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Abstract 

Background Relative cell type fraction estimates in bulk RNA‑sequencing data are important to control for cell 
composition differences across heterogenous tissue samples. While there exist algorithms to estimate the cell type 
proportions in tissues, a major challenge is the algorithms can show reduced performance if using tissues that have 
varying cell sizes, such as in brain tissue. In this way, without adjusting for differences in cell sizes, computational algo‑
rithms estimate the relative fraction of RNA attributable to each cell type, rather than the relative fraction of cell types, 
leading to potentially biased estimates in cellular composition. Furthermore, these tools were built on different frame‑
works with non‑uniform input data formats while addressing different types of systematic errors or unwanted bias.

Results We present lute, a software tool to accurately deconvolute cell types with varying sizes. Our package lute 
wraps existing deconvolution algorithms in a flexible and extensible framework to enable easy benchmarking 
and comparison of existing deconvolution algorithms. Using simulated and real datasets, we demonstrate how lute 
adjusts for differences in cell sizes to improve the accuracy of cell composition.

Conclusions Our software (https:// bioco nduct or. org/ packa ges/ lute) can be used to enhance and improve existing 
deconvolution algorithms and can be used broadly for any type of tissue containing cell types with varying cell sizes.
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Background
High-throughput bulk RNA-sequencing (RNA-seq) data-
sets that profile gene expression across large sample sizes 
are increasingly being used to identify biological differ-
ences between groups of samples, such as neurotypical 
control and Alzheimer’s disease cohorts [1, 2]. However, 
a major challenge with leveraging these data when pro-
filing heterogeneous tissue is the intra-sample cell com-
position differences that are often observed [3]. Recent 
efforts have been made to develop computational tools 
incorporating cell type-specific reference profiles based 
on single-cell or single-nucleus RNA-seq (sc/snRNA-
seq) data to estimate the relative fractions of different 
cell types in bulk RNA-seq data. These estimates can be 
used to control for differences in cell composition across 
heterogenous tissue samples, which can also better deter-
mine the cell types that drive differential expression sig-
nals [4, 5].

While these algorithms have been successfully used to 
demonstrate how cell composition changes across sample 
groups or conditions, an important challenge with these 
algorithms is that they frequently show reduced perfor-
mance in heterogeneous tissues with varying cell sizes 
including brain [6–8], adipose [9], heart [10], and solid 
tumor samples [11–13]. One reason for this is that the 
default in most deconvolution algorithms is to assume 
the cell sizes are the same across cell types. In this way, 
without adjusting for differences in cell sizes, computa-
tional algorithms estimate the relative fraction of RNA 
attributable to each cell type, rather than the relative 
fraction of cell types, leading to potentially biased esti-
mates in cellular composition [5].

As the consequences of cell type-specific size variation 
started to be recognized, efforts began to incorporate cell 
size estimates into existing deconvolution algorithms for 
more accurate cell composition estimation. Improved 
performances after cell size adjustments were found in 
studies of blood [14, 15], epithelial [16], and multi-tissue 
[4, 17] samples. The SimBu algorithm [18] incorporates 
cell size scale factors to generate bulk samples with sim-
ulated differences in cell sizes. The ABIS algorithm [15] 
uses experimentally derived and algorithmically fine-
tuned cell size scale factors to improve accuracy for blood 
cell type predictions. The EPIC algorithm [12, 14] adjusts 
on cell size prediction outputs. The MuSiC algorithm 
uses either a library normalization or user-specified cell 
size scaling [4]. However, each of these tools were built 
on different frameworks with non-uniform input data 
formats while addressing different types of systematic 
errors or unwanted bias [19–26]. Further, the influence 
of data normalizations on reference and real bulk RNA-
seq is an area of active study [20]. These factors can make 
it difficult to generate comparable deconvolution results 

across different algorithms, and new tools for evaluating 
the effects of data transformations, normalizations, and 
bias corrections on deconvolution outcomes are needed.

Here, we propose, lute, a computational tool (Fig.  1) 
to accurately deconvolute cell types with varying cell 
sizes in heterogeneous tissue by adjusting for differences 
in cell sizes. The software wraps existing deconvolu-
tion algorithms in a flexible and extensible framework 
to enable their easy benchmarking and comparison. For 
algorithms that currently do not account for variability 
in cell sizes, we extend these algorithms by incorporating 
user-specified cell scale factors that are applied as a sca-
lar product to the cell type reference and then converted 
to algorithm-specific input formats. We demonstrate our 
software with both simulated and real experiment bulk 
RNA-seq data, including both heterogeneous blood [15] 
and brain tissues [27]. While blood has been extensively 
studied [9, 13, 15, 28], the brain remains mostly lack-
ing from the literature in benchmark evaluations [27], 
despite the great interest and importance in determining 
the relative role of cell type-specific expression in hetero-
geneous brain tissue and their subsequent dysregulation 
in debilitating brain disorders [19, 22]. Our software is 
available within the Bioconductor framework [29] and 
can be integrated into workflows using established core 
Bioconductor infrastructure for bulk RNA-seq and sc/
snRNA-seq data [30].

Results
lute: deconvolution of heterogeneous tissue with varying 
cell sizes
We begin with a general formulation of cell type decon-
volution to demonstrate how to adjust for differences 
in cell sizes as introduced previously [19], followed by a 
summary of the lute software package. Consider a set of 
high-dimensional YGxJ representing a heterogeneous tis-
sue sample from g ∈ (1, ...,G) marker genes expressed 
and j ∈ (1, ..., J ) bulk RNA-sequencing samples. We 
assume the heterogeneous tissue is a mixture of K  cell 
types indexed by k ∈ (1, ...,K ) . Using a referenced-based 
sc/snRNA-seq approach, the standard equation to esti-
mate the cell composition of J  bulk RNA-seq samples 
is YGxJ = ZGxK ∗ PKxJ where the goal is to estimate PKxJ 
the K  cell type proportions each of the each of the J  bulk 
samples using a cell type-specific reference matrix ZGxK  
containing for G marker genes across the K  cell types.

Next, consider a vector of scalars sK = (s1, ..., sK ) rep-
resenting the cell size for each kth cell type, which could 
be computationally derived or, most often, experimen-
tally derived from an external dataset, ideally from an 
adjacent tissue slice [19]. We can define the matrix 
SK = IKxK ∗ sK  where IKxK  is an identity matrix. Then, 
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in a similar manner as above, if we consider the equation 
YGxJ = ZGxK ∗ SKxK ∗ PKxJ , we can define a new matrix 
Z′GxK = ZGxK ∗ SKxK  and solve for PKxJ using an equa-
tion similar as above YGxJ = Z′GxK ∗ PKxJ (Methods). 
In this way, we estimate the cell composition PKxJ while 
also adjusting for differences in cell size. We note that, 
without scaling by SKxK  , the assumption is that cell sizes 
are equal. For example, in lute, the default algorithm is 
non-negative least squares (NNLS) [31] where for each 
jth sample, pkj > 0 and K

k=1pkj = 1 and user-specified 
cell scale factors sK  are applied as a scalar product to the 
cell type reference and mapped to inputs for the decon-
volution algorithm. However, lute supports NNLS  [31], 
MUSiC  [4], MuSiC2 [17], EPIC  [14], DeconRNASeq  
[10], and Bisque  [9].

