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Genome-wide chromatin accessibility

and selective signals of meat rabbits reveal
key Cis-reqgulatory elements and variants
during postnatal development of skeletal
muscles in rabbits

Kun Du'", Dai-hua Wang'", Shen-giang Hu?, Yu Xia', Qian Wu', Mao-ging Gu' and Xi-wen Chen"

Abstract

Background The development of skeletal muscles is intricately modulated by multiple genetic factors and
significantly impacts the economic value of meat rabbits. However, our knowledge of epigenetics in rabbit skeletal
muscles remains largely unknown.

Results In this study, we collected leg skeletal muscles of rabbits and performed assays for transposase-accessible
chromatin with high throughput sequencing (ATAC-seq) to detect open chromatin across three developmental
stages: birth (D1), weaning (D35), and adulthood (D75). A total of 126,959 accessible chromatin regions (ACRs) were
identified across samples, and a broad increase and decrease in chromatin accessibility were found from D1 to
D35 and D35 to D75, respectively. Integrative analysis of chromatin accessibility and transcriptome data revealed
ACRs that were nearly closed at D1 but highly accessible at D35 and D75 were significantly enriched in skeletal
muscle development. Cis-regulation analysis further revealed that genes dominated by enhancers mainly play
roles in the neuron development of rabbit skeletal muscles. Moreover, the detection of selection signals of meat
rabbits and the footprinting analysis of transcription factor at open chromatin revealed that both base transversion
(Chr13:12144967 A-> G) and the dynamics of chromatin accessibility at the PRDM1 binding site might regulate
ZSWIM5 during the development of skeletal muscles in rabbits.

Conclusions Our study provided a category of potential cis-regulatory elements for understanding the development
of skeletal muscles at the tissue level and might facilitate potential insights into growth regulation in rabbits.
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Introduction

With the increase in demand for healthy food in humans,
rabbit (Oryctolagus cuniculus) meat has become increas-
ingly popular due to the rich protein, low cholesterol
levels, and low fat in the products [1]. The growth and
meat quality of skeletal muscles are the core traits for
rabbit breeding, especially in improving specialized meat
rabbit strains [2]. Skeletal muscle development is gener-
ally divided into prenatal and postnatal development
[3, 4]. During the prenatal stage, skeletal muscle mainly
increases the number of muscle fibers in mammals [5].
During the postnatal stage, mammals experience an
increase in the diameter and length of muscle fibers, as
well as the acquisition of motor function and the depo-
sition of flavor substances, which is a complex biologi-
cal process [6]. Previous studies have revealed a sort of
genetic factors regulating the prenatal development of
skeletal muscles at the post-transcriptional layer of reg-
ulatory networks, such as microRNAs [7], IncRNAs [8],
and circular RNAs [9]. At the genomic level, genome-
wide association studies have revealed significant
genetic variants affecting the growth trait [10]. Never-
theless, compared with other common livestock species,
the genomic state during skeletal muscle development
remains largely unknown in rabbits.

Recent studies have emphasized the importance of
epigenetic dynamics in transcriptional regulatory net-
works and identified a large number of activated genomic
sequences, including promoters and enhancers [11, 12].
One of the most exciting progresses is the illustration of
the pivotal roles of chromatin accessibility during skel-
etal muscle development, which can directly reflect the
effects of chromatin structural modification on gene
transcription [13]. Chromatin accessibility influences the
binding of transcription factors (TFs) and regulates the
temporal and spatial expression patterns of target genes
in muscle development, which provides an attractive
opportunity to identify cis-regulatory elements [5, 14].
Previous studies have revealed that the variants residing
in the cis-regulatory elements play critical roles in regu-
lating gene expression [15]. Given its advantage in explor-
ing key genomic regulatory elements, the Functional
Annotation of Animal Genomes (FAANG) has begun to
conduct large-scale chromatin accessibility analysis on
muscle development in typical livestock, such as that in
pigs [16], cattle [17], and chickens [18] and revealed that
E2F6, OTX2, CTCE SP1, MEF2C, EGR1, MyoD, AP-1,
KLF, TEAD, and MEF2 play important roles in regulat-
ing myogenic genes expression [13, 19, 20]. Although
significant progress has been made in these livestock, the
landscape of chromatin accessibility of skeletal muscles
remains largely unknown in rabbits.

In this study, we performed assays for transposase-
accessible chromatin with high-throughput sequencing
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(ATAC-seq) of skeletal muscles at three key time points
of growing meat rabbits. Then, the selection signals of
the meat rabbit populations were analyzed to identify
key genomic regions and TFs regulating the postnatal
development of rabbit skeletal muscles. Our study pro-
vides a category of potential cis-regulatory elements for
understanding the development of skeletal muscles and is
expected to shed light on the molecular mechanisms reg-
ulating postnatal skeletal muscle development in rabbits.

