 
categorized as other TADs. We then calculated the pro-
portions of both the differential TADs and conserved 
TADs between the groups.

Enrichment analysis of tads and functional annotation 
data
To evaluate the enrichment fold and odds ratios of func-
tional regulatory elements within TADs and their flank-
ing regions, we conducted a rigorous analysis. Initially, 
we identified the number of variants located within TAD 
regions across different pig tissues and breeds using bed-
tools (v2.30.0) [43]. Subsequently, we employed Fisher’s 
exact test to evaluate the enrichment probability of vari-
ous functional elements, including eQTL, sQTL, 15 chro-
matin states, top 1% regulatory variants predicted by a 
deep learning method in 13 tissues, and LoFs within TAD 
regions. Here, we will provide a detailed description of 
the enrichment analysis for eQTLs as an example.

To calculate the enrichment, we implemented the fol-
lowing procedure:

We divided each TAD into 60 equally sized bins. Addi-
tionally, we extended each TAD upstream and down-
stream by the length of the TAD itself to define the TAD 
flanking region. We further divided the TAD flanking 
region into 120 equally sized bins. Consequently, both 
the TAD and its flanking region were uniformly seg-
mented into a total of 180 bins.

Next, we computed the enrichment as the ratio of the 
number of eVariants (the genes and genes with alterna-
tive splicing events had at least one significant variant 
detected in e/sQTL study) within a specific bin to the 
number of SNPs within that bin. This value was divided 
by the ratio of the number of all eVariants in the entire 
genome to the number of all SNPs in the genome. The 
calculation was performed as follows: (number of eVari-
ants in bin / number of SNPs in bin) / (number of all 
eVariants in the genome / number of all SNPs in the 
genome).

We employed a significance threshold of FDR < 0.01 
to identify statistically significant enrichment between 
eQTL and TADs. This allowed us to determine the pres-
ence of meaningful relationships at a high confidence 
level.

By applying these robust methods, we were able to 
investigate the enrichment between eQTL and TADs at a 
fine-grained level within the genome. Similar procedures 
were followed for assessing the enrichment of other func-
tional regulatory elements. This comprehensive analy-
sis enabled us to uncover the intricate relationships and 
potential regulatory mechanisms between TADs and 
these elements.

Identification of differentially expressed mRNAs
In this study, RNA-seq gene expression matrices were 
obtained from the PigGTEx [26]. To identify differen-
tially expressed genes (DEGs) in each comparison group, 
we utilized the EdgeR package (v3.36.0) [44], which is a 
widely used statistical method based on a negative bino-
mial distribution model. For each comparison group, we 
applied filtering criteria set as FDR ≤ 0.01 and|log2FC| ≥ 1 
to identify differential expression genes, where FC repre-
sents the fold change.

Results
A mini-atlas tads map of 24 Hi-C samples
We gathered a dataset comprising 71 Hi-C samples 
(Table  1), which yielded approximately 40  billion Hi-C 
sequence reads (Table S1). After alignment, we filtered 
out unmapped reads, self-loops, and non-valid data con-
nections, resulting in an average mapping rate of 98.13% 
across all samples (see Methods, Fig. S1 and Table S2).

To mitigate potential biases arising from variations in 
sequencing depth across different projects, we conducted 
thorough data screening and filtering processes. Out of 
the initial 71 datasets, we retained 24 datasets for further 
analysis (see Methods, Table S3). All samples included in 
the study met the criterion of having effective interacting 
reads comprising more than 50% of the total reads [35]. 
The sequencing depths of the samples ranged from 48.3 
to 204.01 (Table S3, Fig. 1a and Table 1), showing a strong 
correlation (P < 0.05, R2 = 0.80) between sequencing depth 