To address the problem of independent deconvolution 
frameworks with non-uniform input data formats, we 
were inspired by the bluster Bioconductor package [32] 
designed to address a similar problem for unsupervised 
clustering algorithms. We take standard Bioconductor S4 

classes as input, including SummarizedExperiment [33], 
SingleCellExperiment [29, 33], and a vector of cell sizes, 
either user-provided or loaded from the cellScaleFac‑
tors [34] ExperimentData package (Fig.  1A) containing 
previously published cell size scale factors from multi-
ple platforms, cell types, tissues, and studies (Table 4 in 
[19]). Then, we define a S4 generic function called decon-
volution() and create separate S4 classes in a hierarchy 
for each algorithm supported (Fig. 1B-C). This facilitates 
modular support for algorithms available across multiple 
repositories, including CRAN [9, 31], Bioconductor [10], 
and GitHub [4, 14, 17]. For example, deconvolution algo-
rithms that depend on the existence of reference-based 
sc/snRNA-seq profiles all share a common S4 class [35] 
(Methods). In this way, for each algorithm, lute is able to 
map standard data inputs Y  , Z , and S (also described in 
Table 1) to the appropriate algorithm-specific synonyms 
and implementations.

Fig. 1 Overview of lute framework for deconvolution in Bioconductor. A Schematic of a deconvolution experiment using lute. Inputs include 
(far left) matrix/flat tabular format, (second from left) SummarizedExperiment [29], (second from right) SingleCellExperiment [29, 30], and (far 
right) cellScaleFactors. B The lute framework showing (top) terms (defined in Results 2.1) for deconvolution and pseudobulk operation, 
including Y (bulk), P (proportions), S (cell type sizes), and Z (cell type reference), noting k (number of cell types) and G (marker genes) with arrows 
indicating applicable input classes and scaling factors corresponding to differences in cell sizes across cell types available in the cellScaleFactors 
(hexagon) R/Bioconductor package [19], (middle) the typemarkers() function to select marker genes from the reference and bulk, and (bottom) 
the deconvolution() generic for calling the user’s choice of the deconvolution method. C Schematic illustrating supported deconvolution 
algorithms in lute including a parent class (a.k.a. “deconvoParam”), referencebasedParam, independentbulkParam, nnlsParam, musicParam, 
epicParam, deconrnaseqParam, bisqueParam, and music2Param
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Application of lute using simulated pseudobulk data
In the next two sections, we considered two applica-
tions of lute using in silico pseudobulk data, where we 
simulated bulk RNA-seq profiles by aggregating sc/
snRNA-seq data mixed together in various known pro-
portions or cell compositions. We demonstrate how 
differences in cell sizes lead to inaccurate estimates of 
cell composition, but scaling for differences in cell size 
leads to improved accuracy for cell composition estima-
tion. In addition, there is great interest in investigating 
how cell composition changes in the brain, particularly 
the human dorsolateral prefrontal cortex (DLPFC), are 
associated with neurodegenerative and neuropsychi-
atric disorders including Alzheimer’s Disease (AD) [7], 
major depressive disorder [36], and schizophrenia [37, 
38]. Recent evidence in schizophrenia suggested gene 
expression changes accompany onset [37, 39, 40], while 
other studies showed neuroinflammation, mediated by 
non-neuronal cells called microglia, is linked to early 

stages of neuropsychosis [41]. High cellular heterogene-
ity in DLPFC makes deconvolution challenging, partially 
and a known component of this is due to structural and 
microenvironmental complexity arising from six dis-
tinct cortical layers [42]. Similar independent analyses 
showed there are many molecularly distinct subpopula-
tions among the 6 previously mentioned fundamental 
brain cell types of inhibitory neurons, excitatory neu-
rons, oligodendrocytes, oligodendrocyte precursor cells, 
astrocytes, and endothelial cells [43]. Specifically, we 
considered plasmablasts compared to other blood and 
immune cell types from peripheral blood mononuclear 
cells (PBMC) isolated from whole blood, where cell size 
adjustments showed improvement in bulk transcrip-
tomics deconvolution accuracy [12, 14, 15]. Plasmab-
lasts, otherwise known as antibody-secreting cells, have 
distinct transcriptional activity from other blood cell 
types and are studied for their roles in febrile vasculitis 
[44] and autoimmunity [45, 46]. For both of these tissues 

Table 1 Summary of key terms. Column 1 refers to the terminology introduced in Fig. 1 and used throughout the manuscript. Column 
2 gives the definition of the term

Terminology Definition

sample Tissue slice (from a tissue block) or cell mixture from tissue

donor Subject‑level identifier for source of tissue

bulk sample Tissue sample containing mixture of cells across K cell types (Y)

Cell type reference matrix Matrix containing cell type‑specific gene expression for G genes 
across K cell types (Z)

Cell size factors vector of cell sizes of K cell types (S)

Cell composition vector of the proportion of K cell types in a given bulk sample (P)

RMSE Square root of the mean of squared errors

Fig. 2 Performance improvement when adjusting for differences in cell sizes with lute. Pseudobulk samples were created using sc/snRNA‑seq data 
and mixing cell types together with a known cell type proportion (x‑axis). The predicted cell type proportions (y‑axis) were estimated using NNLS 
with and without adjusting for differences in cell sizes. The known (x‑axis) and predicted (y‑axis) cell type proportions are shown without scaling 
(left) and with scaling (right). A N = 17 pseudobulk profiles were created by mixing neuron and glia cell types at a prespecified ratio ranging 
between 80/20% to 25/75% cell composition using N = 17 snRNA‑seq libraries generated from tissue blocks obtained from 10 adult neurotypical 
donors in Huuki‑Myers et al. (2023) [47] across three regions of the dorsolateral prefrontal cortex (DLPFC). B N = 12 pseudobulk profiles created 
mixing plasmablasts‑other cell types ranging between 7.04*10–4—1.47*10–3% to 0.992—0.999% cell composition using bulk RNA‑seq based 
reference profile of peripheral blood mononuclear cells (PBMC) [15]. Diagonal lines indicate y = x and no error
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(brain tissue and blood tissue), we demonstrated how dif-
ferences in cell sizes lead to inaccurate estimates of cell 
composition using in silico pseudobulk and real bulk 
RNA-seq samples.

