
Yuan et al. BMC Genomics          (2025) 26:350  
https://doi.org/10.1186/s12864-025-11511-2

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

BMC Genomics

scAMZI: attention‑based deep autoencoder 
with zero‑inflated layer for clustering scRNA‑seq 
data
Lin Yuan1,2,3, Zhijie Xu1,2,3, Boyuan Meng1,2,3 and Lan Ye4* 

Abstract 

Background  Clustering scRNA-seq data plays a vital role in scRNA-seq data analysis and downstream analyses. Many 
computational methods have been proposed and achieved remarkable results. However, there are several limita-
tions of these methods. First, they do not fully exploit cellular features. Second, they are developed based on gene 
expression information and lack of flexibility in integrating intercellular relationships. Finally, the performance of these 
methods is affected by dropout event.

Results  We propose a novel deep learning (DL) model based on attention autoencoder and zero-inflated (ZI) layer, 
namely scAMZI, to cluster scRNA-seq data. scAMZI is mainly composed of SimAM (a Simple, parameter-free Attention 
Module), autoencoder, ZINB (Zero-Inflated Negative Binomial) model and ZI layer. Based on ZINB model, we introduce 
autoencoder and SimAM to reduce dimensionality of data and learn feature representations of cells and relationships 
between cells. Meanwhile, ZI layer is used to handle zero values in the data. We compare the performance of scAMZI 
with nine methods (three shallow learning algorithms and six state-of-the-art DL-based methods) on fourteen bench-
mark scRNA-seq datasets of various sizes (from hundreds to tens of thousands of cells) with known cell types. Experi-
mental results demonstrate that scAMZI outperforms competing methods.

Conclusions  scAMZI outperforms competing methods and can facilitate downstream analyses such as cell annota-
tion, marker gene discovery, and cell trajectory inference. The package of scAMZI is made freely available at https://​
doi.​org/​10.​5281/​zenodo.​13131​559.
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Background
The large amount of single-cell RNA sequencing (scRNA-
seq) data provides researchers with an unprecedented 
opportunity to characterize different cell states and types 
in multicellular organisms [1]. Clustering plays a vital 
role in scRNA-seq data analysis, and its results affect 
downstream analyses, such as cell type identification 
[2], tumor heterogeneity [3], and cell lineage analysis [4]. 
However, the high drop rate and sparsity of scRNA-seq 
data bring huge challenges to scRNA-seq data clustering. 
Researchers have proposed a large number of computa-
tional methods to cluster scRNA-seq data.

Researchers apply traditional clustering algorithms to 
scRNA-seq data clustering. SAIC [5] utilizes an iterative 
k-means clustering to separate cells into distinct clusters. 
The predefined k can affect clustering results, and the 
k-means-based method is sensitive to outliers, resulting 
in failure to detect rare cell types. CIDR [6] is one of the 
representative hierarchical clustering algorithms. How-
ever, CIDR has high time complexity and is difficult to 
deal with large-scale scRNA-seq datasets. SSRE [7] uses 
sparse subspace representation and similarity enhance-
ment strategy to cluster scRNA-seq data. Louvain [8], 
one of most widely used community detection algorithm 
for clustering scRNA-seq data, recursively merges com-
munities into a single node and performs modular clus-
tering. SCANPY [9] is a scRNA-seq data analysis toolkit 
with a clustering method based on the Louvain algo-
rithm. Seurat [10] also uses the Louvain algorithm to 
cluster cell types. Community-detection-based cluster-
ing may not find small communities and rare cell types. 
DBSCAN [11] is the most commonly used density-based 
clustering algorithm. GiniClust [12] uses DBSCAN and 
adaptive parameter to cluster scRNA-seq data and find 
rare cell types. However, the adaptive parameters may 
lead to unreasonably large cell clusters.

Recently, many DL-based methods have achieved 
remarkable results on scRNA-seq data clustering. For 
example, DCA [13], one of the earliest DL-based algo-
rithms, proposes a deep count autoencoder to cluster 
scRNA-seq data. scDeepCluster [14] maps data into a 
low-dimensional space via a ZINB-based autoencoder 
and performs clustering using kullback–leibler (KL) 
divergence. scGMAI [15] is an autoencoder-based Gauss-
ian model that utilizes autoencoder to reconstruct gene 
expression values and uses fast independent component 
analysis (FastICA) [16] for dimensionality reduction. 
scDCC [17] adds prior knowledge as additional terms 
into the loss function and uses an autoencoder to clus-
ter scRNA-seq data. DREAM [18] combines Gaussian 
mixture model and variational autoencoder to identify 
cell types. scGAE [19] clusters data by using a multi-task-
oriented graph autoencoder combines with topological 

information and feature information. scDSSC [20], an 
impressive method for clustering scRNA-seq data, com-
bines the Self-Expressiveness Property of data with 
autoencoders to perform deep sparse subspace cluster-
ing. SCEA [21] uses a graph attention autoencoder and 
an MLP-based encoder to perform clustering.