Methods

Ethics approval

All experiments were performed in accordance with rel-
evant guidelines and adhered to the ARRIVE guidelines (
https://arriveguidelines.org/) for the reporting of animal
experiments. This study was carried out in accordance
with the principles of the Basel Declaration and recom-
mendations of the Guide for the Care and Use of Labora-
tory Animals (http://grantsl.nih.gov/grants/olaw/refere
nces/phspol.htm). All surgical procedures involving pigs
were performed according to the approved protocols of
the Biological Studies Animal Care and Use Committee,
Sichuan Province, China. The protocol was approved by
the ethics committee of Mianyang Normal University
under permit No. SKY101368.

Experimental rabbits and histological analysis

In this study, the New Zealand white (NZW) rabbits
were raised in the animal experiment center of Mianyang
Normal University, Mianyang, China. These rabbits were
breastfed for 35 days after birth and then fed a standard
diet and water ad libitum, as described in our previous
studies [21]. The skeletal muscle tissues were collected
from the left hind thigh of six male rabbits at three rep-
resentative time points of 1 day (D1), 35 days (D35), and
75 days (D75), representing the newborn, weaning, and
adult rabbits, respectively. These skeletal muscle tissues
were immediately isolated from rabbits under sterile con-
ditions and then were snap-frozen in liquid nitrogen and
stored at —80°C until cell isolation. The tissue samples
used for histological assay were fixed using 4% parafor-
maldehyde at 4°C overnight. Then, the fixed tissues were
embedded in paraffin and sliced using a microtome
(Leica, Bensheim, Germany). Haematoxylin and eosin
(H&E) staining was performed after deparaffination
according to standard protocols described in our previ-
ous study [22]. All slices of the H&E assay were observed
and imaged using an Olympus BX-50 F light microscope
(Olympus Optical, Tokyo, Japan). The diameters of mus-
cle fibers were quantified by detecting the area of cross-
sectional area of H&E slices using Image] [23] based on
the scaled length in the images of H&E slices.
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ATAC-seq library Preparation and sequencing

Two biological replicates of skeletal muscles were used to
construct ATAC-seq libraries using previously published
methods [24, 25]. Briefly, the skeletal muscle tissues were
digested into cell suspension, which was re-suspended in
the nuclear isolation buffer and washed repeatedly using
nuclear wash buffer following a standard nuclear isola-
tion protocol. Then, the DNA of approximately 60,000
nuclei was transposed using Tn5 transposase for 40 min
at 37°C using the Hyperactive ATAC-Seq Library Prep
Kit for Illumina (Vazyme, Nanjing, China) according to
the manufacturer’s instructions. The transposed DNA
was purified and added sequencing adapters. After PCR
amplification, the libraries were purified using a Qiagen
MinElute PCR Purification Kit (Qiagen Inc., Valencia,
CA, United States) following the manufacturer’s instruc-
tions. Finally, the qualified libraries were sequenced on
an Illumina NovaSeq 6,000 platform, and paired-end raw
reads were generated.

Data processing of ATAC-seq

The sequencing adapters of raw reads and low-quality
reads (N base number>5 and mean quality<20) were
removed using Fastp software [26]. The clean reads
were mapped to the rabbit reference genome (OryCun
2.0, retrieved from https://asia.ensembl.org/index.htm
1) using Burrows-Wheeler Aligner (BWA, v0.7.17-r1188)
with “mem” mode [27]. The reads with mapping qual-
ity <20 or reads mapped to mitochondrial DNA (due to
mitochondrial DNA being exposed without chromatin)
were removed using the Samtools [27]. The PCR dupli-
cation caused by PCR was removed using the GATK4
“MarkDuplicates” subprogram [28]. The accessible chro-
matin regions (ACRs, referred to as peaks) were called
using Masc2 software (v2.2.6) [29] with parameters of
“--nonmodel --shift —100 --text size 200, and the q
value cutoff for peak calling was 0.05. The genome-wide
ATAC-seq peaks were annotated using CHIPSeeker
(v1.36.0) [30]. The ATAC-seq peaks in each sample were
merged into a consensus region set using Diffbind2
(v3.10.0) [31], and the “DBA_SCORE_READS” in Diff-
Bind2 was subjected to calculate normalized reads using
the CPM method, which was calculated by dividing raw
read counts by the count number of reads that mapped
to all peaks. The differential peaks were identified using
DESeq2, with the thresholds|logFC| > 1 and FDR<0.05.
The gene expression profiles of skeletal muscles during
rabbit growth were retrieved from our previous study, in
which RNA-seq was performed on the skeletal muscles at
birth (D1), weaning (D35), and adult (D70) [9]. Because
D70 and D75 were very close, they were considered to
have the same genomic and transcription state in this
study. The reads mapped to the ACRs and genes were
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normalized and converted into Bigwig files [32], and then
they were visualized using IGV (v2.16.2) [33].

Footprinting analysis of TFs in ATAC-seq peaks

The TF footprinting analysis of the ATAC-seq peaks was
performed using Tobias software (v0.16.1) [34], in which
read alignment experienced a correction of Tn5 cutting
preference, estimation of footprinting score, and detec-
tion of TF binding. Briefly, the vertebrate TF motifs were
downloaded from the JASPAR database (release 2023).
The Tn5 transposase sequence preference of cutting
sites was estimated and corrected using the subprogram
‘ATACorrect’ of Tobias. The deletion of ATAC-seq sig-
nals given rise from protein binding and the neighbor-
ing signals around binding sites were calculated using
the parameter of subprogram ‘FootprintScores’ of Tobias.
Subsequently, the subprogram ‘BINDetect’ of Tobias was
applied to detect the difference of TF binding based on
the deletion of ATAC-seq signals of corresponding sites.
All TFs with -logl0 (p-value) above the 95% quantile or
differential binding scores smaller/larger than the 5 and
95% quantiles (top 5% in each direction) were considered
differential binding TFs.