Example from human postmortem DLPFC
We demonstrate the performance of lute by simulat-
ing pseudobulk RNA-seq data using a snRNA-seq data-
set [47] from neurotypical postmortem human DLPFC 
brain tissue with cell types that we aggregate to k = 2 cell 
types, namely neurons (excitatory and inhibitory) and 
glia (oligodendrocytes, oligodendrocyte precursor cells, 
astrocytes, and microglia). Briefly, we show performance 
improvement in estimating the cell compositions with 
and without adjusting for cell sizes (Fig. 2A). In this brain 
region, it is known that neurons are nearly 3 × larger than 
glia [48], which makes it an illustrative dataset to dem-
onstrate the performance improvements from cell size 
scale factor normalization with lute. In this dataset, we 
utilized N = 17 snRNA-seq libraries generated from tis-
sue blocks obtained from 10 adult neurotypical donors 
across three regions of the DLPFC including the ante-
rior, posterior, and mid regions. The snRNA-seq from 
each tissue block had a median of 3,004 nuclei per sample 
(Table  S1) and cells were aggregated to create 17 pseu-
dobulk profiles with neuron-glia ratio ranging between 
80/20% to 25/75% cell composition. Pseudobulks were 
generated using the product of a specified (or known) cell 
type proportions and reference snRNA-seq mean expres-
sion profiles. Cell size rescaling was performed by taking 
the scalar product of cell type expression and a set of cell 
size scale factors (Table S2, Methods). We performed fea-
ture selection using the snRNA-seq data to identify the 
top 40 cell type marker genes using the mean ratio of the 
sample-adjusted expression (Methods 4.2 Marker selec‑
tion) [27]. Using these markers, we used NNLS [31] to 
estimate the cell composition of the pseudobulk samples 
for k = 2 groups.

Without accounting for differences in cell sizes in lute 
between neurons and glia, we observed an overestima-
tion of the proportion of neurons and an underestima-
tion of the proportion of glia cells (root mean squared 
error, RMSE = 0.22) (Fig. 2A, Table S3). This overestima-
tion reflects the algorithm estimating the relative frac-
tion of RNA attributable to each cell type, rather than 
the relative fraction of cell types, leading to biased esti-
mates in cell composition [5]. However, when adjusting 
for differences in cell sizes (Table S2, Methods), we found 
more accurate estimates of cell composition (RMSE not 
scaling = 0.22, RMSE scaling = 1.34*10–16) (Fig.  2A, Fig-
ure  S1A-B). We found similar results (RMSE not scal-
ing = 0.17, RMSE scaling = 9.38*10–17) when expanding to 
k = 3 cell types (excitatory neurons, inhibitory neurons, 

and glia) using the same dataset (Figure S2A-B, Table S3). 
In this analysis, expanding from k = 2 to k = 3 had only a 
slight impact on error in glial cell estimates (not scaling, 
 RMSEk2—RMSEk3 = 0.22—0.17 = 0.04), which diverged 
from prior findings in brain tissue [49].

To assess the robustness of lute to other reference pro-
files, we repeated the pseudobulking experiments with a 
different snRNA-seq dataset from postmortem human 
neurotypical DLPFC [50]. Here, the snRNA-seq data 
were from N = 3 donors with a median of 4,209 nuclei 
per sample (Table  S4), which were aggregated to create 
pseudobulk profiles with 19–60% neuron and 12–48% 
glia cell composition and were adjusted for differences 
in cell sizes (Table S5). Using the same feature selection 
as above, we estimated the cell composition for k = 2 
(Figure S1C-D) and k = 3 (Figure S2 C-D) groups of cell 
types and found similar results to the first DLPFC dataset 
(Fig. 2A, Table S3).

Finally, we investigated whether the scaling fac-
tors used to adjust for differences in cell sizes that were 
uniquely derived for each dataset could be generalized to 
adjust for differences in cell sizes in other datasets. Spe-
cifically, using the snRNA-seq libraries generated from 
DLPFC tissue blocks obtained from 10 adult neurotypical 
donors, we estimated the cell sizes for cell types within 
each snRNA-seq sample using marker library expression 
and paired orthogonal in  situ hybridization (smFISH) 
measurements (Methods, Table  S6). Next, we randomly 
shuffled the smFISH cell sizes (Table S7) across the N = 13 
snRNA-seq libraries derived from unique DLPFC tissue 
blocks (cell sizes neuron, mean = 37.04, median = 36.09, 
sd = 4.29; cell sizes glial mean = 30.51, median = 30.59, 
sd = 2.33). The purpose of this is to simulate the scenario 
where we are interested in estimating the cell composi-
tion from a bulk RNA-seq tissue sample, but we have 
not directly measured the cell sizes for each cell type. 
We asked whether cell sizes measured using smFISH/
immunofluorescence (IF) data using RNAScope/IF tech-
nology in one snRNA-seq sample can be generalized to 
other samples. We found that randomly shuffling the cell 
size across tissue blocks used as input to NNLS did not 
lead to a reduction in performance (Table  S7), showing 
that estimating the cell composition is robust when using 
cell sizes calculated from a different source (Figure  S3, 
Table S8). While RMSE reduction from this experiment 
was consistent across donors (RMSE noscale = 0.05, 
withscale = 0.03, Table  S3), this improvement was non-
uniform because of differences among cell scale fac-
tors used to generate the pseudobulk (i.e. taken as the 
matrix product of reference and cell size estimates) and 
the cell scale factors used to perform the deconvolution. 
This demonstrated that analysis with lute facilitates fine 
tuning of cell scale factors under differing simulation 
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conditions, including cell scale factor and marker expres-
sion magnitudes.

Example from human PBMC
Next, we considered a different tissue with cell types 
that also vary size, namely peripheral blood mononu-
clear cells (PBMC). The dataset profiled 29 immune and 
blood cell types from N = 12 healthy young adult donors 
for which known (a.k.a. “true”) cell proportion estimates 
were available, and it was used to calculate the ABsolute 
Immune Signal (ABIS) PBMC cell type reference. Refer-
ence profiles from these data were based on purified bulk 
RNA-seq transcripts per million (TPM) expression, and 
known estimates of cell composition came from flow 
cytometry cell abundances. PBMC features heterogeneity 
in cell sizes [28], and plasmablasts are known to be larger 
than other cell types in this tissue by up to 15.32 fold [15]. 
The reference contained N = 4 donors with a median of 
2.0*106 cells per sample [15], which were aggregated to 
create pseudobulk profiles with 9.00*10–4—0.008% plas-
mablasts and 0.992—0.999% other cell composition. 
Using the same feature selection as above, we estimated 
the cell composition for k = 2 and found improvement 

(RMSE unscaled = 5.37*10–02, scaled = 6.63*10–17 
Table S3) for the estimates of cell composition for plas-
mablasts (Fig. 2B, Figure S4).