These methods have achieved remarkable results. How-
ever, there are several limitations of these methods. First, 
they do not fully exploit cellular features. Second, they 
are developed based on gene expression information and 
lack of flexibility in integrating intercellular relationships. 
Finally, the performance of these methods is affected by 
dropout event.

In this paper, we integrates SimAM (a Simple, param-
eter-free Attention Module) [22] into the modeling pro-
cess to guide deep neural network to simultaneously 
learn meaningful cellular features and latent relationships 
between cells. Different from traditional autoencoder, 
we add ZI layer to the decoder to eliminate the impact 
of dropout event. We present a more flexible cluster-
ing form and is more effective in clustering scRNA-seq 
data. Here, we name the proposed method based on 
SimAM and ZI layer as scAMZI. A schematic overview 
of scAMZI is presented in Fig.  1. First, scAMZI con-
structs a data preprocessing mechanism for data stand-
ardization and quality control. Second, we introduce the 
autoencoder and SimAM based on ZINB model [23] to 
reduce dimensionality of data and learn feature repre-
sentations of cells and relationship between cells. Mean-
while, a ZI layer is added to the decoder to handle zero 
values in the data. Finally, scAMZI uses spectral cluster-
ing combined with low-dimensional embedding features 
to cluster scRNA-seq data. We compare the performance 
of scAMZI with nine methods (three shallow learning 
algorithms and six state-of-the-art DL-based methods) 
on fourteen benchmark datasets of various sizes (from 
hundreds to tens of thousands of cells) with known cell 
types. Experimental results not only demonstrate that 
scAMZI outperforms competing methods, but also show 
that scAMZI can facilitate downstream analyses such as 
cell annotation, marker gene discovery, and cell trajec-
tory inference.

Results
Ablation experiment
To evaluate the impact of SimAM and ZI layer on model 
performance, we constructed two variants of scAMZI, 
(w/o) SimAM and (w/o) ZI layer. (w/o) SimAM repre-
sents scAMZI without SimAM, and (w/o) ZI layer rep-
resents scAMZI without ZI layer. After deleting SimAM 
module or ZI layer, the traditional autoencoder can still 
calculate the results. We trained these two models using 
the same parameters and compared the performance of 
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these models with scAMZI using fourteen benchmark 
scRNA-seq datasets (see ‘Data preprocessing’). As shown 
in Fig. 2A, removing the SimAM or ZI layer results in a 
9.21% and 6.79% drop in average ARI (Adjusted Rand 
Index), respectively. As shown in Fig.  2B, removing the 
SimAM or ZI layer results in an 8.41% and 6.80% drop in 

average NMI (Normalized Mutual Information), respec-
tively. The detailed results of the ablation experiment 
were listed in S1 Table.

Experimental results show that the performance of 
scAMZI decreases significantly after removing the 
SimAM or ZI layer, and both SimAM and ZI layer are 

Fig. 1  Schematic overview of scAMZI. A The input is a gene-cell matrix from a benchmark scRNA-seq dataset. B The neural network architecture 
of scAMZI is mainly composed of SimAM, autoencoder, ZINB model and ZI layer. Based on ZINB model, we introduce autoencoder and SimAM 
to reduce dimensionality of data and learn feature representations of cells and relationships between cells. ZI layer is used to handle zero values. C 
scAMZI is used to cluster scRNA-seq data, find marker genes and infer cell trajectory

Fig. 2  A Performance comparison of different neural network architectures in terms of ARI in ablation experiments. B Performance comparison 
of different neural network architectures in terms of NMI in ablation experiments. (w/o) SimAM represents scAMZI without SimAM, (w/o) ZI layer 
represents scAMZI without ZI layer
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beneficial to scAMZI. The scAMZI and ZI layer play a 
vital role in clustering scRNA-seq data.