Table 2  The details of six comparison groups
Group1 Group2

comparison Large White muscle Large White adipose
Large White adipose Large White ear
Bamaxiang liver Bamaxiang Adipose
Large White muscle Large White ear
Large White ear Rongchang ear
Bamaxiang liver Large White liver
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and Hi-C contact count (Fig. 1a; Table 3). For each sam-
ple, we assessed various parameters including the num-
ber of sequenced reads (90 M to 2000 M), contact counts 
(41 M to 1183 M), trimmed reads (0.1 M to 45 M), and 
TAD coverage (65–78%) (Fig.  1b-c, Table S2-S3). We 
conducted PCA on 24 datasets and demonstrated the 
effectiveness of our correction method in mitigating the 
influence of batch effects (Fig S3). By utilizing contact 
maps with a resolution of 50 kb, we observed that TADs 
spanned approximately 65–78% of the whole genome. 
The number of TADs detected ranged from 878 to 1077, 
with a median size of 1.7  Mb (Fig.  1c; Table  3). This 

comprehensive analysis provides insights into the cover-
age and characteristics of TADs within the genome.

Given the well-established importance of CTCFs and 
cohesions in TAD formation and chromatin loops [45–
47], we investigated the CTCF signals in muscle tissue 
obtained from FANNG [9]. Specifically, we examined the 
enrichment of CTCF signals within the identified TADs 
in adipose, liver, and muscle tissues separately. Our anal-
ysis revealed significant enrichment of CTCF peaks at 
the boundaries of TADs in each tissue (Fig. 1d). This con-
sistent CTCF enrichment across all three tissues high-
lights the high conservation of TADs. Furthermore, we 
assessed the consistency of TAD numbers, average TAD 

Fig. 1  A mini-atlas TADs map of 24 Hi-C samples. (a) Linear regression analysis showing the relationship between sequence depth and Hi-C contact 
counts for five tissues and nine breeds of pigs. Gray points represent samples that were filtered out, while red points represent samples that were kept. 
(b) Counts of sequence reads, trimmed reads, and Hi-C contact reads. (c) Distribution of TAD coverage. The left y-axis represents the sample count, the 
right y-axis represents the scaled density (scaled to a maximum of 1), and the dotted line indicates the median of TAD coverage. (d) Enrichment of CTCFs 
(CCCTC-binding factor) at the TAD boundary in muscle (left panel), liver (middle panel), and adipose (right panel). (e-g) The number (e) and average 
length (f) of TADs and number of Hi-C contacts (g) for Hi-C datasets 687 grouped by tissue and species
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length, and the number of Hi-C contacts across different 
tissues and breeds. Strikingly, all three factors exhibited 
similar values, indicating a comparable TAD landscape 
and unbiased basis for TAD comparisons among vari-
ous tissues and breeds (Fig. 1e-g). These findings provide 
reassurance regarding the reliability of our TAD analyses 
and enable robust comparisons of TADs across diverse 
biological contexts.

Impact of tads on regulation of transcriptional activity
To comprehensively investigate the impact of TADs on 
regulation of transcriptional activity, we examined the 
enrichment of functional regulatory elements from the 
pig-GTEx project within TADs. These elements included 
15 chromatin states, eQTL, sQTL, LoFs, and top 1% pre-
dicted SNPs effect of 13 tissues using deep learning by 
ATAC-seq data (Fig. 2a).

Initially, we analyzed a LoFs dataset consisting of 27,148 
mutations, including splice acceptor, splice donor, start 
lost, stop gain, and stop loss. We assessed the enrich-
ment of LoFs within the TAD body and flanking regions. 
Interestingly, we found that LoFs were more frequently 
observed at the TAD boundaries, while the TAD body 
showed lower enrichment (Fig.  2b). Furthermore, we 
examined SNPs with the highest predicted effect scores 
(top 1%) of 13 tissues using deep learning with ATAC-seq 
data and observed similar distribution and enrichment 
patterns to LoFs (Fig. 2e), suggesting that TAD boundar-
ies have a greater impact on the gene regulations.