Application of lute using observed bulk RNA‑seq data
In this section, we used real (or observed, not in silico 
pseudobulk) bulk RNA-sequencing data to evaluate accu-
racy of the deconvolution algorithms used to estimate 
the cell composition of heterogeneous tissue with vary-
ing cell sizes. Using the data described in Sect. " Example 
from human postmortem DLPFC", there were a sub-
set of N = 12 DLPFC tissue blocks that had paired bulk 
RNA-seq along with the snRNA-seq data along with 
matched smFISH/IF data (Table S8) [27]. We found that 
adjusting for differences in cell sizes using NNLS led to 
an improved performance in terms of estimating the cell 
composition (Fig. 3). We also compared the performance 
of NNLS to (i) MuSiC [4], as it uses gene variance-based 
scaling to improve across-sample integration in multiple 
samples, and (ii) Bisque  [9] (Figure S5), as it adjusts for 
assay-specific biases and was shown to outperformed 
other algorithms in recent analyses of human cortex 
[6]. No differences were observed from Bisque with or 

Fig. 3 Estimates of the proportion of neurons in observed bulk RNA‑seq DLPFC samples using NNLS. Analysis of N = 8 observed bulk RNA‑seq 
DLPFC samples from neurotypical donors from [27]. A Scatterplots of (x‑axis) known versus (y‑axis) predicted (blue points, bottom row) neuron 
and (red points, top row) glial cell proportions using NNLS without scaling (left column) or with cell size factor scaling (right column) for bulk 
RNA‑seq samples from DLPFC in which known cell type proportions are estimated from snRNA‑seq data. Text label indicates Br8667_mid, an outlier 
sample. Diagonal lines indicate y = x and no error. B Jittered points and quantile boxplots showing (y‑axis) error, calculated as the difference 
between true minus predicted cell type proportions, either (left) with or (right) without scaling, with point and box line colors indicating either (red) 
glial or (blue) neuron cell type
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without rescaling (Figure S5C-D), reflecting the fact that 
this algorithm’s linear adjustment method effectively 
adjusts away the effect of taking the scalar product of cell 
size scale factors. With known neuron proportions calcu-
lated as fraction total cells from snRNA-seq, correlations 
(Figure S6, Pearson’s R coefficient) were highest in either 
scaling condition for Bisque (both R = 0.76), followed by 
NNLS with cell size scaling (R = 0.65), MuSiC with scal-
ing (R = 0.63), and NNLS (R = 0.33) and MuSiC (R = 0.30) 
without scaling. One outlier sample (sample id: Br8667_
mid) showed high unscaled RMSE (NNLS = 0.48, Fig. 3A-
B, MuSiC = 0.48, Figure S5A-B) that was reduced by 
similar magnitude after scaling (NNLS R = 0.41, MuSiC 
R = 0.42) MuSiC and NNLS. This sample showed the 
lowest error from Bisque (R = 0.15). In summary, while 
Bisque showed the best performance before normaliza-
tion, NNLS and MuSiC tied for best performance after 
cell size scale factor normalization. However, the ideas in 
lute to adjust for cell sizes can easily be integrated into 
any deconvolution algorithm.

Discussion and conclusions
In this paper, we introduce a software package lute that 
can be used to accurately estimate the proportion of cell 
types with varying cell sizes in heterogeneous tissue by 
adjusting for differences in cell sizes. Our package lute 
wraps existing deconvolution algorithms in a flexible 
and extensible framework to enable easy benchmarking 
and comparison of existing deconvolution algorithms. 
We performed a comparison of three algorithms, NNLS, 
Bisque, and MuSiC, and found cell scale factor adjust-
ment improved outcomes for these algorithms. This 
indicates cell scale factor adjustment could be more use-
ful in settings where cell type heterogeneity is of greater 
concern (i.e. in specific experiments or tissues), or where 
available samples are not matched by donor (i.e. where 
sample sources are discordant).

While benchmark evaluations have emerged for decon-
volution, large RNA-seq datasets featuring matched 
orthogonal measures suitable for systematic deconvolu-
tion experiments are lacking for brain and other tissues 
because it is difficult to systematically profile all cell 
types within them [21]. Where few samples and nuclei 
are available per study, multiple datasets can be used 
to make the cell type reference for deconvolution [4, 7, 
51], and our findings showed scaling on cell size scale 
factors should work in these settings. Furthermore, we 
replicated prior findings [5] that cell types having high 
mRNA size scale factor bias show systematic over-pre-
diction from deconvolution, and that cell types having 
very low bias show systematic under-prediction. Here we 
fill in the gaps of existing benchmark studies and demon-
strate applications of lute to experimental and simulated 

bulk RNA-seq data from heterogenous brain and blood 
tissues.

While we performed normalization as an explicit and 
discrete step upstream and independent of downstream 
algorithmic deconvolution, this opens the door for fur-
ther experimentation to either fine-tune normalizations 
or show algorithm performance either with or without 
cell size scaling. Importantly, lute supports such investi-
gations, which flexibly allows a user-defined marker gene 
identification algorithm and deconvolution algorithm 
prior to cell size normalization.

Marker gene quality and efficacy is another open topic 
for bulk transcriptomics deconvolution of heterogene-
ous tissues, likely due to several factors. Recent meth-
ods have mapped canonical cell type expression markers 
onto private or difficult-to-access datasets [23, 24]. How-
ever, it remains uncertain whether a canonical or private 
cell type marker expression reference is preferable for 
deconvolution. Also, no consensus standard exists for 
marker gene selection, and multiple available methods 
have not been formally tested for deconvolution of het-
erogeneous tissues. Accurate, reliable, and generalizable 
cell type marker identification is crucial for deconvolu-
tion and may become more important when applied for 
some of the hundreds of transcriptional cell type profiles 
recently identified in human brain [52]. While our find-
ings included a relatively modest number of brain cell 
types (k = 2 or 3), this ensured more nuclei per type cat-
egory given the limited number of cells in our dataset. 
We introduced a software framework that can be further 
applied to scenarios with much greater cell type quanti-
ties to better understand the efficacy of cell size-specific 
rescaling.

In conclusion, lute allows characterization of consist-
ent deconvolution improvements from normalization, 
and these improvements are a function of the selected 
cell type markers and known size in real and simulated 
data. Our package is available on Bioconductor and can 
be used to extend and improve existing deconvolution 
algorithms by adjusting for differences in cell sizes. We 
aim to encourage researchers to embrace cell size rescal-
ing as a new standard processing step to develop and test 
bulk transcriptomics deconvolution techniques, which 
will expedite further breakthroughs in the transcriptom-
ics field.