Simulated dataset experiment
scRNA-seq clustering usually suffer from dropout event 
and cell-type imbalanced dataset in practical applica-
tions. We evaluated the clustering ability of scAMZI 
using simulated imbalanced datasets with different drop-
out rates. We used splatter [24], a commonly used tool, to 
generate these simulated datasets. We generated six data-
sets containing five cell types with a dropout rate of 0.05 
and six datasets containing two cell types with a dropout 
rate of 0.25. The twelve datasets were generated from two 
different batches and contained cell-type imbalanced 
datasets.

As shown in Fig. 3 A and B, in terms of NMI and ARI, 
our proposed scAMZI achieved good performance on 
the twelve datasets. The NMIs and ARIs of the twelve 
datasets were listed in S2 Table. We selected sim3 from 

the simulated dataset with a dropout rate of 0.05 for vis-
ualization. As shown in Fig. 3C, scAMZI can accurately 
classify these five cell types. In addition, we performed 
differential expression analysis on the sim3 dataset to 
find marker gene for each cell type. Figure 3D shows that 
scAMZI can accurately find the marker gene for each cell 
type. Experimental results show that scAMZI can effec-
tively eliminate the impacts of dropout event and cell-
type imbalanced dataset.

Batch effect correction experiment
In this research, the quality of the cell representation 
projected to the latent space directly exerts influence on 
clustering performance.

To investigate whether scAMZI clusters the same cell 
types together in that latent space, we retained the hid-
den layers of scAMZI and compared the cluster results of 
the same cell types (endothelial cell and macrophage cell) 
in the original space and latent space on the integrated 

Fig. 3  A The performance of scAMZI on six simulated datasets containing five cell types with a dropout rate of 0.05. B The performance of scAMZI 
on six simulated datasets containing two cell types with a dropout rate of 0.25. C Clustering result of scAMZI on sim3 from the simulated dataset 
with a dropout rate of 0.05. D Marker genes for each cell type found by scAMZI on the first simulation data
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datasets (Human1 [25], HumanLiver2 [26], Marshall 
[27], Zhao [28], Siletti [29], and Horeth [30]). Human1 
and HumanLiver2 come from the fourteen benchmark 
datasets. We collected four datasets (Marshall, Zhao, 
Siletti, and Horeth) that contain both endothelial cell and 
macrophage cell. These six datasets come from different 
experiments, and we constructed an integrated dataset 
using these six datasets. The detailed information of these 
four datasets was listed in S3 Table. Figure 4A shows the 
clustering results of endothelial cells and macrophage 
cells in original space, and Fig.  4B shows the clustering 
results of endothelial cells and macrophage cells in latent 
space. As shown in Fig. 4 A and B, due to the batch effect, 
endothelial cells from six different datasets are clustered 
into six clusters in the original space. scAMZI projected 
the same cell types come from different datasets into 
the same latent space and clustered these cells together. 
For macrophage cell, the same thing was observed. The 
results show that scAMZI can effectively correct the 
batch effect.

We compared the NMIs and ARIs of scAMZI with 
competing methods using Human2 dataset. Figure  4C 
shows that scAMZI outperforms competing methods in 
terms of NMI and ARI. The detailed results were listed in 
S4 Table. We used the Human2 dataset for cell visualiza-
tion. Figure 4D shows that scAMZI accurately classified 
the fourteen cell types in Human2 dataset. In addition, 
we performed differential expression analysis on the 
Human2 dataset to find marker gene for each cell type. 
Figure  4E shows that scAMZI can accurately find the 
marker gene for each cell type.

Performance of scAMZI on fourteen benchmark scRNA‑seq 
datasets
In this section, we compared scAMZI with SCANPY 
[9], Seurat [10], SSRE [7], DCA [13], scDeepCluster [14], 
scDCC [17], scGAE [19], scDSSC [20] and SCEA [21] 
to test the clustering ability of scAMZI. These methods 
include three shallow learning algorithms (SCANPY, 
Seurat, SSRE) and six DL-based methods (DCA, scDeep-
Cluster, scDCC, scGAE, scDSSC, SCEA). The ten meth-
ods were tested on the fourteen benchmark datasets. 
The evaluation metrics are ARI and NMI. Figures 5 and 
6 show the ARIs and NMIs of scAMZI and competing 
methods on fourteen datasets, respectively.

