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Abstract 

Background DNBSEQ platforms have been widely used for variation detection, including single-nucleotide vari-
ants (SNVs) and short insertions and deletions (INDELs), which is comparable to Illumina. However, the performance 
and even characteristics of structural variations (SVs) detection using DNBSEQ platforms are still unclear.

Results In this study, we assessed the detection of SVs using 40 tools on eight DNBSEQ whole-genome sequenc-
ing (WGS) datasets and two Illumina WGS datasets of NA12878. Our findings confirmed that the performance of SVs 
detection using the same tool on DNBSEQ and Illumina datasets was highly consistent, with correlations greater 
than 0.80 on metrics of number, size, precision and sensitivity, respectively. Furthermore, we constructed a “DNBSEQ” 
SV set (4,785 SVs) from the DNBSEQ datasets and an “Illumina” SV set (6,797 SVs) from the Illumina datasets. We found 
that these two SV sets were highly consistent of SV sites and genomic characteristics, including repetitive regions, GC 
distribution, difficult-to-sequence regions, and gene features, indicating the robustness of our comparative analysis 
and highlights the value of both platforms in understanding the genomic context of SVs.

Conclusions Our study systematically analyzed and characterized germline SVs detected on WGS datasets 
sequenced from DNBSEQ platforms, providing a benchmark resource for further studies of SVs using DNBSEQ 
platforms.

Keywords Structural variation (SV), Whole-genome sequencing (WGS), DNBSEQ

Introduction
Structural variation (SV) is a general term for different 
types of genomic mutations with size large than 50  bp, 
including deletion (DEL), insertion (INS), duplication 
(DUP), inversion (INV) and translocation (TRA) [1]. 
DELs and DUPs are also classified as copy-number vari-
ations (CNVs) [1]. SVs differ from small variants, such as 

single-nucleotide variants (SNVs) and short insertions 
and deletions (INDELs), in size and formation mecha-
nisms [2]. SVs significantly contribute to the diversity 
found within human populations and have a notable 
impact on human health and disease [3–7]. In recent 
years, the importance and mechanism of SVs in human 
populations and diseases has been further explored and 
confirmed through large-cohort studies [8, 9]. The 1000 
Genomes Project (1KGP) analyzed SVs of 2,504 indi-
viduals and estimated that SVs were ~ 50-fold enriched 
for expression quantitative trait loci (eQTLs) compared 
with SNVs [6]. The Human Genome Structural Variation 
Consortium (HGSVC) identified 107,590 SVs with 278 
SV hotspots in human genome and explored the contri-
bution of SVs in population adaptive selection of humans 
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[10]. Collins et al. constructed 163 genome-wide dosage 
sensitive segments of rare SVs across 54 disorders for 
human disease searches [11].

Currently, several large-cohort studies investigating 
human disease or human population described above are 
based on short-read whole-genome sequencing (WGS) 
technology [6, 8, 9, 12]. This is attributed to the devel-
opment and utilization of massively parallel sequencing 
(MPS) platforms that generate short-read data, along 
with the advancements in analytical tools for detecting 
SVs. Dozens of tools that can use short-read (50–150 bp) 
WGS data sequenced on MPS platforms to detect SVs on 
a genome-wide scale [13]. Each SV tool is based on one 
of the following five algorithms: (1) read depth (RD), (2) 
read pair (RP), (3) split read (SR), (4) de novo assembly 
(AS) and (5) combination of approaches (CA). Therefore, 
the types of SVs detected by each tool may different. For 
instance, tools based on RD algorithm can only detected 
DELs and DUPs, such as CNVnator [14]. Some tools are 
specifically designed to detect only specific types of SVs, 
such as BASIL-ANISE [15] for INSs and Sprites [16] for 
DELs. Meanwhile, the sensitivities of SVs were reported 
to fluctuate in the range of 10%−70% depending on the 
size and type of SVs, while the false-positive rates were 
up to 89% [17]. Despite these limitations, SV detection 
on short-read data sequenced on MPS platforms is still 
a good approach for SV research due to variables such as 
cost, time, resolution and project scope [6, 9]. In short, 
the SV tools described above were mainly designed to 
detect SVs based on datasets from Illumina platforms, 
and the performance of SVs detected by these SV tools 
has been reported in many articles [13, 18, 19].

As is known to all, Illumina platforms, such as HiSeq 
2500 and NovaSeq6000, are the main MPS platforms 
widely used in research of SVs [12]. For example, lever-
aging ~ 30X WGS data generated by the NovaSeq6000 
system, researchers have broadened the spectrum of 
genomic variants, including the SV catalog, for the 1KGP 
[6, 9]. Since 2015, the DNBSEQ sequencing platforms, 
based on the technologies of DNA nanoballs (DNBs) 
and combinatorial Probe-Anchor Synthesis (cPAS), has 
been widely utilized in genomic researches for its high 
sequencing accuracy, low duplication rates, and reduced 
index hopping [20]. To date, the DNBSEQ platforms have 
been used to carry out many important genomic studies 
about plant, animal, human health and disease [21–27]. 
For example, recently, Jin et  al. utilized the DNBSEQ 
platform to enhance our understanding of diseases and 
phenotypic variations during pregnancy in Asian popu-
lations [28]. Since the DNBSEQ and Illumina platforms 
are both widely used MPS platforms, researchers are 
concerned about the consistency and interchangeabil-
ity of genomic variant detection performance between 

these two platforms. Of which, the performance of SNVs, 
INDELs and CNVs based on DNBSEQ platforms has 
been studied and verified to be consistent with those 
based on Illumina platforms [29–31]. Specially, in our 
prior research, we employed five different algorithms to 
evaluate the CNV detection capabilities of data derived 
from the DNBSEQ and Illumina platforms [29]. Our find-
ings indicated that the CNVs identified by both platforms 
were similar in terms of size, number, sensitivity and pre-
cision. Notably, the DNBSEQ platform demonstrated a 
superior performance in detecting smaller CNVs. How-
ever, the comprehensive characteristics of SVs, espe-
cially INSs and INVs, identified by DNBSEQ platform 
remained elusive. To address this, our study embarked on 
an extensive SV detection analysis, applying 40 different 
software tools to WGS data generated by the DNBSEQ 
and Illumina platforms for the first time. We meticu-
lously examined their sequencing and genomic attributes 
to gain a deeper understanding of these variants.