We further examined the enrichment and frequency of 
different chromatin states within TADs and their flanking 
(2× TAD length) regions. 15 chromatin states examined 
in this study were defined by the integration of five epi-
genetic marks across 14 different tissues (Table 4). These 
states primarily include promoters (TssA, TssAHet, 
and TssBiv, covering 1.16% of the entire genome), TSS-
proximal transcription regions (TxFlnk, TxFlnkWk, and 
TxFlnkHet, covering 0.92% of the genome), enhancers 
(EnhA, EnhAMe, EnhAWk, EnhAHet, and EnhPois, cov-
ering 6.5% of the genome), repressed regions (Repr and 
ReprWk, covering 13.25% of the genome), and quiescent 

regions (Qui, covering 73.39% of the genome) (Table 4). 
Enrichment of enhancers, promoter and TSS-proxi-
mal regions in TADs boundary (upstream and down-
stream regions of 50  kb for each TAD) are significantly 
(P = 0.0172, 0.00012, 0.0005) higher than within TAD 
body, whereas enrichment fold of repressed regions was 
low (P = 0.0006) in TADs body and boundary (Fig.  2c). 
However, quiescent regions exhibit notably higher 
enrichment but not significantly (P = 0.55) within TAD 
body regions compared to TAD boundary (Fig. 2c). This 
observation may be attributed to the promoting role of 
CTCF in TAD formation, leading to a reduced propor-
tion of quiescent regions near TAD boundaries. Further-
more, we assessed the enrichment of eQTL and sQTL of 
34 tissues within TADs, which are known to influence 
gene expression and splicing. Interestingly, we observed 
the highest frequency and of eQTL and sQTL at the TAD 
boundary, the enrichment fold of eQTL and sQTL in 
TAD boundary were significantly (P < 0.05) higher than in 
TAD body (Fig. 2d). These findings highlight the critical 
role of TAD boundaries in the pig genome, as indicated 
by the enrichment of functional regulatory elements.

Overall, our results demonstrate the importance of 
TAD boundaries in shaping the chromatin landscape 
and regulating gene expression and splicing in the pig 
genome.

Identification of conserved and differential tads across 
breeds and tissues
To gain a comprehensive understanding of TAD conser-
vation and variability in the pig genomes, we divided 24 
diverse samples into six comparison groups based on tis-
sue and breed. The details of each group were shown in 
Table 2 and the correlations of 24 sample (R2 ~ 0.48–0.99) 
were show in Fig S4. Using graphical representations of 
the chromosomes, we visually depicted the differential 
TADs for each group and conserved TAD regions of all 
groups, providing an overview of our analysis results 
(Fig. 3a). Our findings revealed that the majority of TADs 
were conserved (Fig.  3b, Table S4). Surprisingly, we 
observed greater differences of Adipose and Liver tissue 

Table 3  The mean values of Hi-C and TAD data grouped by breed and tissue
Number Hi-C

contacts
Depth TAD number Coverage Average length

Breed Bamaxiang 12 524,069,552 96.04 981 0.73 1,772,357
LargeWhite 9 411,919,633 68.33 1012 0.70 1,644,939
Rongchang 2 404,897,552 80.87 1028 0.73 1,738,474
MeiShan 1 462,142,804 105.15 1017 0.68 1,638,540

Tissue adipose 8 359,570,239 61.05 1026 0.71 1,641,087
muscle 5 470,123,849 84.57 985 0.65 1,744,264
liver 6 706,592,286 128.19 929 0.74 1,879,201
ear 4 398,717,640 51.73 1047 0.71 1,661,586
embryo 1 329,877,088 53.68 1065 0.71 1,471,360
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Fig. 2  Impact of TADs on regulation of transcriptional activity. (a) An overview of functional regulatory elements in Topologically Associated Domains 
(TADs) and their flanking regions. (b) Within TADs, TAD flanking regions, and the combined regions, enrichment analysis of Loss-of-Function variants 
(LoFs) (c), chromatin states (d), and eQTL and sQTL (e), the top 1% of predict effect score based on deep learning and ATAC-seq of 13 tissues. The dis-
tribution of each type of data in the combined TAD and flanking regions is shown in the right panel, with red, yellow, and green lines representing liver, 
adipose, and muscle tissues, respectively. Black lines indicate the three types of tissues
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between Bamaxiang pigs compared to the other groups 
(Fig.  3b, Table S5), contrary to our initial expectations. 
We attributed this variation to differences in sampling 
and sequencing depth among the collected samples, 
which may lead to bias. To address the issue of vary-
ing sequencing depths, we performed down-sampling 
to ensure comparability among the samples and reana-
lyzed the differential and conserved TADs. As depicted 
in Fig. 3c, the differences observed between breeds were 
found to be smaller compared to the differences observed 
between tissues.