Methods
Data
Overview of paired bulk‑RNA‑seq, snRNA‑seq and smFISH/IF 
datasets from adult neurotypical postmortem human DLPFC 
tissue blocks
As previously described by Huuki-Myers et al. 2023 [47], 
paired (meaning both types of -omics were measured 
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on the same N = 19 tissue blocks) snRNA-seq meas-
ured on the 10 × Genomics Chromium platform and 
spatially-resolved transcriptomics data measured on the 
10 × Genomics Visium platform were generated from tis-
sue blocks collected from 3 different positions across the 
anterior–posterior axis of the DLPFC (designated pos-
terior, anterior, and middle) from 10 adult neurotypical 
control donors (Table S1). In our analyses here, we only 
use the snRNA-seq libraries to generate the pseudobulk 
RNA-seq profiles. In addition to the snRNA-seq libraries 
generated from these tissue blocks, there was also paired 
bulk RNA-sequencing, and single molecule fluorescent 
in situ hybridization (smFISH)/immunofluorescence (IF) 
using RNAScope/IF technology generated and described 
in Huuki-Myers et  al. 2024 [27] measured in the same 
tissue blocks. The smFISH/IF data was used to meas-
ure the cell type composition in the same tissue samples 
serving as a “gold standard” to compare the estimated 
cell composition in the bulk RNA-seq predicted by the 
deconvolution algorithms in [27]. The fact that all three 
(snRNA-seq, bulk RNA-seq, and smFISH/IF) technolo-
gies were measured on the same tissue blocks helps to 
minimize potential donor-specific unwanted variation or 
batch effects.

Preprocessing of snRNA‑seq and smFISH/IF data from 
DLPFC tissue blocks Out of the N = 19 tissue blocks 
from Huuki-Myers et  al. 2023 [47], N = 13 tissue blocks 
(excluding samples Br2720_post and Br6471_ant) had 
matched snRNA-seq and smFISH/IF data at the time 
of analysis. We used the N = 17 snRNA-seq libraries 
measured on the 10 × Genomics Chromium platform 
from these 10 adult neurotypical donors obtained from 
across three regions of the dorsolateral prefrontal cor-
tex (DLPFC) (Table S8). These snRNA-seq libraries were 
used to create the in silico pseudobulk RNA-seq profiles 
(Fig.  2A), and the subset of N = 13 pseudobulk samples 
with matched smFISH/IF data were used to perform 
shuffle experiments (Figure S3).

The preprocessing and initial cell type label assign-
ment of these snRNA-seq data were described previ-
ously [27]. Nuclei with outlying high mitochondrial gene 
expression and low gene expression, consistent with 
run failure, were removed. Cell type labels were initially 
mapped to snRNA-seq data using a multi-step cluster-
ing strategy. We removed cells not labeled as neuronal 
or glial from this strategy (e.g. immune cells, etc.) prior 
to downstream analyses. We identified six distinct cell 
types (labeled “Inhib” for inhibitory neurons, “Excit” for 
excitatory neurons, “Oligo” for oligodendrocytes, “Astro” 
for astrocytes, and “EndoMural” for Endothelial and 
Mural cells), which we resolved into k = 3 (Inhib, Excit, 

glial) and k = 2 (neuron and glial) label sets. We combined 
these cell types under the broad labels of “glial” (“Oligo”, 
“Astro”, “EndoMural”) and “neuron” (“Excit” and “Inhib”. 
For pseudobulking experiments we implemented two cell 
type label resolutions of combined as k2 (“neuron” and 
“glial”) and k3 (“glial”, “Excit”, and “Inhib”, Table S2).

For the smFISH/IF data, fluorescent labels were devel-
oped for the RNAScope/IF assay and imaged using the 
HALO software. Two RNAScope/IF probe combinations 
marked 3 cell types each: the first (N = 12) included Excit, 
Micro, and Oligo/OPC; the second (N = 13) included 
Astro, Endo, and Inhib (see Huuki-Myers et  al. 2024 
[27] for further details on smFISH/IF preprocessing). In 
the analyses here, the cell types labels from smFISH/IF 
and snRNA-seq were approved by consensus from three 
image analysis experts.

Preprocessing of bulk RNA‑seq data from DLPFC tissue 
blocks From the same 10 DLPFC donors, paired bulk-
RNAseq data was collected from 19 tissue blocks using 
three different RNA extraction methods: (i) isolated total 
RNA, (ii) isolated nuclear RNA, and (iii) isolated cyto-
solic RNA. Two RNA-seq libraries were prepared from 
each RNA sample using either RiboZero Gold or PolyA 
library preparation techniques. Bulk RNA-seq process-
ing and quality control is described in Huuki et al. 2024 
[27], a total of 110 bulk RNA-seq samples were produced 
by this dataset, with a maximum of 6 per tissue block. 
For the purposes of our analyses, we did not distinguish 
between the different RNA extraction methods or RNA 
library types. Of N = 19 the DLPFC tissue blocks, our 
analyses used a subset of N = 8 tissue blocks from N = 6 
donors that had smFISH data matched with bulk RNA-
seq from nuclei prepared using RiboZeroGold (Results 
Sect.  “Application of lute using observed bulk RNA-seq 
data”, Fig. 3).

In addition to the above, all bulk RNA-seq samples 
passed further additional minimum quality filters, with 
a minimum of 38,750 (median = 704,918) counts marker 
expression, and a maximum of 30 (median = 1) zero-
expression markers, by sample (Supplementary Materi-
als). Two tissue blocks had two samples of matched bulk 
RNA-seq and snRNA-seq data (Br8667 middle and ante-
rior; Br8492 middle and posterior). In assessments of cell 
amount accuracy across conditions, we calculated RPKM 
and applied a log transformation using pseudocounts 
with log2 normalization (logNormCounts function from 
the scuttle (v1.12.0) [53] R/Bioconductor package).
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Estimating cell sizes using RNAScope/IF data To esti-
mate cell sizes using smFISH/IF, cells were imaged and 
processed in HALO (Indica Labs). A maximum nucleus 
area of 78 µm was applied to remove out-of-focus cells. 
Image expected nuclei count was filtered according to a 
maximum nuclei count of 1,362,399, which was deter-
mined using a quantile filter of 97%. Cell sizes were 
calculated from RNAScope/IF as the median for each 
of six broad cell type markers detected using HALO. 
RNAScope/IF data labeled 6 broad cell types across the 
DLPFC: excitatory neurons, inhibitory neurons, oligo-
dendrocytes, astrocytes, microglia, and endothelial cells.

RNAScope confidence filters were defined by expert 
image analyst review [27]. Images were processed as pairs 
for each tissue slice, and pairs were graded at three qual-
ity levels. After filtering to retain the two highest qual-
ity levels, we used 12 samples with image-based cell sizes 
from at least 1 slice including 9 samples with both paired 
slices in downstream analyses.