Results
Similar SV detection performance between DNBSEQ 
and Illumina platforms
In our study, we introduced ten WGS datasets of the ger-
mline sample NA12878 from public databases [29] for 
SV detection, analyzing each dataset with 40 different 
tools that encompass all five algorithm types as described 
(Fig.  1, Additional file  2: Table  S1, see Supplementary 
“Methods” for details). Eight datasets were sequenced 
on two DNBSEQ platforms (BGISEQ-500 and DNBSEQ-
G400) with an average depth of 31.43X, and two datasets 
were sequenced on two Illumina platforms (HiSeq2500 
and NovaSeq6000) with an average depth of 30.61X 
(Additional file  2: Table  S2). Finally, based on DNBSEQ 
platforms, we detected an average of 2,838 DELs using 
32 tools, 1,490 DUPs using 21 tools, 1,117 INSs using 
22 tools, 422 INVs using 16 tools, and 2,793 TRAs using 
eight tools across all eight datasets. These results were 
very similar to those obtained on the Illumina platforms, 
including an average of 2,676 DELs, 1,664 DUPs, 737 
INSs, 239 INVs, and 2,878 TRAs (Fig. 2, Additional file 1: 
Fig. S1 and Additional file 2: Table S3).

We proceeded to assess the precision and sensitivity 
of SVs detected by various tools on the DNBSEQ and 
Illumina platforms. To facilitate a direct comparison 
with the findings reported by Shunichi et  al. in 2019, 
we adopted their methodologies and benchmark of the 
NA12878 sample [13]. In this context, we calculated 
the precision and sensitivity for DELs, DUPs, INSs, and 
INVs. TRAs were excluded from the evaluation analysis 
due to the lack of TRA benchmark of NA12878 and the 
fact that TRAs are always false positive [32]. The average 
precision and sensitivity of DELs detected on Illumina 
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datasets were 53.06% and 9.81%, respectively, while 
19.86% and 5.52% of DUPs, 44.01% and 2.80% of INSs 
and 26.79% and 11.06% of INVs were detected, which is 
consistent with previous report [13] (Additional file  1: 
Fig. S2 and Additional file  2: Table  S4). Analogously, 

the average precision and sensitivity of DELs detected 
on DNBSEQ datasets were 62.19% and 15.67%, respec-
tively, 23.60% and 6.95% of DUPs, 43.98% and 3.17% of 
INSs and 25.22% and 11.58% of INVs (Additional file 1: 
Fig. S3 and Additional file 2: Table S4). In line with our 

Fig. 1 The Overall Framework of SV Detection and Analysis in This Study. This study utilized ten datasets from both the DNBSEQ and Illumina 
platforms, along with 40 tools based on five distinct algorithms. SVs of five types were identified across the ten datasets using these 40 tools, 
respectively. Comprehensive analyses, including basic statistics, evaluation, integration, further validation, and genomic characteristic processing, 
were conducted based on the SV results obtained. RD—read depth; RP—read pair; SR—split read; AS—de novo assembly; CA—combination 
of approaches; DEL—deletion; DUP—duplication; INS—insertion; INV—inversion; TRA—translocation
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Fig. 2 Statistics of SVs Detected on Ten Datasets With 40 Tools. The circle graph visually represents the number of SVs detected using both DNBSEQ 
and Illumina datasets across various analytical tools. The outermost circle highlights the tools employed for SV detection, each distinguished 
by unique colors corresponding to their respective algorithms. The (a) and (b) circles depict the number of SVs identified in the DNBSEQ 
and Illumina datasets, respectively. The range of SV counts (y-axis) is consistent across the ten concentric circles, with the scale clearly labeled 
on the outer circle for reference. SV types are represented by distinct colors: DELs in red, DUPs in blue, INSs in purple, INVs in orange, and TRAs 
in green. RD—read depth; RP—read pair; SR—split read; AS—de novo assembly; CA—combination of approaches; DEL—deletion; DUP—
duplication; INS—insertion; INV—inversion; TRA—translocation
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prior results [29], the detection of DELs and DUPs on the 
DNBSEQ platform mirrored the performance observed 
on the Illumina platform. Meanwhile, the detection of 
INSs and INVs by the DNBSEQ platform showed a com-
parable level of performance to those identified using the 
Illumina platform.

To seek the consistency of genome-wide SV detection 
between DNBSEQ and Illumina platforms in deep, we 
compared the number, size, sensitivity and precision of 
SVs detected by the same tool on these two platforms. 
We found that both the number and size of various SVs 
were highly consistent between the DNBSEQ and Illu-
mina platforms (Fig.  3a). Specifically, the consistency of 
the number and size of DELs were observed with Spear-
man’s rank correlation coefficients of 0.88 and 0.97 (32 
tools), respectively, 0.88 and 0.85 (21 tools) of DUPs, 0.95 
and 0.92 (22 tools) of INSs, and 0.96 and 0.88 (16 tools) 
of INVs (Fig. 3a). Furthermore, the sensitivity and preci-
sion of SV detection were also highly consistent between 
the two platforms, with rho values of 0.83 and 0.91 for 
DELs (Spearman’s rank correlation coefficient), 0.91 and 
0.80 for DUPs, 0.96 and 0.97 for INSs, and 0.92 and 0.86 
for INVs (Fig. 3b). However, the sensitivity and precision 
of DELs identified on the DNBSEQ platform (average 
15.67% and 62.19%) were found to be marginally higher 
than those detected on the Illumina platform (9.81% and 
53.06%, Fig.  3b, Additional file  1: Fig. S2 and Fig. S3). 
Overall, the DNBSEQ and Illumina platforms, both MPS 
platforms, showed similar SV detection performance, 
and the SV detection tools developed based on the Illu-
mina platform dataset were also applicable to DNBSEQ 
platform dataset.