Furthermore, we investigated the genes functions 
within the TADs identified as differential and conserved. 
We quantified the number of genes within the differ-
ential TADs for each comparison group and within the 
conserved TADs present across all groups (Fig. 3c, Table 
S6). Then we performed GO (Ashburner et al., 2000) and 
KEGG (Kanehisa and Goto, 2000) enrichment analyses 
on the 5,916 genes within the conserved TADs (Fig. 3c). 
These genes exhibited enrichment in pathways crucial for 
maintaining fundamental organismal functions (Fig. 3d-
e, Table S7-S8). However, no significant enrichment in 
GO terms and KEGG pathways was found for the genes 
within the differential TADs. This analysis confirmed the 
reliability of the TAD structures and provided evidence 
supporting the essential role of conserved TADs in main-
taining genome stability and organismal viability.

Identification of differentially expressed genes in 
differential tads
To gain further insights into the regulatory mecha-
nisms underlying gene expression in pigs resulting from 
alterations in 3D chromatin structure across differ-
ent breeds and tissues, we focused on identifying dif-
ferentially expressed genes within TADs that exhibited 

tissue-specific differences [48]. In the differential TADs 
of Bamaxiang between liver and adipose tissue, we dis-
covered a total of 10 differentially expressed genes 
(FDR < 0.01 and|log2FC| ≥ 1) (Fig. 4a, Table S9), includ-
ing nuclear receptor coactivator 2 (NCOA2), a member 
of the p160 co-activator family. Our analysis also revealed 
that NCOA2 was located within a differentially TAD 
in adipose and muscle tissues of LargeWhite pigs, and 
RNA-seq data analysis confirmed its specific expression 
in adipose tissue (Fig. 4b).

Furthermore, we identified differentially expressed 
genes within the differentially TADs between muscle and 
adipose tissues in LargeWhite pigs, and total 10 differ-
ential genes ranked by log2FC were presented in Fig. 4c 
(Table S10). We then focused on the differential TAD 
where BMPER is located (Fig. 4d) and observed a more 
compact folding of the genome at the TAD boundary 
where BMPER resides, along with tissue-specific TSS 
that led to upregulated gene expression. By examining 
TADs across tissues, we identified differentially expressed 
genes within these tissue-specific differential TADs, pro-
viding further support for the pivotal role of such TADs 
in regulating tissue-specific gene expression and related 
functions.

Discussion
Unlike many studies focusing on a single breed or tissue, 
our analysis encompasses multiple pig breeds and tissues, 
providing a comprehensive overview of TAD specificity 
across different biological contexts. We not only analyze 
TAD structures but also integrate chromatin interac-
tion data with gene expression profiles, offering insights 
into how TADs influence gene regulation across different 
conditions. We employ state-of-the-art computational 
techniques, to predict functional elements within TADs 
and the SNP roles in functional elements, which has not 
been extensively covered in previous studies. The com-
prehensive analysis presented in this study delves deep 
into the characterization of TADs in the pig genome, 
shedding light on their crucial roles in regulating gene 
expression across different tissues and breeds. The find-
ings herein provide valuable insights into the structural 
and functional aspects of TADs in the context of the pig 
genome, offering a foundation for future studies on the 
genetic regulation of complex traits in pigs.

Our investigation has highlighted the preservation of 
TADs through the heightened presence of CTCF and the 
differential analysis of TADs. Kentepozidou et al. (2020) 
identified evolving clusters of CTCF binding sites as a 
characteristic of TAD boundary architecture [49]. CTCF 
binding sites exhibit enrichment at TAD boundaries, and 
this conservation across diverse cell types suggests a piv-
otal role for CTCF in both the establishment and mainte-
nance of these boundaries [50]. The asymmetry of CTCF 

Table 4  Definitions and abbreviations of 15 chromatin States
Chromatin states Abbr. Group
Strongly active promoters/transcripts 
TssA comparison