Conservation analysis of ACRs

The conservation analysis of ACRs of rabbit skeletal mus-
cles was conducted using UCSC LiftOver tools (https://g
enome.ucsc.edu/cgi-bin/hgLiftOver). We referred to the
classification criteria from the study of Wang and col-
leagues [35], and an ACR with a value of the minimum
ratio of bases that must remap (minMatch) of 0.1, 0.5,
and 0.99 was considered highly, moderately, lowly con-
served region between rabbits (OryCun2.0) and humans
(hg19). While an ACR with a lower of 0.1 minMatch was
considered a non-conserved region. The external data-
base of the UCSC Genome Browser [36] for phastCons
100-vertebrate scores [37] was used to interpret the evo-
lutionary and biochemical relevance of ACRs in different
sequence conservation.

Selection signature of meat rabbits among different
populations

To detect selection signals of meat rabbits, rabbit rese-
quencing datasets were retrieved from our and other
studies [38—40], which contain two specialized meat
rabbit strains, Tianfu black rabbits (TB, #»=34) and New
Zealand white rabbits (NZW, #n=10), and two indig-
enous breeds in China, Fujian black rabbits (FJB, n=38)
and Sichuan white rabbits (SCW, n=40). The accession
numbers of these populations are showed in Table S1.
These datasets were subjected to the de novo SNP call-
ing process using BWA [27] and GATK4 [41]. Briefly, raw
sequences in Fastq format were first subjected to qual-
ity control by removing these low-quality reads (N base
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number >5 and mean quality <20) using Fastp [26], after
which we obtained the clean reads. All clean reads were
mapped to the rabbit reference genome using the BWA
mem algorithm [27]. The PCR duplications of mapped
reads were marked and removed using Sambamba [42].
Subsequently, GATK4 software was applied to SNP call-
ing and individual genotyping according to recommenda-
tions of GATK Best Practices [41]. We further performed
the hard filtering with an expression of “QD<2.0||
FS>60.0|| MQ<40.0|]| MQRankSum < -12.5|| ReadPos-
RankSum < -8.0%, and SNPs with an absence rate of all
samples greater than 50% were removed. SNP genotypes
were phased and imputed using the Beagle software [31].
Breeds were divided into two groups based on whether
they were specialized meat rabbit strains. To avoid the
influence of hair color genes, we conducted two com-
parative analyses, including Tianfu black rabbits (TFB)
vs. Fujian black rabbits (FJB) and New Zealand white
rabbits (NZW) vs. Sichuan white rabbits (SCW), with
FJB and SCW as the reference populations and TFB and
NZW rabbits as the target populations. The SNPs of TFB
and NZW rabbits that were under selection were identi-
fied by using the population differentiation index (Fgp) in
Vcftools [43]. The SNP with the top 5% Fgr values were
selected as candidate selection sites.

Functional annotation and pathway analysis

Gene Ontology in biological process (GO-BP) enrich-
ment and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis were performed using the
Database for Annotation, Visualization and Integrated
Discovery (DAVID) [44]. The enriched GO-BP terms or
KEGG pathways with a p-value<0.05 were considered
significant.

Statistical analysis

Statistical ~analyses, including T-test and One-
way ANOVA, were conducted on R software. The
p-value<0.05 was considered significant. The “*”
sents “p-value <0.05” in a statistical test, and the
resents “p-value <0.01” in a statistical test.