High validation rates of the integrated SV set from DNBSEQ 
and Illumina platforms
In our study, we built an SV set of DNBSEQ platforms 
(referred as “DNBSEQ” set) by integrating all SV results 
of eight DNBSEQ datasets detected by 40 different tools 
(Additional file 1: Fig. S4, see Supplementary “Methods” 
for details). “DNBSEQ” set is consisted of 4,785 SVs, 
including 3,499 DELs, 630 DUPs, 500 INSs and 156 INVs 
(Additional file 1: Fig. S5 and Additional file 2: Table S5). 
We also integrated SV results of two Illumina data-
sets and obtained 6,797 SVs, referred as “Illumina” set, 
including 4,424 DELs, 1,042 DUPs, 1,071 INSs and 260 
INVs (Additional file 2: Table S6).

Presently, three research groups have compiled SVs 
collections for the NA12878 sample using distinct meth-
odologies. Of which, Marta et  al. built a collection of 
8,236 SVs from the 1000 Genomes Project (referred 
as “1KGP” set), which was constructed using high-
depth WGS data from the NovaSeq6000 [9]. Addition-
ally, Jouni et al. created a collection of 11,089 SVs using 

the pan-genome approach tailored for short-read data 
(referred as “Giraffe” set) [33]. Peter et  al. employed 
PacBio RSII long-read data to construct a set of 4,561 
SVs for the Human Genome Structural Variation Con-
sortium (referred as “HGSVC” set) [10]. Here, we com-
pared the above-mentioned “DNBSEQ” and “Illumina” 
sets with “1KGP”, “HGSVC” and “Giraffe” sets. We found 
that the “DNBSEQ”, “Illumina”, and “1KGP” sets had 
similar specific SV proportions of 33.38% (1,597/4,785), 
51.63% (3,509/6,797) and 30.96% (2,550/8,236), respec-
tively, likely due to their use of short-read MPS data 
(Additional file  1: Fig. S5 and Fig. S6). The “Giraffe” set 
had 66.37% (7,360/11,089) specific SVs, which may be 
attributed to improvements in pan-genome alignment 
and analysis methods applied to short-read MPS data, 
especially for INS detection [33]. The “HGSVC” set had 
77.33% (3,527/4,561) specific SVs, likely because it uses 
long-read sequencing data, highlighting the advantages 
of long-read data in SV detection [34].

To enhance the credibility of the “DNBSEQ” and 
“Illumina” SV sets generated in our research, we 
employed real-time PCR to validate the SVs in both 
SV sets (see Supplementary “Methods” for details). 
Due to the complexity and variability of the break-
point regions for DUPs and INVs made it challenging 
to design reliable primers for these SV types [1, 6], 
our validation efforts focused exclusively on DELs and 
INSs in this study. Additionally, we selected only those 
SVs detectable by Manta in “DNBSEQ” or “Illumina” 
SV sets to accurately identify breakpoint sequences. 
From these “Manta-supported” SVs, we randomly 
selected 17 SVs for real-time PCR validation, includ-
ing six “DNBSEQ”-specific SVs (three DELs and three 
INSs), five “Illumina” -specific SVs (three DELs and 
two INSs), and six shared SVs (three DELs and three 
INSs, Additional file  2: Table  S7, see Supplementary 
“Methods” for detail). We designed and synthesized 25 
primer pairs targeting the breakpoints of the DEL and 
INS and conducted real-time PCR assay (Additional 
file 1: Fig. S7 and Fig. S8, see Supplementary “Methods” 
for details). In summary, all 12 SVs from the “DNB-
SEQ” set were validated via real-time PCR, whereas 
nine out of 11 SVs within the “Illumina” set were vali-
dated (Table 1). In detail, six DELs and six INSs from 
“DNBSEQ” set were successfully validated, with the 
exception of one INS breakpoint (chr10:134,865,273). 
For this INS, only the left breakpoint was validated 
(Additional file 1: Fig. S8m), while the right breakpoint 
could not be confirmed (Additional file  1: Fig. S8n). 
In contrast, within the “Illumina” set, four DELs and 
five INSs were confirmed, while two DELs failed to be 
validated by real-time PCR. Moreover, all six shared 



Page 6 of 14Rao et al. BMC Genomics          (2025) 26:299 

SVs (three DELs and three INSs) showed a validation 
rate of 100%. Given the high validation rates of both 
the “DNBSEQ” and “Illumina” SV sets, we further ana-
lyzed their genomic characterizes without additional 
modifications.