As shown in Fig. 5, in 11 of the 14 datasets, scAMZI 
achieved the highest ARI values. scAMZI performed 
slightly worse than scDeepCluster and scGAE on 
Human_kidney dataset, slightly worse than scDeep-
Cluster on CITE_CMBC dataset, and slightly worse 
than scDCC and scDeepCluster on Zeisel. The detailed 
results were listed in S5 Table. As shown in Fig. 6, in 10 
of the 14 datasets, scAMZI achieved the highest NMI 

values. The detailed results were listed in S6 Table. In 
Human_kidney dataset, scAMZI performed slightly 
worse than scDeepCluster, scGAE and SCANPY. In 
CITE_CMBC dataset, scAMZI performed slightly 
worse than SCANPY, Seurat, scDCC, scDeepCluster 
and scGAE. In Human3 dataset, scAMZI performed 
slightly worse than SCANPY. In Zeisel dataset, scAMZI 
performed slightly worse than scDCC and scDeepClus-
ter. The reason may be that ZINB cannot approximate 
the true distribution, or scAMZI has difficulty learning 
the optimal low-dimensional embedding feature repre-
sentation. The above results demonstrate that scAMZI 
outperforms state-of-the-art methods and improves the 
performance of clustering methods.

The comparison methods have some shortcomings 
in cell feature representation and dropout process-
ing. Specifically, scDSSC failed to fully extract cell 
feature representation and failed to effectively han-
dle dropout. DCA used traditional autoencoders for 
encoding, without considering the impact of noise and 
redundant information during the decoding process, 
resulting in the failure of reconstructing cell features. 
scDCC ignored the topological relationship between 
cells, which affects the accuracy of clustering results. 
scDeepCluster focused on the characteristics of cells 
and failed to fully utilize the relationships between 
cells, which are crucial for revealing the potential 
similarities between cells. scGAE did not consider the 
impact of dropout events on clustering, which may lead 
to unstable and uninterpretable clustering results. SSRE 
enhanced the learning of similarities between cells, 
but its computational complexity is too high, resulting 
in its poor performance in large-scale data. Although 
SCANPY and Seurat are widely used analysis tools, 
they still need to be improved in terms of cell feature 
expression and calculation of topological relationships 
between cells. SCEA failed to effectively integrate the 
topological relationships between cells and avoid the 
influence of dropout, which limits its application in cell 
clustering analysis.

scAMZI’s performance is mainly due to its unique 
architectural innovation. SimAM and ZI layer were 
introduced into the autoencoder. The introduction of 
SimAM attention mechanism in the coding process can 
fully extract the cell feature representation, so that the 
model can more accurately capture the key feature infor-
mation of the cell and provide more accurate data for 
subsequent cluster analysis. The introduction of ZI layer 
in the decoding process can better handle the impact 
of dropout on clustering, and enhance the stability and 
robustness of the model. Compared with existing meth-
ods, scAMZI showed obvious advantages in the experi-
ment and achieved better clustering results.
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Fig. 4  A The clustering results of endothelial cells and macrophage cells from six datasets in original space. B The clustering results of endothelial 
cells and macrophage cells from six datasets in latent space. C Performance comparison of scAMZI and competing methods in terms of ARI 
and NMI on Human2 dataset. D Clustering result of scAMZI on Human2 dataset. E Marker genes for each cell type found by scAMZI on Human2 
dataset
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Cell annotation and visualization
After clustering scRNA-seq data, determining the cell 
type is crucial to understanding the functions and 
interactions of cells in organisms. Therefore, accurate 
cell annotation is crucial for scRNA-seq data research.

In this section, after obtaining the clustering results 
of scAMZI, we used SCANPY to perform cell anno-
tation on the Romanov and Human1 datasets with 
ground-truth cell type labels. Firstly, we used preproc-
essing methods to remove noise and redundant infor-
mation. Secondly, we calculated the nearest neighbors 
of each cell and used UMAP [31] for dimensionality 
reduction. Finally, we used SCANPY and dimensional-
ity reduction data for cell annotation and cell visualiza-
tion. As shown in Fig. 7A, scAMZI accurately clusters 
the seven cell types in Romanov dataset, except that 
the same type of cells in neurons are slightly dispersed. 
Figure  7B shows that scAMZI accurately clusters the 

fourteen cell types in the dataset, and there are clear 
distinctions among these fourteen cell types.