Overview of snRNA‑seq from adult neurotypical postmortem 
human DLPFC tissue blocks in Tran et al. (2021)
Next, we used N = 3 DLPFC snRNA-seq libraries from 
Tran et  al. (2021) generated from DLPFC from 3 adult 
neurotypical donors. These snRNA-seq samples were 
used in the in silico pseudobulk experiments in this 
paper. The snRNA-seq libraries were generated using the 
10 × Genomics Chromium platform. The preprocessing 
for the snRNA-seq data was described previously [50].

Overview of bulk RNA‑seq from PBMC samples
Bulk RNA-seq data were processed as described in [15]. 
We further performed simulations using previously pub-
lished median transcripts per million (TPM) of bulk 
RNA-seq data from purified cells (a.k.a. the ABIS refer-
ence) and flow cytometry cell abundances from PBMCs 
of 12 healthy individuals in total [15]. Gene names were 
mapped to Ensembl IDs using the biomaRt (v2.58.0) [54] 
R/Bioconductor package. Cell types were binarized as 
either “Plasmablast” or “Non-plasmablast” combining 
16 cell types, including, MAIT, NK, and multiple types 
of dendritic cells, Monocytes, naive T-cells, and memory 
T-cells. After removing cell types absent in the reference, 
flow cytometry (a.k.a. “known”) proportions ranged from 
7.01*10–4—0.776 for plasmablasts and 0.001–0.276 for 
non-plasmablasts. In mathematical terms defined previ-
ously, Z was from bulk RNA-seq data from 4 donors and 
Pknown was based on flow cytometry data from 12 donors. 
After generating ( Y = Z ∗ S ∗ Pknown) 12 pseudobulk 
samples, NNLS was used to obtain 12 Ppredicted vectors 
for the two (K = 2) cell types of interest (Figure S7).

Marker selection on bias‑adjusted expression
We used a two-step pipeline to adjust snRNA-seq data 
for batch effects. Adjustments were performed separately 
for each cell type categorization scheme (e.g. one adjust-
ment series each for K2 and K3, respectively). First, we 
adjusted for sample batch effects using ComBat() from 
the sva [55] (v3.44.0) R/Bioconductor package. We ran 
this function in parametric mode and specified the cell 
type labels as the principal covariate. In the second step, 
we used the scuttle (v1.6.3) [53] R/Bioconductor pack-
age to downsample counts according to minimum library 
size observed across batches within each cell type.

Cell type gene marker selection from snRNA-seq data 
was performed on the batch-adjusted normalized log-
transformed expression. We identified the most reliable 
cell type markers at three resolutions as the markers 
with the highest concordance (i.e. occurring as markers 
for the same cell type consistently across all slides) and 
overlap (i.e. occurring in at least 3 of 12 slides) across 
sample sources. Markers were identified using the 
Mean Ratio of cell type expression with the get_mean_
ratios2() from the DeconvoBuddies (v.0.99.0) R package 
[27]. At 80 marker genes per cell type selected using 
the highest ratio of mean expression, this resulted in a 
median of 286 counts per cell, and a median of 1 zero-
expression markers, by cell (Table S1).

Deconvolution algorithms with NNLS, MuSiC, and Bisque
We used our lute (v.0.99.30) R/Bioconductor package to 
perform deconvolution using several algorithms. NNLS 
was accessed using a lute-compatible class wrapper to 
call the nnls() [31] function from the NNLS (v1.4) R 
package. MuSiC [4] was accessed using a lute-compati-
ble class wrapper, which called the music.basic function 
from the MuSiC (v.1.0.0) [56] R package from GitHub. 
Bisque [9] was accessed using the ReferenceBasedDe-
composition function from the BisqueRNA (v.1.0.5) 
[57] R/CRAN package. Class wrappers for deconvolu-
tion algorithms are described in the lute companion 
vignette on Bioconductor. We performed experiments 
with and without rescaling before deconvolution with 
either NNLS, MuSiC, or Bisque.

Cell size scale factors
Cell size scale factors used in rescaling were computa-
tionally and experimentally derived (Table S2, Table S5, 
Table S6) [27]. We defined cell size by segmenting the 
nucleus and then dilating around the nucleus, which 
was correlated to the library size estimated using 
snRNA-seq data. Experimentally derived factors were 
calculated based on high-resolution image capture 
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from RNAScope/IF experiments followed by pro-
cessing with the HALO (v3.3.2541.383, Indica Labs) 
image analysis software. Cells were labeled with DAPI, 
a nuclear marker, and cell type-specific fluorescence 
markers, as well as a fluorescent marker for AKT3, a 
size-specific marker across cell types in DLPFC tissue 
[48]. We used the “AKT3_Copies” variable from HALO 
software, which represents AKT3 puncta counts in the 
RNAscope assays derived from HALO, then applied 
the “Nucleus_Area” Halo software variable as orthogo-
nal cell size estimates. We further summed expression 
marker counts for each cell type prior to conducting 
experimental bulk RNA-seq analyses (Table  S2). We 
selected manual cell size scale factor integers of 10 for 
neuron and 3 for glial (ratio = 3.33) that fell between 
orthogonal scale factor ratios for median marker 
expression (k = 2, neuron/glial = 11.58) and previously 
published scale factors for these cell types [5].

Pseudobulking experiments
To better understand bias due to differences in cell 
sizes, we performed a pseudobulking experiment 
series across samples and cells passing quality filters 
from multiple human DLPFC cohorts [47, 50], where 
cell type labels were assigned by the same cluster-
ing pipeline in each cohort. We used the lute function 
ypb_from_sce() to generate pseudobulk samples as the 
matrix product of the proportions and cell type refer-
ence. For example, in pseudobulking the DLPFC sam-
ples, we manually set a large divergence in cell sizes 
between all neuron and glial labels, where neurons, 
including Inhib an Excit, had a manually set scale factor 
size of 10 and glial, including Oligo, Astro, Micro, and 
EndoMural, had a size of 3, and the scalar product was 
then taken with the cell reference atlas using lute (Fig-
ure S3). Rather than simulate cell proportion mixtures, 
we confined study to empirical reference-proportion 
combinations to demonstrate real snRNA-seq dataset 
utility, as samples containing low cell type proportions 
may have distinct expression patterns at markers com-
pared to high cell type proportions [49]. 

Simulations testing the impact of cell size factors on 
deconvolution outcomes in terms of bias and RMSE 
used the following mathematical approach. First, we 
defined the generative function for a simulated bulk 
sample such that the matrix product was computable:

where Y  is a matrix of G markers by J  samples, P is a vec-
tor of proportions of length equal to K  cell types, S is a 
vector of M scale factors of length K  , and Z is the signa-
ture matrix of dimensions G markers by K  cell types.