Genomic characterizing the SVs of the “DNBSEQ” 
and “Illumina” sets
Analyzing the genomic characteristics of SVs, such as 
repetitive DNA composition and GC content, provides 
valuable insights into the origins, mechanisms, and 

Fig. 3 Comparative Analysis of SVs Detected by DNBSEQ and Illumina Platforms. The dot plot presents both the number and size (a), as well 
as the sensitivity and precision (b), of SVs identified on the DNBSEQ platforms (x-axis) versus those detected on the Illumina platforms (y-axis) 
using various analytical tools. A total of 40 tools are differentiated by color based on their underlying algorithms. The types of SVs are organized 
into columns, while the attributes are arranged into rows. The symbol rho denotes the correlation coefficient as determined by Spearman’s rank 
correlation, and n indicates the number of tools capable of detecting a specific type of SV
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functional impacts of SVs, and even are crucial for dis-
ease research, evolutionary biology, and understanding 
genomic functions [35]. After evaluating the consist-
ency of SVs from the DNBSEQ and Illumina datasets 
using various tools, we further analyzed and compared 
the genomic characteristics of SVs from both sets to 
explore their overall consistency. Firstly, we analyzed 
the repetitive DNA components and sequences of SVs 
in our “DNBSEQ” and “Illumina” sets. We observed that 
the size distribution of SVs was similar between these 
two sets, with both showing mobile element signatures 
of Alu (~ 300 bp) and LINE1 (L1, ~ 6 kb, Fig. 4a), which 
is consistent with previous report [9, 34]. These sig-
natures might be driven by the fact that Alu and L1, as 
highly active mobile elements in the human genome, 
play a crucial role in generating mobile element inser-
tions (MEIs) and driving non-allelic homologous recom-
bination events, which contribute significantly to SVs 
[1, 36]. We also annotated the SVs to repeat regions and 
found that the majority were located in repeat regions 
(Fig.  4b). Specifically, 24.20% of SVs in the “DNBSEQ” 
set and 38.88% in the “Illumina” set were associated with 
tandem repeats (detected by Tandem Repeats Finder, 
TRF). This was followed by short tandem repeats (STR) 
at 27.61% and 24.51% in “DNBSEQ” and “Illumina”, 
respectively, Alu elements at 26.04% and 16.57%, and L1 
elements at 14.69% and 12.89%. Only a small percent-
age of SVs were not located in repeat regions, including 

0.40% in “DNBSEQ” and 0.38% in “Illumina”. These find-
ings suggest that SVs are clustered in repeat regions on 
the human genome [34], and that both “DNBSEQ” and 
“Illumina” platforms are capable of detecting SVs in these 
regions.

We also analyzed the GC composition of SVs in the 
“DNBSEQ” and “Illumina” sets to better understand their 
sequence components. We found that, regardless of the 
SV set, the GC distribution of DUPs and INVs were close 
to the reference distribution, with enrichment in the 
40–50% GC content range, while DELs and INSs exhib-
ited a different pattern (Fig. 4c). DELs in both “DNBSEQ” 
and “Illumina” sets exhibited a bimodal GC distribu-
tion with peaks at 40% and 55%. Specifically, 34.55% 
(1,209/3,499) of DELs in the “DNBSEQ” set and 28.28% 
(1,251/6,797) of DELs in the “Illumina” set had a GC con-
tent in the 50–60% range, corresponding to the 55% peak 
(Fig. 4d). Among these DELs with 50–60% GC content, 
73.45% (888/1,209) in the “DNBSEQ” set and 61.47% 
(760/1,251) in the “Illumina” set were associated with Alu 
sequences (Fig. 4d). In contrast to DELs, INSs in both the 
DNBSEQ and Illumina sets exhibited GC content distri-
butions with peaks at 0%, 40%, and 100%. Among INSs 
with 0% and 100% GC content, 63.64% in the “DNBSEQ” 
set and 50.63% in the “Illumina” set were STR sequences, 
suggesting that this enrichment in the extreme GC con-
tent of INSs was primarily driven by STRs (Fig.  4d). 
These findings suggest that the GC content of SVs var-
ies depending on the type of SV and the repeat elements 
involved. Despite these differences, the GC content pat-
terns of SVs were consistent between the “DNBSEQ” and 
“Illumina” sets.

Previous study had reported that SVs exhibit non-ran-
dom distribution patterns in the genome, with enrich-
ment in repeat regions and a notable bias towards 
chromosomal ends [34]. We analyzed the chromosomal 
location biases of the “DNBSEQ” and “Illumina” SVs. 
We observed a 1.26-fold (p = 4.726e-06, z-score = 4.58, 
permutation test) enrichment of “DNBSEQ” SVs and 
1.58-fold (p < 2.2e-16, z-score = 8.31, permutation test) 
enrichment of “Illumina” SVs within 5 Mbp of telomere, 
respectively, which is consistent with the findings of ear-
lier study [34]. However, we also found that 15.01% of 
“DNBSEQ” SVs (718/4,785) and 15.99% of “Illumina” SVs 
(1,087/6,797) were located within 5 Mbp of centromere, 
presenting a 2.03-fold (p < 2.2e-16, z-score = 15.37, per-
mutation test) and 2.34-fold (p < 2.2e-16, z-score = 16.56, 
permutation test) enrichment, respectively (Additional 
file 1: Fig. S9). In conclusion, our analysis demonstrated a 
consistent chromosomal location bias in both the ‘DNB-
SEQ’ and ‘Illumina’ SV sets, which was observed not 
only towards chromosomal ends but also towards cen-
tromeres (Fig. 5a). Since SVs were known to be clustered 

Table 1 Validation of DNBSEQ and Illumina SV sets

a "Common" means this SV is found in both DNBSEQ and Illumina sets
b "Y/Y" indicates validation of two breakpoints per insertion