repre-
Wpger
rep-

Results

Histological analysis and ATAC-seq of rabbit skeletal
muscle

The analysis framework of this study is shown in Fig. 1A,
which contains open chromatin detection, selection
analysis of population, and transcriptome analysis. The
skeletal muscle tissues were isolated from New Zealand
white (NZW) rabbits at growth stages of 1 day (D1),
35 days (D35), and 75 days (D75) (Fig. 1A). H&E stain-
ing assay showed that the diameters of muscle fibers
significantly increased from D1 to D35 and D35 to D75
(cell area D1=164.44+13.67 me, D35=1145.24+55.00
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um? and D75=3072.96+142.35 pm? Kruskal Wal-
lis Test p<0.01, Fig. 1B). On the other hand, the shapes
of the cross-section of muscle fibers gradually change
from ellipses to relatively regular polygons (Fig. 1B).
To determine the global epigenetics landscape during
skeletal muscle development in rabbits, we carried out
ATAC-seq to interrogate the chromatin accessibility
of the samples. We obtained an average of 135.49 mil-
lion quantified paired-end reads per sample, of which
the Q20 ratio ranged from 96.86 to 97.58% and the Q30
ratio ranged from 86.24 to 93.33% (Table S3). When per-
forming BWA-mem alignments to reference genome, the
paired-mapping ratio ranged from 89.22 to 95.82% (Table
S2). Library analysis showed that we generated typical
ATAC-seq data flowing two characteristics. Firstly, the
insert fragments of libraries consisted of major length
enrichments in short (DNA sequences from interven-
ing regions between two consecutive nucleosomes) and
secondary length enrichment in longer (DNA sequences
from spanned one or more nucleosomes) (Fig. 1C). Sec-
ondly, the ATAC-seq fragments were mainly enriched in
the regions around the transcriptional start sites of genes
(Fig. 1D). In total, 52,731, 53,127, and 45,791 accessible
chromatin regions (ACRs) were identified in the D1, D35,
and D75 samples after performing peak calling, respec-
tively (Fig. 1E). The values of the fraction of reads in
peaks (FRiP) ranged from 0.06 to 0.10 (Table S2). Analy-
sis of these ACRs found that they were widely distributed
throughout the genome, and their distribution was found
to be positively related to gene density in the genome in
general (Fig. 1E). The DiffBind2-based merging analysis
re-centred the ACRs of different samples and established
126,959 non-redundant ACRs across all samples, of
which major ACRs (75.50%) were annotated to the inter-
genic and intronic regions, and 19.45%, 4.24%, and 0.82%
were annotated to the promoter, exon, and untranslated
regions (UTRs), respectively (Fig. 1E). These data indi-
cated that we obtained genome-wide high-quality chro-
matin accessibility data in the skeletal muscles of rabbits.

Conservation analysis of ACRs

To identify conserved cis-regulatory elements, we fur-
ther mapped ACRs from the rabbit to the human
genome. Our data showed that 17,734, 45,842, 3211,
and 64,596 regions were highly, moderately, lowly, and
non-conserved (HC, MC, LC, and NC) between rab-
bits and humans in sequence (Fig. 2A). Characterization
of regions with different types of conservation found
that ACRs with high conservation tended to be distrib-
uted near TSSs (Fig. 2B), of which only approximately
6% ACRs in LC while more than 22% ACRs in HC were
annotated into TSS+1Kb regions. On the other hand,
the HC ACRs exhibit high chromosomal synteny in
the genomes of rabbits and humans, such as ACRs in
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Fig. 1 Histology and ATAC-seq analysis of skeletal muscles at three growth stages of rabbits. (A) Experimental design in this study. (B) H&E analysis of
muscle tissues of rabbits at D1, D35, and D75. The figures show the cross- (upper panel) and longitudinal section (bottom panel) of muscle fibers. The
scale bars represent 50 um length size. The boxplot shows the cross-sectional area of muscle fibers, which was quantified using ImageJ software based
on the scale bars. A total of 50 cells were randomly accounted in the analysis for each sample. (C) Inserted fragments of a representative ATAC-seq library.
The fragments were expanded by the paired-end mode of mapped reads. (D) Enrichment of ATAC-seq signals around gene bodies. The heatmap shows
the enrichment results of one chromosome (chromosome 1) of the rabbit genome. (E) Genome-wide chromatin accessibility of samples in D1, D35, D75.

The bar plot shows the genomic annotation of accessible chromatin regions (ACRs)

Chr13-Chrl, Chr1-Chrll, and Chr19-Chrl7 (rabbit-
human) (Fig. 2C). To assess their evolutionary and bio-
chemical relevance, we overlapped HC, MC, and LC
ACRs with the 100-vertebrate phastCons scores. Reas-
suringly, HC regions were more evolutionarily conserved
than MC regions (median increase: 0.11; Wilcoxon test
p<2.2x10-16), and MC regions were also more evolu-
tionarily conserved than LC regions (median increase:
0.11; Wilcoxon test p<2.2x10-16) (Fig. 2D). GO in
the biological process (GO-BP) analysis of the nearby
genes of ACRs in the HC found these conserved DNA
sequences were significantly enriched in tissue develop-
ment, regulation of cell communication, and nervous
system development (Fig. 2E). On the other hand, KEGG
pathway analysis showed that these conserved DNA
sequences were significantly enriched in the cytoskel-
eton in muscle cells, signaling pathways regulating the

pluripotency of stem cells, and MAPK signaling pathway
(Fig. 2E).

Dynamic analysis of chromatin accessibility during the
development of skeletal muscles

The principal component analysis (PCA) based on the
normalized read counts of the ACRs (CPM value) showed
that the first (44% variance) and the second (25% vari-
ance) principal components explained proper variances,
and the samples in D1, D35, and D75 were classified into
expected groups, indicating excellent reproducibility
between replicates and distinct chromatin state among
different growth stages of skeletal muscles (Fig. 3A). Dif-
ferential analysis showed that chromatin accessibility
broadly increased from D1 to D35, with a total of 2550
and 115 ACRs significantly increased and decreased
chromatin accessibility in D35 vs. D1, respectively.
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Fig. 2 Conservation analysis of ACRs. (A) Identification of highly (HC), moderately (MC), lowly (LC), and non-conserved (NC) ACRs between humans
and rabbits. (B) Genomic annotation of ACRs with different conservation between humans and rabbits. (C) Mapping HC ACRs from rabbits to human
genomes. (D) Analysis of 100-vertebrate phastCons scores of HC, MC, and LC ACRs. (E) GO-BP and KEGG pathway analysis of nearby genes of HC ACRs