We compared the visualization and annotation 
results with the nine competing methods on Romanov 
and Human1 datasets. The cell annotation and visu-
alization results of SCEA are obtained by running the 
code pro-vided by the method, and the results of the 
remaining eight methods are from the literature [20]. 
For Human1, scAMZI, scDSSC, SCANPY and scDCC 
achieved good clustering results. Comparatively, Seu-
rat, SSRE, DCA, scDeepCluster and scGAE showed 
overlap between different cell types. SCEA did not 
accurately cluster the fourteen cell types in the data-
set. For Romanov, SCANPY and Seurat gave the worst 
results. The number of cell types far exceeds seven. 
SSRE, DCA, scDeepCluster, scGAE and SCEA showed 
overlap between different cell types. Comparatively, 

Fig. 5  Performance comparison of scAMZI and competing methods in terms of ARI on fourteen benchmark scRNA-seq datasets
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Fig. 6  Performance comparison of scAMZI and competing methods in terms of NMI on fourteen benchmark scRNA-seq datasets

Fig. 7  A Clustering results of scAMZI on Romanov dataset. B Clustering results of scAMZI on Human1 dataset
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scAMZI, scDSSC and scDCC achieved good clustering 
results. More details are shown in S1 Figure.

Finding marker genes and cell trajectory inference
Marker genes are genes that can mark specific cell types. 
By marking specific cell types or cell states, researchers 
can identify and separate different cell types and study 
their functions, relationships, and biological processes. 
Cell trajectory inference can help researchers track and 
infer the dynamic changes of cells. By analyzing cell tra-
jectory, researchers can reveal key processes such as cell 
migration, differentiation, and proliferation, and gain a 
deeper understanding of complex biological systems [32].

In this section, we demonstrated that scAMZI can 
provide support for finding marker genes and infer-
ring cell trajectory. In the Romanov dataset, we used 
the same steps as in ‘Cell annotation and visualization’ 
to obtain the dimensionality reduction data. Then we 
used the t-test to calculate the ranking of genes with 
large variations in each cluster and selected top 2 gene as 
the marker genes for visualization. Figure 8A shows the 
marker genes and their expression levels for each cluster. 
ATP1A4 and NIPBL showed significantly higher aver-
age expression levels in the astrocytes cluster, while their 
expression levels were relatively low in other cell clusters. 
This difference fully demonstrates the excellent perfor-
mance of scAMZI in accurately identifying cell type-spe-
cific marker genes. Figure 8A also shows that the maker 
genes found by scAMZI vary greatly between different 
cell types.

Furthermore, Fig. 8B strongly demonstrates the impor-
tant value of scAMZI clustering results in revealing the 
dynamic process of cell differentiation. By analyzing the 
spatial distribution and mutual relationship of different 
cell clusters, the path of cell differentiation can be pre-
liminarily inferred. In Fig.  8B, we observed that some 
adjacent cell clusters showed a gradual transition trend in 
gene expression profiles, suggesting that they may be in 
the continuous stages of cell differentiation. We speculate 
that these cell clusters gradually differentiate into differ-
ent states of mature cells. This cell trajectory inference 
provides intuitive and valuable clues for studying the 
mechanism of cell differentiation. Although traditional 
methods can also identify some major cell types, they 
have certain limitations in revealing the dynamic process 
of cell differentiation. With its unique model architecture, 
scAMZI can more accurately capture subtle differences 
in gene expression between cells and successfully identify 
more transitional cell clusters, thereby more accurately 
depicting the trajectory of cell differentiation and provid-
ing richer information for a deeper understanding of the 
complex process of cell differentiation.

Conclusion
In this paper, we proposed a novel DL-based scAMZI 
with SimAM and zero-inflated layer for cluster-
ing scRNA-seq data. scAMZI is mainly composed of 
SimAM,

autoencoder, ZINB and ZI layer. First, scAMZI uses the 
attention module SimAM to simultaneously learn mean-
ingful cellular features and latent relationships between 
cells from the preprocessed scRNA-seq data. Next, the 
features are fed into the autoencoder. Then, in the last 
layer of the decoder, scAMZI uses ZI layer to process the 
feature information to obtain the three parameters for 
estimating the ZINB distribution. Finally, scAMZI clus-
ters scRNA-seq data using spectral clustering combined 
with low-dimensional embedding feature representations 
from trained autoencoders. We.

introduce autoencoder and SimAM to reduce dimen-
sionality of data and learn feature representations of cells 
and relationships between cells. Meanwhile, ZI layer is 
used to handle zero values in the data. We compare the 
performance of scAMZI with nine methods on fourteen 
benchmark scRNA-seq datasets of various sizes (from 
hundreds to tens of thousands of cells) with known cell 
types. Experimental results not only demonstrate that 
scAMZI outperforms competing methods, but also show 
that scAMZI can facilitate downstream analyses such as 
cell annotation, marker gene discovery, and cell trajec-
tory inference.