Type Set Chr Start End Validated or 
not

Deletion DNBSEQ chr3 10,397,475 10,397,832 Y

chr10 91,547,385 91,547,736 Y

chr17 35,143,423 35,143,742 Y

Illumina chr4 190,656,419 190,657,443 Y

chr8 58,123,135 58,127,520 N

chr19 30,388,815 30,393,167 N

Commona chr1 145,092,946 145,097,081 Y

chr3 152,311,723 152,313,155 Y

chr4 190,662,931 190,663,726 Y

Insertionb DNBSEQ chr9 114,736,428 114,736,428 Y / Y

chr10 134,865,273 134,865,273 Y / N

chr13 108,539,740 108,539,740 Y / Y

Illumina chr9 77,314,289 77,314,289 Y / Y

chr11 22,262,800 22,262,800 Y / Y

Common chr5 173,192,947 173,192,947 Y / Y

chr12 80,383,078 80,383,078 Y / Y

chr13 90,943,356 90,943,356 Y / Y
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[34], we further identified hotspots in the “DNBSEQ” and 
“Illumina” sets and analyzed the chromosomal distribu-
tion of these hotspots. We identified 26 SV hotspots in 

the “DNBSEQ” set and 51 SV hotspots in the “Illumina” 
set (Additional file  2: Table  S8 and Table  S9). Of these, 
30.77% (8/26) hotspots in the “DNBSEQ” set and 31.37% 

Fig. 4 Characteristics of “DNBSEQ” and “Illumina” SV Sets. a The size distribution density for DNBSEQ and Illumina SVs reveals a peak at 300 bp 
corresponding to Alu elements and a 6 kb peak associated with L1 elements. b The bar chart illustrates the percentage of DNBSEQ and Illumina 
SVs (y-axis) that are annotated within specific repetitive regions (x-axis). c The line density plot depicts the distribution of GC content across each 
type of SV (column), with the y-axis representing the proportion of SVs at a given GC content level (x-axis). d The bar chart details the repetitive 
components within SVs of varying GC content for each SV category (column), showing the percentage of repetitive regions (y-axis) to which SVs 
of particular GC contents (x-axis) are annotated. The GC content is categorized into bins at intervals of 5% GC. The DNBSEQ and Illumina SV sets 
are distinguished by color: DNBSEQ set, red; Illumina set, green. Different colors denote the repetitive regions: STR, short tandem repeats, blue; TRF, 
tandem repeats detected by Tandem Repeats Finder, red; L1, LINE1, purple; Alu, green; HERV, human endogenous retroviruses, yellow; SVA, orange; 
Complex, low complexity, pink; LTR, long tandem repeats, brown; Other, gray; NoRepeat, black
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(16/51) hotspots in the “Illumina” set were previously 
reported in research using long-read datasets [10]. As 
expected, these hotspots in both the “DNBSEQ” and 
“Illumina” sets were mostly located near centromeres or 
telomeres.

Given that it is challenging to clone and sequence 
regions with GC-bias [34], we sought to assess the per-
formance of “DNBSEQ” and “Illumina” SVs in these dif-
ficult genomic regions. To achieve this, we classified the 
“DNBSEQ” and “Illumina” SVs according to the difficult- 
and easy-to-sequence regions defined by the Genome 
in a Bottle (GIAB) Consortium [37]. We found that 
59.16% of “DNBSEQ” SVs (2,831/4,785) and 65.18% of 
“Illumina” SVs (4,430/6,797) were located in difficult-to-
sequence regions, even though these regions only make 
up 18.00% of the human genome (Fig.  5b, Additional 
file 2: Table S10). In detail, 65.36% of DELs (2,287/3,499) 
and 72.70% of DUPs (458/639) in the “DNBSEQ” set were 
enriched in difficult-to-sequence regions, whereas only 
9.40% of INSs (47/500) and 25.00% of INVs (39/156) were 
found in these regions (Fig. 5b). Similarly, in the Illumina 
set, 73.73% of DELs (3,262/4,424) and 85.12% of DUPs 
(887/1,042) were located in difficult-to-sequence regions, 
compared to 18.02% of INSs (193/1,071) and 33.85% of 
INVs (88/260). These findings suggest that SVs are more 
likely to occur in specific genomic regions, including 

repeats and difficult-to-sequence regions, and exhibit 
GC-biases in their chromosomal locations.

Additionally, we annotated SVs to functional region 
of human genes to gain a better understanding of their 
impact on functional regions. We found that 62.28% of 
“DNBSEQ” SVs (2,980/4,785) and 62.70% of “Illumina” 
SVs (4,262/6,797) were located in intergenic regions, fol-
lowed by 35.42% of “DNBSEQ” SVs (1,695/4,785) and 
34.38% of “Illumina” SVs (2,337/6,797) in intronic regions 
(Fig.  5c). Only 2.03% of “DNBSEQ” SVs and 2.91% of 
“Illumina” SVs intersected with functional elements such 
as exons (26 “DNBSEQ” SVs and 40 “Illumina” SVs), pro-
moters (25 and 46), and UTRs (8 and 22). Interestingly, 
81.44% of “DNBSEQ” SVs (3,897/4,785) and 81.48% of 
“Illumina” SVs (5,538/6,797) were located within 0.25 Mb 
of transcription start site (TSS, Additional file  1: Fig. 
S10). Our analysis revealed that SVs in both the “DNB-
SEQ” and “Illumina” sets are predominantly located in 
intergenic regions and depleted in functional regions of 
genes, such as exons and introns. In conclusion, we fur-
ther validated the consistency of SV sets from both DNB-
SEQ and Illumina platforms across multiple genomic 
characteristics, including repetitive regions, GC distri-
bution, difficult-to-sequence regions, and gene features. 
This consistency underscores the robustness of our 

Fig. 5 Distribution of SVs. a The bar chart displays the hotspots of DNBSEQ and Illumina SV sets on human genome. The gray and white bands 
on ideogram indicate different genomic regions, and the red bands represent centromeres. b The bar chart indicates the percentage of DNBSEQ 
and Illumina SVs located within genomic regions that are typically difficult to sequence or analyze. The proportions are shown on the y-axis, 
while the x-axis categorizes the different types of SVs. c The bar chart illustrates the distribution of DNBSEQ and Illumina SVs across various gene 
regions, with the y-axis indicating the proportion of SVs mapped to specific gene regions on the x-axis. The DNBSEQ and Illumina SV sets are 
differentiated by color: DNBSEQ, DNBSEQ SV set, red; Illumina, Illumina SV set, blue
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comparative analysis and highlights the value of both 
platforms in understanding the genomic context of SVs.