On the other hand, chromatin accessibility broadly
decreased from D35 to D75, with a total of 261 and 2949
ACRs significantly increased and decreased chromatin
accessibility in D75 vs. D35, respectively. A Few regions
significantly changed chromatin accessibility in the com-
parison of D75 vs. D1, with 18 and 21 regions increasing
and decreasing chromatin accessibility (Fig. 3B and Table
S3, |log2(FC)| > 1 and p-adj<0.05). To understand the
function of differential ACRs, we further subjected them
to k-means clustering analysis and found that 986, 790,
319, and 2893 ACRs were classified into the four groups
in different dynamic patterns (group A, B, C, and D),
respectively (Fig. 3C and Table S4). The functional analy-
sis found that ACRs in different groups were responsible
for different biological processes and signalling pathways.
The chromatin of regions in group A was highly acces-
sible at D1 and D35 and almost closed at D75. GO analy-
sis of nearby genes of regions in group A found that they
were mainly involved in metabolism and gene transcrip-
tion-related functions. The top 5 significantly enriched
terms in the GO-BP category were “positive regulation
of metabolic process’, “regulation of gene expression’,
“transcription, DNA-templated’, “positive regulation of
macromolecule metabolic process’;, and “positive regu-
lation of cellular metabolic process” (Fig. 3D). KEGG
pathway analysis of nearby genes of regions in group A
found that they were significantly enriched in the AMPK
signalling pathway (Fig. 3E). The chromatin of regions in

group B was almost closed at D1 and highly accessible
at D35 and D75. GO analysis of nearby genes of regions
in group B found that they were mainly involved in skel-
etal muscle development-related functions. The skeletal
muscle development-related terms in the top 10 signifi-
cantly enriched GO-BP terms were “animal organ mor-
phogenesis’, “muscle cell differentiation’; and “muscle
structure development” (Fig. 3D). The top 5 significantly
enriched KEGG pathways were “Gastric acid secretion’,
“Oxytocin signalling pathway’, “cGMP-PKG signalling
pathway’;, “Calcium signalling pathway’, and “cAMP sig-
nalling pathway” (Fig. 3E). The chromatin of regions
in group C decreased accessibility from D1 to D35 and
increased accessibility from D35 to D75. GO analysis of
nearby genes of regions in group C found that they were
mainly involved in neuron development-related func-
tions. The top 5 significantly enriched GO-BP terms were
“neuron differentiation’, “neuron development’, “gen-
eration of neurons’, “neurogenesis’; and “nervous sys-
tem development” (Fig. 3D). The chromatin of regions
in group D increased accessibility from D1 to D35 and
decreased chromatin accessibility from D35 to D75. GO
analysis of nearby genes of regions in group D found that
they were mainly involved in signal transduction-related
functions. The top 5 significantly enriched GO-BP terms
were “regulation of cellular component organization’,
“regulation of cell communication’, “regulation of signal-

ing”, “response to endogenous stimulus’, and “regulation



Du et al. BMC Genomics (2025) 26:296 Page 7 of 14
state © Decreased © Increased
PCA plot
150 =
D35_vs_D1 D75_vs_D1 d75_vs_d35
D75_1A)
L i e .
o P P a
£ 30 P A ®
&, L 115 i1 2550 21 ol 18 2949
o = iE aE
o —_
z k) aE aE
% D35_1A ° g- Vo Vo
a 0+ F - 1 ' 1 1
£ D35_2A 5’ 20 . .
[$) . -
] — ' '
£ 50| I o K K
£ o e e
a = 10+ P P
-100 F . ° .
e 0 e | ob W LI R L WP TUNREN A 2V SuSe—
D75 01
1 , . _DiiADiaa | T T T T T T T T T T T T T T T
e 1#10[44°/] -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
rincipal Component o)
log2FoldChange
* Or‘gJ 6\6 custer [l A [ = [ o W auster [l » I = [ ©
regulation of cellular component organization Hippo signaling pathway
reguiaton of el communicaion Pattways in cancer
regulation of signaling’ Wnt signaling pathway
A response to endogenous stimulus Calcium signaling pathway-
regulation of signal transduction
intracellular signal tran tion Cushing syndrome:
negative regulation of signal transduction- Arrhythmogenic right ventricular cardiomyopathy
negaliv roguaton ofsgnaing Welanogenesis
cell development Rap1 signaling pathway
clliar response o endogenous simulus s sl ey
B neuron differentiation: gic sigr g yocyt
neuron development GnRH signaling pathway
‘generation of neurons: Gastric acid secretion
Z-scaled CPM neurogeness Onyocin signaling patway

A SEbil%

1.5
L 3

0.5
0

-05
I.1
15

nervous system development
negative regulation of protein dephosphorylation

animal organ morphogenesis

on transport

positive regulation of nitrogen compound metabolic process
muscle cell ifferentiation:

positive regulation of biosynthetic process

muscle structure development

ssitive regulation of nucleobase-containing compound metabolic process
postive regulation of cellular biosynthetic process

regulation of transcription from RNA polymerase Il promoter
positive regulation of metabolic process