As shown in S7 Table, we compared the computational 
cost of scAMZI and competing methods on the Human-
Liver2 dataset. The computational cost of scAMZI is 
shorter than that of all competing methods. Excellent 
performance on multiple datasets and multiple experi-
ments demonstrated the scalability of scAMZI.

Materials and methods
Data preprocessing
The number of cells in the fourteen benchmark scRNA-
seq datasets ranges from hundreds to tens of thousands. 
The fourteen datasets are 10X_PBMC [33], Klein [34], 
Human_kidney [35], CITE_CMBC [33], Romanov [36], 
Human1 [25], Human2 [25] Human3 [25], Human4 [25], 
Mouse1 [25], Mouse2 [25], Zeisel [37], HumanLiver [38] 
and HumanLiver2 [26]. The cell number, gene num-
ber and cell type number of these datasets are shown in 
Table  1. These data are available at https://​doi.​org/​10.​
5281/​zenodo.​13131​559.

The scRNA-seq data is a matrix where columns indi-
cate genes and rows indicate cells. We pre-process the 
data as follows. First, we filter out genes with zero values 
and select genes that are expressed in all cells. Next, we 
calculate the factor for each cell and use these factors to 
normalize the read counts. Before calculating the factors, 

https://doi.org/10.5281/zenodo.13131559
https://doi.org/10.5281/zenodo.13131559
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we calculate average expression value for each gene. 
The size factor for each cell is the median of the ratio of 
expression value of each gene in that cell divided by the 

mean of the gene. Then we can obtain normalized count 
data by dividing read count of the cell by size factor of the 
cell.

Fig. 8  A Marker genes and their expression levels for each cluster found by scAMZI on Romanov dataset. B Cell trajectory inference result 
of Romanov dataset provided by scAMZI
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where x represents expression profile of the cell, µ is the 
mean value of all genes, σ is the standard deviation, and x̃ 
represents the normalized count data.

Next, we log-transform the read counts, scaling the 
counts to ensure they have unit variance and zero mean. 
This will help better understand and compare the count 
data. During the transformation, top 2000 highly variable 
genes are selected as the basis for initial noise reduction 
[17, 39, 40]. We use SCANPY [9] to pre-process the raw 
read count data.

The scAMZI framework
We design a novel DL model based on attention autoen-
coder and ZI layer, namely scAMZI, to cluster scRNA-
seq data. scAMZI aims to optimize the latent space and 
learn important cellular features for accurate clustering 
of scRNA-seq data. As shown in Fig.  1, scAMZI uses 
pre-processed scRNA-seq data as input data. scAMZI is 
mainly composed of SimAM, autoencoder, ZINB model 
and ZI layer. First, scAMZI uses the attention mod-
ule SimAM to simultaneously learn meaningful cellular 
features and latent relationships between cells from the 
pre-processed scRNA-seq data. Next, the features are fed 
into autoencoder. Then, in the last layer of the decoder, 
scAMZI uses ZI layer to process the feature informa-
tion to obtain the three parameters for estimating ZINB 
distribution. Finally, scAMZI clusters scRNA-seq data 
using spectral clustering combined with low-dimensional 

(1)x̃=
x − µ

σ

(2)xlog = log2(x̃ + 1)

embedding feature representations from trained autoen-
coders. Based on ZINB model, we introduce autoencoder 
and SimAM to reduce dimensionality of data and learn 
feature representations of cells and relationships between 
cells. Meanwhile, ZI layer is used to handle zero values in 
the data.

Attention mechanism network
In this section, SimAM is introduced in the autoencoder 
to increases the weight of important input information 
and reduces the attention to irrelevant input informa-
tion. SimAM obtain the importance of each neuron in 
the neural network structure through a fast closed-form 
solution of the energy function [22]. First, we obtain the 
energy tensor by calculating the difference between the 
dimension of the input data and mean value µ̂ on the 
dimension, and squaring the difference σ̂ . Then, the sig-
moid function is used to control the energy tensor in the 
range of 0–1 as the attention weight et  for each input 
data dimension. The autoencoder combined with SimAM 
can assign different weights et to the input data accord-
ing to its importance, improving the ability to obtain 
important features and reducing the impact of redundant 
information.

where µ̂ represents mean, σ̂ 2 represents variance, � is the 
regularization factor, and t represents the t-th cell.