Resource consumption
We recorded the time and memory of SV detection 
on ~ 30X WGS datasets using various tools (Additional 
file 2: Table S11). We found that Sprites (mean = 229.77 h 
and mean = 439.68  h on DNBSEQ and Illumina data-
sets, respectively, Additional file 1: Fig. S11), Pindel [38] 
(216.68 h and 163.32 h), MindTheGap [39] (166.92 h and 
190.65 h), and laSV [40] (114.69 h and 121.17 h) had large 
time consumption, while laSV (mean = 150.91  GB and 
143.47  GB on DNBSEQ and Illumina datasets, respec-
tively), FermiKit [41] (73.52  GB and 54.42  GB), and 
MindTheGap (33.61 GB and 39.93  GB) had large mem-
ory consumption. This differences in time and memory 
consumption were related to the input format and algo-
rithms of tools. However, we found high consistency of 
time consumption and memory consumption between 
the DNBSEQ and Illumina datasets using the same tools 
under similar ~ 30X data size (rho = 0.97 for time con-
sumption and 0.95 for memory consumption, Spearman’s 
rank correlation coefficient). These findings suggest 
that the choice of SV detection tool may depend on the 
specific needs of the study, such as the desired balance 
between time and memory consumption.

Discussion
Although SV detection on the Illumina platforms has 
increasingly demonstrated the importance of SVs, there 
is insufficient information regarding the performance of 
SV detection on another widely used MPS platform: the 
DNBSEQ platforms. In this study, we detected and char-
acterized SVs, including DELs, DUPs, INSs and INVs, 
using DNBSEQ and Illumina datasets with 40 tools for 
the first time. Overall, our systematic analysis demon-
strated that the DNBSEQ platform exhibits performance 
in SV detection that is consistent with the Illumina plat-
form across various aspects, including the number, size, 
precision, and sensitivity of detected SVs, as well as their 
composition in repeats, genomic element distribution, 
and genomic localization.

Various tools have been designed to detect SVs using 
short-read signatures based on dataset sequenced on Illu-
mina platforms. These tools have shown varying levels of 
precision and sensitivity for different SV types. This study 
demonstrated that SV detection tools developed for Illu-
mina dataset are also compatible with the DNBSEQ data-
set, as the results and performance of SV detection were 
consistent between the DNBSEQ and Illumina datasets 
using the same tool. However, we also observed notable 
performance differences between different tools, regard-
less of whether they were applied to DNBSEQ or Illumina 

datasets (Additional file 2: Table S4 and Table S12). For 
example, Manta, GRIDSS, SoftSV, and MetaSV demon-
strated higher precision and sensitivity in detecting DELs 
and DUPs. Specifically, Manta excels due to its efficient 
use of RP and SR signals, enabling robust identification 
of breakpoints [42]. GRIDSS leverages a combination of 
SR and AS approaches, enhancing its ability to resolve 
complex SVs [43]. SoftSV integrates multiple alignment 
signals, including discordant read pairs and split reads, to 
improve detection accuracy [44]. MetaSV combines calls 
from multiple tools and refines them using local assem-
bly, increasing its reliability for DELs and DUPs [45]. For 
INSs detection, MELT is a strong choice because it is spe-
cifically designed to identify mobile element insertions, 
utilizing both SR and RP evidence to accurately pin-
point insertion sites [46]. For INVs, TIDDIT, DELLY, and 
GRIDSS are particularly effective. Despite the varying 
performance of specific tools for particular types of SVs, 
when using the same tool for SV detection across data-
sets, we observed comparable concordance rate between 
the DNBSEQ datasets (mean = 55.40%, range 0.09%—
96.93%) and the Illumina datasets (mean = 40.29%, range 
1.61%—89.62%, Additional file 1: Fig. S12). These results 
not only confirm the consistency between the DNBSEQ 
and Illumina platforms but also highlight the importance 
and necessity of carefully selecting SV detection soft-
ware, regardless of the data platform used.

Recent advancements in sequencing and data analysis 
technologies have significantly enhanced our detection 
and understanding of SVs. Long-read sequencing tech-
nology can fully sequence large DNA fragments (> 10 kb), 
providing continuous sequence that spans entire SVs 
[34]. For short-read dataset, pangenomic technology, 
particularly Giraffe, reduces reference allele bias and 
improves SV detection performance by mapping reads 
to a haplotype-resolved graph that includes references 
from thousands of human genomes [33]. In this study, 
we demonstrated the ability to detect SVs on short-read 
WGS data using DNBSEQ platforms and characterized 
the genomic features of these SVs. Our results showed 
a high consistent ratio of NA12878 SVs between “DNB-
SEQ”, “Illumina”, and “1KGP” sets, all of which were 
sequenced on short-read WGS data based on MPS plat-
forms. For example, 73.34%, 53.05%, and 78.67% of DELs 
in the “DNBSEQ”, “Illumina”, and “1KGP” sets were 
shared, respectively (Additional file 1: Fig. S6). However, 
these three SV sets exhibit notable differences compared 
to the “HGSVC” set, which uses long-read data, and the 
“Giraffe” set, which employs pangenomic technology. 
For instance, 76.31% of DELs and 77.92% of INSs in the 
“HGSVC” set, and 61.07% of DELs and 70.53% of INSs in 
the “Giraffe” set, could not be detected in any of “DNB-
SEQ”, “Illumina”, or “1KGP” sets. This result highlights 



Page 11 of 14Rao et al. BMC Genomics          (2025) 26:299  

the limitation of SVs detection, especially INSs detec-
tion, by normally short-read datasets, which is consist-
ent with previous research [12, 33]. The distributions of 
SVs on short- and long-read platforms were also found to 
be inconsistent. Most of the SVs on long-read platforms 
were concentrated within 5 Mbp of the telomere [34], 
while the SVs on short-read platforms were enriched 
within 5 Mbp of both the telomere and centromere 
(Fig. 5a; Additional file 1: Fig. S9). These results confirm 
the complexity of SV detection and illustrate the stability 
and limitation of SV detection based on short-read MPS 
platforms. In our future work, we will continue to explore 
the performance of SVs detection in the DNBSEQ data-
sets combined with pangenomic technology, as well as 
analyze the SV detection performance of long-read plat-
forms, such as PacBio [47], Oxford Nanopore [48] and 
CycloneSEQ [49].