A_posttive regulation of metabolic process

regulation of gene expression

transcription, DNA-templated

postive regulation of macromolecule metabolic process.

positive regulation of cellular metabolic process

regulation of macromolecule biosynthetic process

rogulation of cellular macromolecule biosyntheic process
regulation of nucleobase-containing compound metabolic process
A_posiive regulation of cellular biosynthetic process

A_positive regulation of biosynthelic process:

CGMP-PKG signaling pathway
B_Calcium signaling pathway

CAMP signaling pathway
Aldosterone syntnesis and secretion
Oocyte meiosis.

Axon quidance

Glucagon signaling pathway

Insulin secretion

Longevity regulating pathway

AMPK signaling pathway

Relaxin signaling pathway

Breast cancer

Estrogen signaling pathway
Endocrine resistance

Viral carcinogenesis
Phosphatidylinositol signaling system
 cell receptor signaling pathway
Hepatocellular carcinoma.

5 0 5 3 i []
-log10(Pvalue)/Gene Count -log10(Pvalue)/Gene count

Fig. 3 Differential analysis of chromatin accessibility of skeletal muscles in rabbits. (A) PCA analysis of samples based on the normalized intensity of ATAC-
seq signals in the ACRs. (B) Differential analysis of the intensity of ACRs. The red and blue points represent the significantly increased and decreased ACRs,
respectively. (C) Clustering analysis of differential ACRs. The line plot in the zoomed annotation of the heatmap shows the change trend in the chromatin
accessibility of corresponding groups. (D) GO-BP analysis of nearby genes of ACRs in different groups. The gene count was divided by ten. (E) KEGG path-
way analysis of nearby genes of ACRs in different groups. The gene count was divided by ten

of signal transduction” (Fig. 3D). KEGG analysis found
that the top 5 significantly enriched signaling pathways
were “Hippo signaling pathway’, “Pathways in cancer’,
“Wnt signaling pathway’, “Calcium signaling pathway’,

and “Cushing syndrome” (Fig. 3E).

Integrated analysis of ATAC-seq and transcriptome data
revealed key cis-regulation patterns of genes

To identify key cis-regulatory elements for the cor-
responding gene, we integrated the ATAC-seq in this
study and the RNA-seq data from our previous study
[9]. All the ACRs were classified into promoters (ACRs
in TSS+3 kb) and enhancers (ACRs not in promot-
ers), and then identified different cis-regulation types of
genes. The first cis-regulation type of genes is promoter-
domination (PD), in which the chromatin accessibility of

enhancer ACR(s) was not increased, but that of promoter
ACR(s) was synchronously increased with the expression
of a nearby gene. For example, the upregulated TSGAI0
contains one increased ACR in the promoter region but
contains 0 ACR in the enhancer regions (Fig. 4A). The
second cis-regulation type of genes is the enhancer-
domination (ED), in which the chromatin accessibility
of enhancer ACR(s) was increased, but that of promoter
ACR(s) was not synchronously increased with the expres-
sion of nearby gene(s). For example, the upregulated DTL
contains ACRs in promoter and enhancer regions, but
only one ACR in the enhancer region increased chroma-
tin accessibility (Fig. 4A). The third cis-regulation type of
genes is promoter and enhancer co-regulation (PEC), in
which the chromatin accessibility of both promoter and
enhancer ACR(s) was synchronously increased with the
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expression of nearby genes. For example, the chromatin
accessibilities of both ACR in the promoter region and
ACR in the enhancer regions of ENSOCUT00000058429
were synchronously increased with its expression
(Fig. 4A). Based on the classification criteria, a total of
390 genes in ED, 21 genes in PD, and 1 gene in PEC were
identified from D1 to D35 (Fig. 4B). On the other hand, a
total of 292 genes in ED, 96 genes in PD, and 4 genes in
PEC were identified from D35 to D75 (Fig. 4C). Because
genes in ED and PD were the major cis-regulatory type,
we further analyzed the functional difference between
genes in ED and PD. Our data showed that the genes
in ED mainly governed neuron development. The top 5
significantly enriched GO-BP terms were “head develop-
ment’, “animal organ morphogenesis’, “central nervous
system development’, “positive regulation of neurogen-
esis’, and “regulation of cellular component organization”
While the genes in PD mainly governed cell cycle-regu-
lated functions. The top 5 significantly enriched GO-BP
terms were “mitotic cell cycle process’, “regulation of cell
cycle’, “cell cycle process’; “mitotic cell cycle’, and “tran-
scription, DNA-templated” (Fig. 4C).