The autoencoder based on the ZINB model
Since the high technical noise causes overfitting of deep 
learning models, we construct an autoencoder based on 
the ZINB model using fully connected (FC) layers. The 
mapping function can be defined as follows:

where X indicates the input expression matrix, and noise 
indicates the Gaussian noise added to each layer of the 
encoder. By adding noise to the inputs of each layer, 
the model’s robustness and generalization ability can 
be enhanced.X ′ represents the expression matrix after 
adding noise, F  represents the mapping function of the 
encoder, and H represents the output feature vector.

The decoder reconstructs the original input data from 
the low-dimensional feature representation H . The 
decoding mapping function is defined as follows:

(3)

et =
4(σ̂ 2+�)

(Xt−µ̂2)+2σ̂ 2+2�

µ̂ = 1
M

M

i=1

Xi

σ̂ 2 = 1
M

M

i=1

Xi − µ̂
2

(4)
{

X ′ = X + noise
H = F(X ′)

Table 1  Summary of fourteen benchmark scRNA-seq datasets

Dataset Cell number Gene number Cell type 
number

Source

10X_PBMC 4271 16653 8  [33]

Klein 2717 24175 4  [34]

Human_kidney 5685 25215 11  [35]

CITE_CMBC 8617 2000 15  [33]

Romanov 2881 24341 7  [36]

Human1 1937 20125 14  [25]

Human2 1724 20125 14  [25]

Human3 3605 20125 14  [25]

Human4 1303 20125 14  [25]

Mouse1 822 14878 13  [25]

Mouse2 1064 14878 13  [25]

Zeisel 3005 19972 9  [37]

HumanLiver 8444 5000 11  [38]

HumanLiver2 12494 20939 10  [26]
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where H is the input matrix of the decoder,F ′ is the 
decoding mapping function, and X̂ is the reconstructed 
data after the decoding mapping function.

Zero‑inflated layer
The extremely high dropout rate impedes downstream 
analyses such as cell type identification and cell trajectory 
inference. To solve this problem, we introduce a zero-
inflated layer into the decoding network to eliminate the 
impact of dropout event. We use Gaussian random sam-
pling to simulate dropout events and use simulate anneal 
arithmetic (SAA) [41] strategy to adaptively adjust the 
parameters of the zero-inflated layer. The sampling prob-
ability of the model can be gradually reduced during train-
ing, making the decoder more robust. The model can be 
more stable when encountering different samples, reducing 
the risk of overfitting.

where X̂ is the reconstructed data after the decoding 
mapping function (see ‘The autoencoder based on the 
ZINB model’) and R is output.

Loss function
To accurately obtain the cell and gene features in scRNA-
seq data, we use a loss function based on ZINB autoen-
coder model to characterize original counting data. ZINB 
models loss events based on a combination of zero compo-
nents and NB distributions.

where X  is the original matrix, π is the probability of the 
dropout event, µ and θ represent the mean and disper-
sion of the NB distribution, respectively. The decoder 
network is designed with three output layers for comput-
ing three sets of parameters. The calculation formulas for 
these parameters are defined as follows:

where X ′′ is the output data processed by the ZI layer, �
,M and � represent the estimation matrices of π,µ and 
θ , respectively. Since π represents a probability value 
between 0 and 1, we use the sigmoid activation function. 
Since both π and θ are non-negative, we use exponential 

(5)X̂ = F ′(H)

(6)R = ZILayer(X̂)

(7)







ZINB(X |π ,µ, θ) = πδ0(X)+ (1− π)× NB(X |µ, θ)

NB(X |µ, θ) = Ŵ(X+θ)

Ŵ(X+1)Ŵ(θ)
×

�

θ
θ+µ

�θ

+
�

H
θ+µ

�X

(8)















X ′′ = f N (R)
� = sigmoid

�

WπX
′′
�

M = diag(si) exp
�

WµX
′′
�

� = exp(WθX
′′)

activation function. The size factor si is precomputed. The 
reconstruction loss function of the decoder is defined as 
follows:

Implementation and parameters setting
In this study, we select top 2000 highly variable genes 
as the input of the autoencoder network, which consists 
of a three-layer fully connected structure with 256–32-
10 neurons. 2000 is a widely used parameter, and using 
parameter 2000 can capture sufficient biological infor-
mation and ensure the efficiency of analysis [17, 39, 40]. 
The parameter value of 256–32-10 can both extract key 
features and maintain good clustering effect [20]. The 
settings of the decoder are reversed from those of the 
encoder. During the network training process, we adopt 
pre-training and fine-tuning strategy, using Adam opti-
mizer with learning rates of 0.002 and 0.001 to update 
the autoencoder, respectively. These two learning rates 
are a common and effective combination, which not only 
avoids gradient problems in training, but also achieves 
rapid convergence and stable optimization.