In conclusion, we systematically analyzed the perfor-
mance and characteristics of germline SVs detected in 
WGS datasets sequenced on the DNBSEQ platform. 
By evaluating the performance of SV detection with 
the same tool and integrating the results of all tools to 
assess the genomic characteristics of SV sets, our study 
demonstrated the consistency of SV detection between 
the DNBSEQ and Illumina platforms. Furthermore, we 
provided a benchmark reference for future SV detection 
based on the DNBSEQ platforms.

Methods
Sequencing data resources
Ten WGS germline datasets of NA12878 were utilized 
for SV detection, which were publicly available and ana-
lyzed in our previous article [29]. SOAPnuke (version 
1.5.6) [50] was used to filter low-quality reads based on 
the following criteria: 1) adapter contaminations, 2) more 
than 10% of bases having a quality score < 10, and 3) more 
than 10% N bases. All reads that passed the quality fil-
tering were subsequently aligned to the human reference 
genome (hg19) using BWA-MEM (version 0.7.10-r789) 
[51]. The resulting alignment files were processed using 
SAMtools (version 0.1.19) [52] and Picard (version 1.96, 
https:// github. com/ broad insti tute/ picard) for further 
analysis. After data preprocessing, ten WGS datasets 
of NA12878 were obtained, with an average coverage 
of approximately 30X, mapping rate of over 99%, and 
genome coverage of over 99%.

Public SV sets of NA12878
Three public SV sets of NA12878, based on the reference 
genome GRCh38, were downloaded and extracted: 8,469 
SVs detected using NovaSeq6000 by Marta et al. (referred 
to as “1KGP”) [9], 4,718 SVs detected using PacBio RSII by 
Peter et al. (referred to as “HGSVC”) [34] and 11,320 SVs 

(genotype quality ≥ 60) detected using Giraffe by Jouni 
et al. (referred to as “Giraffe”) [33]. All three SV sets were 
converted to BED format and lifted over from GRCh38 to 
hg19 using the LiftOver tool (UCSC) to match the refer-
ence genome hg19 used in data alignment. This resulted 
in 8,236, 4,557 and 11,046 SVs of “1KGP”, “HGSVC” and 
“Giraffe” sets, respectively.

SV detection
To provide a comprehensive performance assessment of 
SV detection in WGS germline datasets, we meticulously 
selected forty tools to ensure broad coverage across all five 
fundamental algorithms. The selection criteria were based 
on the following key factors: the ability to process individ-
ual WGS data, the capability to detect SVs in real datasets, 
compatibility with MPS short-read data, and ease of acces-
sibility. Our curated selection includes five RD-based tools, 
four RP-based tools, three SR-based tools, three AS-based 
tools, and 25 tools based on a CA algorithm. These 40 tools 
were applied to the ten WGS datasets of NA12878 for SV 
detection, respectively. The SV calling were processed 
according to the approach described by Shunichi et al.[13]. 
SVs meeting the following criteria were filtered out: (1) 
the size of DEL, DUP and INV > 2 M bp or < 50 bp, (2) the 
number of reads supporting the called SV (RSS) < 3, (3) not 
located on autosomal or chrX chromosomes, or (4) over-
lapping a gap in the reference genome.

SV evaluation
A reference dataset of SV in NA12878 based on the ref-
erence genome hg19, as described in Shunichi et  al. [13] 
was downloaded to evaluate SV performance (https:// 
github. com/ stat- lab/ EvalS Vcall ers/ blob/ master/ Ref_ SV/ 
NA128 78_ DGV- 2016_ LR- assem bly. vcf). The dataset 
contained 9,241 DELs, 2,611 DUPs, 13,669 INSs and 291 
INVs. The evaluation of SVs was performed using a script 
from https:// github. com/ stat- lab/ EvalS Vcall ers based on 
a benchmark. DEL, DUP or INS was judged as true posi-
tive if it had a reciprocally overlap (RO) of ≥ 50% with the 
reference DEL, DUP or INS, respectively. INS was judged 
as true positive if the breakpoints of the called INS were 
located within ± 200 bp of those of the reference INS. The 
precision, sensitivity and F1-score were calculated using 
the following equations:

Precision = TP/(TP + FP)

Sensitivity = TP/(TP + FN )

F1− score = 2 ∗
Precision ∗ Sensitivity

Precision+ Sensitivity

https://github.com/broadinstitute/picard
https://github.com/stat-lab/EvalSVcallers/blob/master/Ref_SV/NA12878_DGV-2016_LR-assembly.vcf
https://github.com/stat-lab/EvalSVcallers/blob/master/Ref_SV/NA12878_DGV-2016_LR-assembly.vcf
https://github.com/stat-lab/EvalSVcallers/blob/master/Ref_SV/NA12878_DGV-2016_LR-assembly.vcf
https://github.com/stat-lab/EvalSVcallers
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where TP is the true positive of SV, FP is the false posi-
tive, and FN is the false negative.