” o«

Footprinting and selection signal analyses identified key
TFs and mutations in ACRs

Chromatin accessibility is a key epigenetic factor that
physically mediates transcription factors and DNA. We

further performed footprinting analysis using the ATAC-
seq after correcting Tn5 cutting preference, which pro-
vides evidence of direct occupancy of TF candidates on
genomic DNA. For instance, the IRF7 that has not been
reported in the skeletal muscle development in mammals
was found to have deeper footprints and higher DNA
accessibility, flanking its motif in D35 samples than in
D1 and D75 samples (Fig. 5A). An average of 151 bind-
ing sites of TFs were found in the differential ACRs. A
total of 17 TFs have > 1000 binding sites in the differential
ACRs, which were mainly the members of SP and KLF
families (Table S5 and Figure S1A). Statistics analysis of
the subjected TFs found that 24 and 30 TFs significantly
increased and decreased footprints from D1 to D35. On
the other hand, 29 and 22 TFs significantly increased
and decreased footprints from D35 to D75 (Fig. 5B). To
identify key TFs and their target genes, we further per-
formed function-based filtering of TFs. The top 5 TFs
that have the most significantly increased footprints from
D1 to D35 were ZNF354A, ZNF558, PHOX2B, HMGAI,
and FOXD3, and the top 5 TFs that have the most sig-
nificantly increased footprints from D35 to D75 were
PATZ1, SP2, KLF10, ZNF148, and ZBEB4.

Fyr was used to select the top 5% of SNPs, with Fujian
black rabbits (FJB) as the control group and Tianfu black
rabbits (TFB) as the selection group, 10,793 SNPs with a
selection signature were obtained (Fig. 5C). With Sichuan
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white rabbits (SCW) as the control group and New Zea-
land white rabbits (NZW) as the selection group, 110,747
genomic windows with a selection signature were
obtained. An intersection analysis showed that a total
of 2947 selection SNPs were found between the two Fgp
comparisons (Figure S1B). We then integrated the results
of the selection signals and TF footprinting analysis and
found that 6 SNPs (Chr2:20258634, Chr2:150969157,
Chr2:150969186, Chr3:54676164, Chr13:121449670,
Chr20:30932071) with selection signals were located at
the TF binding sites (Fig. 5D), among which one SNP
(Chr13:121449670) was found as base transversion (A->
G) and located at a position with high positional weight
of a key muscle TF PRDM1 [45-47]. Significantly, the “A”
base of this position was found to have a high allele fre-
quency (TFB, 82.4%; NZW, 90.0%) in both two special-
ized meat rabbit strains compared to the two indigenous
breeds (FJB, 31.25%; SCW, 46.25%), while “G” base was
found to have a low allele frequency (TFB, 17.6%; NZW,
10.0%) in both two specialized meat rabbit strains com-
pared to the two indigenous breeds (FJB, 68.75%; SCW,
53.75%) (Fig. 5E). Combining the results of differential
analysis of ATAC-seq peaks found that the region where
this SNP is located maintains high chromatin accessi-
bility at D35, while chromatin accessibility is lower at
D1 and D75 and might affect nearby genes of TRL6 and
ZSWIMS (Fig. 5E).

Discussion

In this study, we performed histological analysis for the
skeletal muscle of rabbits and found the diameters of
muscle fibers continuously increased after rabbit birth,
which was in line with other mammal livestock, such as
cattle, pigs, and goats [5, 48, 49]. Newborn (D1), weaning
(D35), and adulthood (D75) are the three key time points
for skeletal muscle development in meat rabbits. ATAC-
seq has rapidly become the preferred approach for inves-
tigating activated genomic cis-regulatory elements. Many
previous studies have utilized the efficiency of ATAC-seq
data to explore the regulation of muscle development
in common livestock and identified key promoters and
enhancers [5, 50, 51]. In this study, we carried out ATAC-
seq technology to detect accessible chromatin regions in
rabbit skeletal muscle tissues, which is the first compre-
hensive assessment of activated genomic regions in rab-
bit muscles. The distribution of length sizes of inserted
fragments and enrichment characteristics of open chro-
matin signals were in line with previous ATAC-seq [52,
53], indicating the reliability of our ATAC-seq data. In
general, genomic cis-regulatory elements were classified
into two types, including promoters [54] and enhanc-
ers [55]. In our results, genomic annotation of identi-
fied ACRs showed that major activated genomic regions
were located in the intergenic and intron sequences,
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suggesting that a large number of enhancers regulated
skeletal muscle development in rabbits. Previous stud-
ies have revealed that dynamics of chromatin accessibil-
ity play important roles in different types of tissues of
domestic animals, such as adipose tissue [56] and skeletal
muscle tissues [20]. In this study, we found thousands of
ACRs increased chromatin accessibility from D1 to D35
and decreased chromatin accessibility from D35 to D75,
which indicated that chromatin accessibility is a key epi-
genetic factor regulating skeletal muscle development in
rabbits. Furthermore, muscle development-related genes
were found to increase chromatin accessibility in the
promoter regions, suggesting that chromatin accessibil-
ity plays a crucial role in gene expression during skeletal
muscle development in rabbits. Interestingly, our data
showed that there were a large number of ACRs that
increased chromatin accessibility from D1 to D35, but
very few differential ACRs were found in the comparison
of D75 vs. D1, which might suggest that the period from
newborn to weaning is important for obtaining sufficient
epigenetic regulation.