Next, suppose we compare two formulations for Z:

(1)Y = Z ∗ S ∗ P

The first formulation (2a) is the marker gene expres-
sion summarized across cells for each of the K  types, 
without additional rescaling or adjustment. The second 
formulation (2b) is equivalent to (2a) after rescaling by 
taking the scalar product of the S cell size factor vector. 
Finally, we obtain the following estimates for P:

In (3a) and (3b), we use the same function “ ⇐ ” to 
obtain two sets of estimated cell type proportions. 
These are P based on the unscaled signature matrix Z , 
and P′ based on the rescaled signature matrix Z′.

Performance metrics
Error was calculated as the absolute difference between 
known and predicted proportions.

To assess the accuracy, we used root mean squared 
errors (RMSE) across cell types:

where K  is the total number of cell types, k is the k th cell 
type, Pknown is the known (a.k.a. “true”) cell type propor-
tion in the k th cell type, and Ppred is the predicted cell 
type proportion in the k th cell type. RMSE calculations 
were identical in cohorts 1 and 2, and calculations for 
k = 3 included three cell types (inhibitory neurons, excita-
tory neurons, and glial), with a further calculation of k = 3 
neuron as the sum of predictions in inhibitory and excit-
atory neurons.

Shuffling pseudobulk experiment factors
Suppose we adapt the pseudobulk equation from (1) as 
follows:

Then from (3a) we have

where Sdeconvolution has dimensions identical to 
Zdeconvolution . We designate terms separately for 

(2a)Z = Z

(2b)Z′ = Z ∗ s

(3a)P ⇐ {Z,Y }

(3b)P′ ⇐ {Z′,Y }

Error = |Pknown − Ppred |

RMSE =

√

∑K
k=1(Pknown − Ppred)2

K

(4a)Y = Zpseudobulk ∗ Spseudobulk∗Ppseudobulk

(4b)
Pdeconvolution ⇐ {Zdeconvolution ∗ Sdeconvolution ,Zpseudobulk ∗ Spseudobulk∗Ppseudobulk }
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pseudobulk and deconvolution with subscripts. We per-
formed shuffling experiments for each of the five terms 
in (4b), in which one term was held constant while the 
others were either matched or from one of the remain-
ing samples in [47], and we repeated this experiment for 
a low- and high-neuron sample.

Statistical analyses
Statistical analyses used base R (v4.2.2) packages and 
functions. Simulations and random sampling were per-
formed using the base R functions rnbinom() for the 
negative binomial distribution, rnorm() for the normal 
distribution, rpois() for the poisson distribution, and 
sample() for random vector selection. All operations 
incorporating randomizations were initiated using set.
seed() for computational reproducibility. Plots were 
generated using ggplot2 (v3.3.6) and GGally (v2.1.2).

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12864‑ 025‑ 11508‑x.

Supplementary Material 1: Figure S1 | Pseudobulk simulation results from 
two DLPFC datasets with k=2 cell types. (A‑B) Pseudobulk results from 
Huuki‑Myers et al. (2023) [47]. (A) We estimated the cell composition for 
k=2 (neuron and glia) resolution using NNLS without (top row) and with 
(bottom row) scaling for differences in cell sizes, where the known cell 
composition is on the x‑axis and the estimated cell composition is on the 
y‑axis. The figure is faceted by cell types (neuron and glia) along the col‑
umns. (B) Boxplots of the absolute error (magnitude difference between 
the known and predicted cell composition) for the N=12 pseudobulk 
samples, for (top) glia and (bottom) neuron. (C‑D) Pseudobulk results from 
Tran et al. (2021) [50]. (C) We estimated the cell composition using k=2 
(neuron and glia) using NNLS without (top) and with (bottom) scaling for 
differences in cell sizes where the known cell composition is on the x‑axis 
and the estimated cell composition is on the y‑axis. The figure is faceted 
by cell types (neuron and glia) along the columns. (D) Boxplot of the error 
(difference between the known and predicted cell composition) for the 
N=3 pseudobulk samples, for (top) glia and (bottom) neuron. Diagonal 
lines indicate y = x and no error. Figure S2 | Pseudobulk simulation results 
from DLPFC datasets with k=3 cell types. (A‑B) Pseudobulk results from 
Huuki‑Myers et al. [47]. (A) Scatterplots of estimated the cell composition 
using k=3 (excitatory neuron, inhibitory neuron, and glia) using NNLS 
without (left) and with (right) scaling for differences in cell sizes; the 
known cell composition is on the x‑axis and the estimated cell composi‑
tion is on the y‑axis. The figure is faceted by cell types (neuron and glia) 
along the rows. (B) Boxplots of the error (difference between the known 
and predicted cell composition) for the N=12 pseudobulk samples. (C‑D) 
Pseudobulk results from Tran et al. (2021) [50]. (C) Scatterplots of the cell 
composition using k=3 (excitatory neuron, inhibitory neuron, and glia) 
using NNLS without (left) and with (right) scaling for differences in cell 
sizes where the known cell composition is on the x‑axis and the estimated 
cell composition is on the y‑axis. The figure is faceted by cell types (neuron 
and glia) along the rows. (D) Boxplots of the error (difference between 
the known and predicted cell composition) for the N=12 pseudobulk 
samples. Diagonal lines indicate y = x and no error. Figure S3 | Impact of 
randomly shuffling RNAScope cell scale factors in pseudobulk simula‑
tions. (A) Scatterplots of either (left panel) with or (right panel) without 
adjusting by cell sizes from sample with low neuron proportions (plot 
title, Br2743_ant). (B) Scatterplots of either (left panel) with or (right panel) 
without adjusting by cell sizes from sample with high neuron proportions 
(plot title, Br3942_mid, Table S7). Points correspond to if the cell sizes were 