TssA promoter

Flanking active TSS without ATAC TssAHet promoter
Transcribed at gene TxFlnk TSS-proximal
Weak transcribed at gene TxFlnkWk TSS-proximal
Transcribed region without ATAC TxFlnHet TSS-proximal
Strong active enhancer EnhA enhancers
Medium enhancer with ATAC EnhAMe enhancers
Weak active enhancer EnhAWk enhancers
Active enhancer no ATAC (hetero) EnhAHet enhancers
Poised enhancer EnhPois enhancers
ATAC island ATAC_Is NA
Bivalent/poised TSS TssBiv promoter
Repressed polycomb Repr repressed
Weak repressed polycomb ReprWk repressed
Quiescent Qui quiescent
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Fig. 3  Identification of conserved and differential TADs across breeds and tissues. (a) Chromosome plot of differential and conserved TADs across species 
and tissues. (b) The proportion of conserved TADs and differential TADs in each comparison group. (c) Number of genes in differential TADs and con-
served TADs for each comparison group. (d-e) Significantly enriched KEGG pathways and GO terms (P < 0.05) of genes in conservation TADs
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binding sites is noteworthy, where the convergent orien-
tation of a CTCF site pair contributes to the formation of 
chromatin loops in vivo [50]. CTCF, highly concentrated 
at TAD boundaries, forms physical loops with interven-
ing DNA, establishing an insulated environment crucial 
for the proper expression of lineage-specifying genes 

[51]. Additionally, CTCF binding actively contributes 
to the configuration of a higher-order genome structure 
by delineating the boundaries of extensive TADs [49]. 
Disruptions in TAD boundaries have been observed to 
significantly impact gene expression, underscoring the 
necessity of exploring genome-level alterations in TADs 

Fig. 4  Identification of differentially expressed genes in differential TADs. (a) Genes identified as differentially expressed in the liver and adipose tissue 
comparison group. (b) The plot regional chromosome position. The differential TAD of Bamaxiang between adipose and liver tissues where the gene 
NOCA2 is located (second-third panel), and chromatin states (fourth panel) and RNA-seq (last panel) in this region. the dashed lines indicate the differen-
tial positions and the RNA-seq signals in the two tissues. The bars represent the chromatin states; red represents promoters, green represents TSS-proximal 
transcribed regions, yellow represents enhancers, blue represents ATAC islands, and grey represents repressed regions. (c) Genes identified as differentially 
expressed between muscle and adipose tissue. (d) The plot regional chromosome position. The differential TAD of LargeWhite between adipose and 
muscle tissues where the gene BMPER is located (second-third panel), and chromatin states (fourth panel) and RNA-seq (last panel) in this region. The 
dashed lines indicate the differential positions and the RNA-seq signals in the two tissues. The bars represent the chromatin states; red represents promot-
ers, green represents TSS-proximal transcribed regions, yellow represents enhancers, blue represent ATAC islands, and grey represents repressed regions. 
The small red rectangles mean a 50 kb resolution of TADs
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and TAD boundaries to comprehend the intricate inter-
play between 3D genome structure and phenotype [13]. 
Notably, our findings indicate an enrichment of func-
tional DNA variants at TAD boundaries, including eVari-
ants in e/sQTLs, LoFs, and the top 1% high-impact SNPs. 
We posit that this enrichment may be attributed to the 
ability of functional DNA variants to modulate chro-
matin, such as enhancer and promoter regions, as well 
as repressed segments, all of which exhibit heightened 
presence at TAD boundaries. The enrichment of the top 
1% high-impact SNPs, predicted to induce substantial 
changes in open chromatin states, provides support for 
our hypothesis. Nanni et al. (2020) similarly noted the 
enrichment of epigenetic marks associated with gene 
expression at TAD boundaries [50]. Additionally, Lazar 
et al. (2018) found significant enrichment of genetic 
and epigenetic signatures at TAD boundaries, including 
higher CpG density compared to the rest of the genome, 
increased presence of CTCF binding, H3K4me3, and the 
existence of SINE elements [52]. These collective insights 
highlight the fundamental importance of TAD boundar-
ies in orchestrating gene expression dynamics within the 
genome.