The clustering analysis found that the ACRs in differ-
ent dynamic patterns play different roles during skeletal
muscle development in rabbits. Previous studies have
revealed that the neuron system develops coordinatedly
with skeletal muscle in mammals [57]. Our data showed
that ACRs that decreased their accessibility from D1 to
D35 and increased accessibility at D75 were involved in
nervous system development, which indicates chromatin
accessibility is crucial for maintaining the function of the
neuromuscular system. Previous studies have revealed
that skeletal muscle is a complex heterogeneous tis-
sue composed of various cell types [58], and single-cell
ATAC-seq is used to analyze skeletal muscle develop-
ment in humans and mice [59, 60]. Currently, single-cell
ATAC-seq is gradually being utilized in model animals
and major livestock, such as mice [61], pigs [13], and
cattle [62]. However, single-cell ATAC-seq technology on
rabbit muscles has not yet been applied. Although epi-
genetics in single-cell resolution has not been reported in
rabbit muscle, considering that muscle fibers are the main
cell type in muscle tissue, we obtained a group of ACRs
that were involved in muscle development in this study
by clustering analysis (group B). Therefore, the ACRs in
group B might be key cis-regulatory elements for devel-
oping muscle fibres in rabbits. Integrating ATAC-seq and
RNA-seq data to identify key cis-regulatory elements
is an effective and scientific approach in many previ-
ous studies [13, 63, 64]. Uncovering the cis-regulatory
elements that govern when and how much each gene is
transcribed in a given genome and cellular state remains
a central goal of biology [65]. ATAC-seq can reveal the
open state of chromatin, indirectly reflecting the activity
of regulatory elements; RNA-seq provides information
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on gene expression levels. Combining these two types of
data can more accurately identify cis-regulatory elements
closely related to gene expression. In this study, we pro-
vide a more detailed analysis of the ACRs surrounding
genes. Our data showed that ED was the major type of
cis-regulation, which might indicate that distal regula-
tion is an important mode of muscle development, and
further analysis of the three-dimensional spatial struc-
ture of chromatin may be necessary for precise analysis of
cis-regulation in the future. On the other hand, we found
genes in proximal regulation (PD) were involved in cell
cycle-related function, and genes in distal regulation (ED)
were involved in neuron-related functions, which might
suggest that promoters mainly govern basic or non-cell-
selective biological functions and enhancers mainly gov-
ern specific and more complex biological functions.
Epigenetic mechanisms governing chromatin organiza-
tion and TF binding are critical components of transcrip-
tional regulation [34]. The open chromatin physically
provides an opportunity for the binding of transcription
factors. In this context, DNA sequences are passive, while
transcription factors are active, and the engagement of
TFs and binding sites promotes transcriptional effects.
The members of the SP family could improve muscle
endurance [66] and were enriched in many binding sites
during the postanal development of skeletal muscle in
pigs in the previous study [20]. On the other hand, the
members of the KLF family were key TFs during muscle
development [67]. For example, KLF7 retaining muscle
stem satellite cell quiescence is important for the main-
tenance of stem cell population and tissue regeneration
[68]. KLF15 was reported to play an important role in
skeletal muscle energy metabolism [69] and positively
regulate skeletal muscle differentiation [70]. Our data
showed that the members of the SP and KLF family have
the most binding sites in the differential ACRs and were
highly active in the adult stage in rabbit muscles, which
might indicate the activities of the SP and KLF family
play key roles in terminal development of skeletal muscle
in rabbits. On the other hand, we screen out differential
binding TFs by comparing muscles from different stages,
which indicates a large number of TFs regulate the devel-
opment of rabbit muscles through interacting with DNA
sequences of chromatin accessibility regions. To further
understand the mechanisms of chromatin accessibility
governing muscle development, we performed an inte-
grative analysis of population data and chromatin acces-
sibility data. Previous studies have revealed that PRDM1
plays key roles in muscle development, including differ-
entiation [45], fibre type commitment [47], and organo-
genesis [71]. In this study, the population analysis showed
that a key selected SNP maker was located in the PRDM1
binding site and there is a significant tendency in allele
frequency between specialized meat rabbit strains and
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indigenous breeds. On the other hand, the PRDM1 bind-
ing site maintains high accessibility during the growth
stage in rabbits, suggesting that two mechanisms may
affect the regulation of rabbit muscle development by
PRDM]1, including the single base transversion (A->
G) and the dynamic changes in chromatin accessibility
of DNA sequence. A previous study has revealed that
ZSWIMS is a myogenic protein and regulates C2C12 dif-
ferentiation [72]. Our study showed that ZSWIMS5, which
was from the protein family of ZSWIMS8 is the nearby
gene of the key selected SNP maker. Therefore, the key
SNP (Chr13:12144967 A-> G), PRMD1 binding site, and
the ZSWIMS5 thus warrant further investigation.

Conclusions

In summary, we identify genome-wide accessible chro-
matin regions and their potential regulatory mechanisms
in rabbit skeletal muscles at the tissue level. Our study
provided a category of potential cis-regulatory elements
for understanding the development of skeletal muscles
at key growth stages in rabbits and thus might facilitate
potential insights into meat rabbit breeding.
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