matched (triangle) or unmatched (circle), where references and cell 
scale factor arrays were calculated from DLPFC dataset [48]. Diagonal 
lines indicate y = x and no error. Figure S4 | Deconvolution results 
before and after rescaling in an independent PBMC experiment. Results 
are shown for N=12 samples from [15] with known proportions from 
flow cytometry (Methods) at two zoom levels, either (A) axis maximum 
= 0.15 or (B) axis maximum = 1. Scatterplots show the (x‑axis) known 
flow cytometry proportions versus the (y‑axis) predicted proportions 
of Plasmablasts either (right panel) before or (left panel) after rescaling 
on cell size scale factors. Diagonal lines indicate y = x and no error. Fig‑
ure S5 | Results of neuron predictions across deconvolution algorithms 
in experimental DLPFC RNA‑seq samples from [47]. (A) Scatterplots 
show results from MuSiC in (points) experimental DLPFC bulk RNA‑seq 
samples (top row) glial and (bottom row) neurons either (left column, 
“noscale”) without scaling or (right column, “withscale”) with scaling, 
with text label indicating outlying sample. Diagonal lines indicate y 
= x and no error. (B) Jittered points and quantile boxplots of (y‑axis) 
errors by (x‑axis) scaling. (C) Scatterplots show results from Bisque in 
(points) real bulk RNA‑seq samples (top row) glial and (bottom row) 
neurons either (left column, “noscale”) without scaling or (right column, 
“withscale”) with scaling. Diagonal lines indicate y = x and no error. (D) 
Jittered points and quantile boxplots of (y‑axis) errors by (x‑axis) scaling. 
Figure S6 | Correlations of predicted and known neurons in experimen‑
tal DLPFC bulk RNA‑seq, from [48], for NNLS, MuSiC, and Bisque. Pairs 
plots generated using GGally of known and predicted neuron propor‑
tions from multiple algorithms in real bulk RNA‑seq samples from 
multiple preparation conditions, for neuron. Row and column labels 
indicate the cell type, algorithm (either “nnls” for NNLS [31], “music” for 
MuSiC [56], or “bisque” for Bisque [9], or known), and condition (either 
scale or noscale). Text panels contain the Pearson R correlation magni‑
tude, with asterisks indicating significance (none : 0.10 <= p; . : 0.05 < p 
< 0.10; * : 0.01 < p < 0.05; ** : 1.0*10‑3 < p < 0.01; *** : p < 1.0*10‑3). Fig‑
ure S7 | Availability of samples by cohort for pseudobulk experiments in 
two cohorts and two tissues. (A) Availability of samples for pseudobulk 
experiments in Huuki‑Myers et al. [47], with columns indicating (left 
to right) donor identifier, donor index, pseudobulk index, Z , S , and 
P_known . (B) Availability of samples for pseudobulk experiments in 
Monaco et. al. 2019 [15], with columns indicating (left to right) donor 
identifier, donor index, pseudobulk index, Z , S , and P_known . 
Details about pseudobulk data types provided in Methods. Cell colors 
for Z , S , and P_known indicate data was either (blue) available or 
(yellow) unavailable for analysis.

Supplementary Material 2: Table S1 | Tissue block‑level summary of 
Huuki‑Myers et al. (2023) [47] DLPFC N=17 snRNA‑seq libraries gener‑
ated from tissue blocks obtained from 10 adult neurotypical donors 
across three position across the dorsolateral prefrontal cortex (DLPFC). 
These snRNA‑seq samples were used in the in silico pseudobulk 
experiments in this paper. Columns summarize information about the 
snRNA‑seq libraries including the number of donors the tissue blocks 
originated from, the percent of samples that are female, DLPFC anterior 
to posterior position (position), percent of DLPFC samples stratified 
by position (posterior, middle, anterior), and the number of nuclei per 
sample (mean, median, sd, total). Table S2 | Cell type‑level summary of 
Huuki‑Myers et al. (2023) [47] DLPFC N=17 snRNA‑seq libraries gener‑
ated from tissue blocks obtained from 10 adult neurotypical donors 
across three regions of the dorsolateral prefrontal cortex (DLPFC). Sum‑
maries are aggregated to k=2 (first two rows) or k=3 (last two rows) 
cell types. Columns include k dimensions (total cell types), cell type 
label, nuclei summaries by tissue block (median, mean, sd), proportion 
summaries (median, mean, sd), library summaries (mean, sd), and pseu‑
dobulk cell type scale factor. Table S3 | Results from estimating the cell 
composition using the pseudobulk tissue samples from three different 
sources of snRNA‑seq. Three sources of data include snRNA‑seq libraries 
from Huuki‑Myers et al. 2023, Tran et al. 2021, and Monaco et al. 2019. 
Columns include condition (“withscale” if cell size adjustment was used, 
“noscale” if no adjustment was used, “all” if both adjustment conditions 
were combined, and an algorithm name where NNLS was used if no 
algorithm name was specified), root mean squared error (RMSE), data‑
set (represents the source of where the data came from), k_total (total 
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cell types considered in pseudobulk experiment), k_rmse (total cell types 
used in RMSE calculation), cell type labels in the calculation (separated by 
“;”), and experiment (type of experiment performed, either “pseudobulk” 
where pseudobulks were tested, “shuffle” where cell sizes were shuffled 
across references, or “bulk” where real bulk RNA‑seq samples were used). 
Table S4 | Sample‑level summary of Tran et al. (2021) [50] DLPFC N=3 
snRNA‑seq libraries generated from all posterior tissue blocks in DLPFC 
obtained from 3 adult neurotypical donors. These snRNA‑seq samples 
were used in the in silico pseudobulk experiments in this paper. Columns 
summarize information about the snRNA‑seq libraries including the num‑
ber of donors the tissue blocks originated from, the percent of samples 
that are female, DLPFC orientation (region), percent by DLPFC samples 
stratified by subregion (posterior, middle, anterior), and the number of 
nuclei per sample (mean, median, sd, total). Table S5 | Cell type‑level sum‑
mary of Tran et al. (2021) [50] DLPFC N=3 snRNA‑seq libraries generated 
from 3 adult neurotypical donors across the posterior region of the dorso‑
lateral prefrontal cortex (DLPFC). Summaries are aggregated to k=2 (first 
two rows) or k=3 (last two rows) cell types. Columns include k dimensions 
(total cell types), cell type label, nuclei summaries by tissue block (median, 
mean, sd), proportion summaries (median, mean, sd), library summaries 
(mean, sd), and pseudobulk cell type scale factor. Table S6 | Summary of 
cell sizes estimated from Huuki‑Myers et al. 2024 [27]. Columns include 
sample id, DLPFC region, subject identifier (corresponding to first part 
of sample id), library‑based cell size scale factors and their ratios from 
snRNA‑seq (“sn”) and RNAScope (“rn”) for neuron and glial. Table S7 | 
Results of shuffle analyses of Huuki‑Myers et al. (2023) [47] DLPFC N=13 
snRNA‑seq libraries for neuron and glial cell types. (left to right) Columns 
include known proportions, predictions, cell type label, sample id (id of 
sample with cell sizes for shuffle experiment), error, index sample id (id of 
source for pseudobulk), shuffle term (location in deconvolution function), 
and sizes of neuron and glial cells (from pseudobulk source or index 
sample id), and panel indicating the corresponding to Figure S3 panels. 
Rows 2 and 3 correspond to the concordant sample (sample id equals 
index sample id column, Br3942_mid) featured in shuffle experiment 
in Figure S3B, and rows 21 and 22 correspond to concordant sample in 
Figure S3A (Br2743_ant). Table S8 | Platform‑level data summaries of Over‑
view of paired bulk‑RNA‑seq, snRNA‑seq and smFISH datasets from adult 
neurotypical postmortem human DLPFC tissue blocks. Columns include 
platform name and sample preparation, and quantities of samples and 
sample sources (“donors”).
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