The identification of conserved and differential TADs 
across breeds and tissues provides a unique perspective 
on genome organization in pigs. The majority of TADs 
were found to be conserved, with variations primarily 
attributed to tissue differences rather than breed. This 
result emphasizes the need to account for tissue-spe-
cific effects in future studies. The functional enrichment 
analysis of genes within conserved TADs highlights their 
role in fundamental organismal functions, consistent 
with previous studies [48], reinforcing the significance 
of TAD conservation in maintaining genome stability 
and viability. Finally, the identification of differentially 
expressed genes within tissue or breed-specific differen-
tial TADs provides a link between 3D chromatin struc-
ture and gene expression regulation. Among the notable 
findings, we identified NCOA2, a member of the steroid 
receptor coactivator family, as a differential gene resid-
ing within the TAD unique to Bamaxiang adipose when 
compared Bamaxiang liver. Previous studies have shown 
that NCOA2 is highly expressed in adipose tissue and 
contains tissue-specific CpG islands with chromatin-
accessible enhancers [53, 54]. Functionally, as a coactiva-
tor of PPARγ, NCOA2 plays a pivotal role in regulating 
lipid metabolism and energy homeostasis [55]. Further-
more, it emerges as a key player in modulating intramus-
cular fatty acid composition in pigs [56, 57]. In a different 
context, we observed BMPER as a differential gene situ-
ated within TAD unique to muscle when compared to 
adipose in Large White pigs. BMPER, or BMP endo-
thelial cell precursor-derived regulator, is known for its 
role in dampening the activities of bone morphogenetic 

proteins (BMPs), growth factors pivotal in the develop-
ment of bone and cartilage [58]. Intriguingly, variants of 
this gene in cattle have been associated with larger body 
sizes and extended rump lengths [59]. Moreover, BMPER 
has been demonstrated to enhance intramuscular fat 
content in pigs [60], with quantitative analysis unveil-
ing a positive correlation between BMPER expression 
and intramuscular fat levels [61]. BMPER also serves as 
a marker for adipose progenitors and adipocytes, exert-
ing a positive influence on adipogenesis [62]. These find-
ings collectively illuminate the intricate interplay of genes 
within TADs across various tissues, offering valuable 
insights into their roles in shaping physiological traits of 
agricultural significance. The discovery of tissue-specific 
differential genes underscores the importance of TADs in 
shaping tissue-specific gene expression patterns.

However, we acknowledge some limitations in our 
study. Firstly, the exploration of the 3D genome in pigs 
is still in its early stages, and the availability of tissues 
and breeds for analysis is limited, let alone single-cell 3D 
genomic data. Secondly, the lack of phenotype data (such 
as GWAS data) hinders our ability to directly investi-
gate the impact of TAD alterations on phenotypic traits. 
Lastly, the absence of genomic structural variation data 
prevents us from employing deep learning methods to 
explore genomic variations underlying TAD changes. 
These limitations should be considered when interpret-
ing our results and highlight areas for future research and 
data integration to further elucidate the functional impli-
cations of TAD dynamics in pigs.

In conclusion, this study provides a comprehensive 
exploration of TADs in the pig genome, offering insights 
into their conservation, impact on gene regulation, and 
relevance to tissue-specific differences. The findings not 
only advance our understanding of genome organization 
in pigs but also lay the foundation for future investiga-
tions into the genetic basis of complex traits and diseases 
in pigs.

Conclusions
In summary, our comprehensive analysis of TADs in the 
pig genome has provided valuable insights into their role 
in shaping the chromatin landscape and regulating gene 
expression and splicing. We found that TAD boundaries 
are enriched with functional regulatory elements, such as 
CTCF signals, LoFs, top-effect SNPs, chromatin states, 
eQTL, and sQTL, underscoring their critical impor-
tance in gene regulation. Additionally, our study revealed 
both conserved and differential TADs across various pig 
breeds and tissues, with a focus on tissue-specific gene 
expression changes within these TADs. These findings 
highlight the dynamic nature of TADs in pigs and their 
significance in governing the transcriptional activity and 
functional diversity of the genome. Overall, our research 
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contributes to a deeper understanding of 3D chromatin 
organization and its impact on gene regulation in the pig 
genome, with implications for both basic biology and 
livestock breeding.
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