SV integration
We created a union set of SVs by integrating all SV results 
for each SV variant type (i.e., DELs were integrated with 
other DELs, and the same for DUPs, INSs and INVs, 
Additional file  2: Fig. S4). We integrated the SV set by 
merging pairwise comparison results sequentially in the 
order of the sample list in Additional file 2: Table S2. Spe-
cifically, the result of pairwise comparison between the 
first two datasets was compared with the third dataset, 
and so on, until all data were used. DELs, DUPs and INVs 
were excluded if they had a ≥ 50% RO with other DELs, 
DUPs or INVs in pairwise comparison, but INSs were 
excluded if they were located within 200 bp of other INSs. 
The common SVs detected in all datasets sequenced on 
the same platform (i.e., DNBSEQ or Illumina platforms) 
using the same tool were defined as candidate SV set of 
that tool, and the candidate SVs detected by two or more 
tools were merged as the SV set of the platform. Finally, 
we obtained 4,785 SVs on DNBSEQ platforms (referred 
as “DNBSEQ” set, Additional file 2: Table S5) and 6,797 
SVs on Illumina platforms (referred as “Illumina” set, 
Additional file 2: Table S6), respectively. The low number 
of SVs in the “DNBSEQ” set is primarily due to the inher-
ently low consistency ratio between SVs detected on dif-
ferent datasets using the same tool (mean = 55.40%, range 
0.09%—96.93%, Additional file 1: Fig. S12). Therefore, the 
“DNBSEQ” set from DNBSEQ platforms with more inte-
grated datasets has a lower number of SVs.

Comparison between SV sets
We conducted pairwise comparisons of the SV sets from 
“DNBSEQ”, “Illumina”, “1KGP”, “HGSVC” and “Giraffe” 
for each SV type. DELs, DUPs and INVs were consid-
ered shared with another set if they had a ≥ 50% RO with 
DELs, DUPs or INVs in that set. For INSs, they were 
considered shared with another set if they were located 
within 200 bp of INSs in that set. For each specific SV set, 
the shared SV ratio was calculated as the proportion of 
SVs in this set that overlapped with all of the remaining 
sets, normalized by the total number of SVs in this set.

SV validation with real‑time PCR
Manta was chosen to accurately identify the break-
point sequences of these selected SVs due to its demon-
strated excellent performance in SV detection reported 
in previous report [13] and this study (Additional file 2: 
Table  S12), and its ability to output easily interpretable 
SV sequences in VCF format. Following the integration 
of SVs from both the DNBSEQ and Illumina datasets, 

we exclusively selected SVs detectable by Manta from 
the “DNBSEQ” and “Illumina” sets, respectively. Sub-
sequently, we randomly selected DELs and INSs from 
these “Manta-supported” SVs for validation, extracting 
the breakpoint sequences from the VCF files generated 
by Manta. However, DUPs and INVs were not included 
in the validation process due to the unavailability of 
their breakpoint sequences necessary for primer design. 
Primer sequences were crafted using Primer Premier 
6.0 and synthesized by BGI-Write (Additional file  2: 
Table  S7). Human genomic DNA of NA12878 was pur-
chased at the Coriell Institute. Real-time PCR assays were 
conducted using SYBR Green, with all procedures per-
formed on the StepOne Real-Time PCR System (Applied 
Biosystems) in accordance with the manufacturer’s pro-
tocol. For each breakpoint, seven real-time PCR reac-
tions were executed as per the manufacturer’s guidelines. 
This included triplicate reactions for the target primers, a 
no-template control to ensure specificity, and two posi-
tive controls: one using a standard sample and the other 
employing the GAPDH gene as an internal reference.

Identification of SV hotspots
The midpoint of the SV region was extracted and 
used to identify hotspot on hg19 genome. The mid-
point sites were transformed using the ‘makeGRanges-
FromDataFrame’ function from the GenomicRanges 
package(v1.24.1) and then submitted to the ‘hotspotter’ 
function from the primatR package (with parameters: 
bw = 200,000, num.trial = 1000). The hotspots were dis-
played on hg19 genome using the karyoploteR package 
(v1.20.0).

Annotation of difficult regions
The difficult regions of hg19 were downloaded from 
the GIAB (https:// ftp- trace. ncbi. nlm. nih. gov/ giab/ ftp/ 
relea se/ genome- strat ifica tions/ v3.1/ GRCh37/ Union/ 
GRCh37_alldifficultregions.bed.gz), which including 
5,427,803 regions spanning 557.28 Mbp. We classified 
SVs in the “DNBSEQ” and “Illumina” sets as being in the 
difficult region if they were located in any difficult region 
with > 50% size overlap, and the remaining SVs were 
defined as being in the easy region.

Annotation of genes
The SVs in the “DNBSEQ” and “Illumina” sets were anno-
tated to hg19 genes using HOMER annotatePeaks.pl 
(v4.11). We extracted the gene annotation and distance to 
TSS from the output of HOMER annotatePeaks.pl.

https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v3.1/GRCh37/Union/
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v3.1/GRCh37/Union/
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Annotation of repeat regions
The TRF and rmsk regions were downloaded from the 
UCSC Genome Browser (https:// hgdow nload. soe. ucsc. 
edu/ golde nPath/ hg19/ datab ase/), while the SVA regions 
were obtained from MELT (v2.2.2.2). The SVs in the 
“DNBSEQ” and “Illumina” sets were annotated to these 
repeat regions using BEDTools (v2.30.0). Specifically, 
DELs, DUPs and INVs were annotated to TRF, rmsk and 
SVA regions, respectively, when > 50% of the SV size was 
located in a repeat region. INSs were annotated if they 
were within 50  bp of any repeat regions. In case where 
a single SV was annotated to multiple repeat regions, we 
selected the superior annotation based on the following 
priorities: TRF > STR > Alu > L1 > SVA > HERV > LTR > L
ow Complexity > Other Repeats.
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