Evaluation strategies
In the experiments, we adopt two widely used meth-
ods NMI (Normalized Mutual Information) and ARI 
(Adjusted Rand Index) to evaluate model performance. 
Let U =

{

U1,U2,...,Ucu

}

 and V =
{

V1,V2,...,Vcv

}

 be the 
predicted and ground-truth clusters. NMI and ARI are 
defined as follows.

where I(U ,V )  represents mutual information, H(U) and 
H(V )  are entropy values.

where a represents the number of pairs of two objects in 
the same group in U and V  , b represents the number of 
pairs of two objects in different groups in U and V  , c rep-
resents the number of pairs of two objects in the same 
group in U but in different groups in V  , and d represents 
the number of pairs of two objects in different groups in 
U but in the same group in V .

(9)LZINB(π ,µ, θ |X) = − log(ZINB(X |π ,µ, θ))

(10)



























NMI = I(U ,V )
max{H(U),H(V )}

I(U ,V ) =
�cu

p=1

�cv
q=1

�

�Up ∩ Vq
�

� log
n|Up∩Vq|
|Up|×|Vq|

H(U) = −
�CU

p=1

�

�Up

�

� log
|Up|
n

H(V ) = −
�CV

q=1

�

�Vq

�

� log
|Vq|
n

(11)

ARI =

(

n
2

)

(a+ d)− [(a+ b)(a+ c)+ (c + d)(b+ d)]
(

n
2

)

− [(a+ b)(a+ c)+ (c + d)(b+ d)]
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In this paper, we compare scAMZI with SCANPY [9], 
Seurat [10], SSRE [7], DCA [13], scDeepCluster [42], 
scDCC [17], scGAE [19], scDSSC [20] and SCEA [43] 
to test the performance of scAMZI. SCANPY (2018) 
and Seurat (2015) are the most commonly used tools 
for analyzing scRNA-seq data. Their clustering methods 
are based on the Louvain algorithm. SSRE (2021) uses 
sparse subspace representation and similarity enhance-
ment strategy to cluster scRNA-seq data. DCA (2019) 
proposes a deep count autoencoder to cluster scRNA-seq 
data. scDeepCluster (2019) maps scRNA-seq data into 
a low-dimensional space via a ZINB-based autoencoder 
and performs clustering based on KL divergence. scDCC 
(2021) adds prior knowledge as additional terms into the 
loss function and uses an autoencoder to cluster scRNA-
seq data. scGAE (2021) clusters scRNA-seq data by using 
a multi-task-oriented graph autoencoder combines with 
topological information and feature information. scDSSC 
(2022) combines the Self-Expressiveness Property of 
data with autoencoders to perform deep sparse subspace 
clustering. SCEA (2023) uses a graph attention autoen-
coder and an MLP-based encoder to perform cluster-
ing [44]. We use the codes and recommended optimal 
model parameters provided by these methods. We train 
and evaluate scAMZI and competing methods using the 
same training and test datasets. All experiments are con-
ducted on NVIDIA RTX 3090 GPU.

Concrete mathematical proof of scAMZI
For cell t, scAMZI calculates the attention weight et 
through the energy function (Eq.  (3)). Features are 
enhanced by attention weight Xt = Xt · et . When Xt is far 
away from the mean µ̂(i.e., high-discrimination features), 
(Xt − µ̂)2 ≫ 2σ 2 + 2� ⇒ et ≈

4(σ̂ 2+�)

(Xt−µ̂2)
 , et decreases 

exponentially as 
∣

∣Xt − µ̂
∣

∣ increases, but due to the large 
value of Xt , the value of Xt = Xt · et is less affected. When 
Xt is close to the mean µ̂(i.e., low-discrimination fea-
tures), (Xt − µ̂)2 ≪ 2σ 2 + 2� ⇒ et ≈

4(σ̂ 2+�)

2σ̂ 2+2�
= 2 . 

scAMZI enhances high-discrimination features and sup-
presses low-discrimination features by minimizing et . 
scAMZI dynamically adjusts feature weights so that the 
weights of high-discrimination features are significantly 
higher than those of low-discrimination features.
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