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Introduction
The increasing emphasis on health has highlighted the 
importance of assessing immune status. A key aspect 
of this is immunosenescence, the gradual decline in 
immune function with aging, which is closely linked to 
age-related diseases such as cancer, cardiovascular dis-
eases, and neurodegenerative disorders [1, 2]. Immu-
nosenescence is characterized by weakened immune 
responses to infections and vaccines, as well as increased 
chronic inflammation [3–6]. Changes in plasma proteins, 
particularly immunoglobulins, cytokines, and comple-
ment proteins, reflect this decline and are integral to 
immune and inflammatory responses. As these proteins 
undergo significant alterations with aging, they can serve 
as indicators of immune system health [7, 8]. Therefore, 
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Abstract
Plasma proteins, especially immune-related proteins, are vital for assessing immune health and predicting disease 
risks. Despite their significance, the link between these proteins and systemic immune function remains unclear. 
To bridge this gap, researchers developed ProMetaGCN, a model integrating meta-learning, graph convolutional 
networks, and protein-protein interaction (PPI) data to evaluate immune status via plasma proteomics. This 
framework identified 309 immune-related factors with associated biological functions and pathways. Using six 
machine learning methods, four algorithms (Random Forest, LightGBM, XGBoost, Lasso) were selected for immune 
profiling and aging analysis, revealing ADAMTS13, GDF15, and SERPINF2 as key biomarkers. Validation across two 
COVID-19 cohorts confirmed the model’s robustness, showing immune status correlates with infection progression 
and recovery. Furthermore, the study proposed ImmuneAgeGap, a novel metric linking immune profiles to survival 
rates in non-small-cell lung cancer (NSCLC) patients. These insights advance personalized immune health strategies 
and disease prevention.
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identifying reliable immune-related plasma protein bio-
markers and developing effective immune assessment 
models based on these biomarkers are crucial for manag-
ing immune health and preventing diseases [9].

Currently, many studies focus on using plasma pro-
teins to explore the relationship between chronological 
age and biological age, which reflects individual health 
and physiological function [10–13]. However, existing 
research methods have limitations. Typically, correlation 
tests identify age-related proteins as predictive model 
features, using chronological age as a label to predict age. 
However, this approach cannot comprehensively reflect 
the immune status. As people age, immune function 
declines nonlinearly, complicating age prediction models 
and making it harder to interpret individual immune sta-
tus differences. Meanwhile, some studies use other data 
types to detect immune status. For example, complete 
blood counts (CBC) measure routine immune cell counts 
and proportions but can’t classify immune cell subtypes, 
failing to capture the broader molecular interactions or 
the complex network of immune responses [14]. Simi-
larly, another study’s flow cytometry can analyze T-cell 
and NK-cell subtypes in more detail but focuses only on 
these two cells types, ignoring other immune cells’ roles 
in immunosenescence and failing to show the whole 
immune system changes. Also, the random forest binary 
classification model simplifies immunosenescence into a 
binary classification, making it hard to accurately reflect 
the continuous immunosenescence process [15]. Mean-
while, using serum protein data to assess immune health 
has limitations. Studies rely on random forest models to 
distinguish healthy participants from patients but cover 
limited diseases, failing to include all diseases and find as 
many immune-related proteins as possible [7]. Although 
progress has been made in identifying the roles of certain 
plasma proteins (like immunoglobulins, cytokines, and 
complement proteins), many other potential immune-
related protein’ functions remain unexplored [16–20]. 
Therefore, there’s an urgent need for a research method 
that can comprehensively capture the complexity of the 
immune system, so as to achieve a comprehensive and 
reliable assessment of the immune status.

To address this challenge, we introduce the Pro-
MetaGCN model, aiming to accurately identify immune-
related proteins and comprehensively assess immune 
health. We selected GCN to study potential immune-
related proteins because it is designed for graph topol-
ogy data, where proteins are nodes and interactions are 
edges, efficiently capturing complex relationships and 
topological information in protein-protein interaction 
(PPI) networks. Unlike traditional machine learning, 
GCN more accurately models interactions between bio-
molecules, crucial for understanding immune-related 
protein functions and synergies. These advantages enable 

GCN to identify potential immune-related proteins with 
higher precision and efficiency, thus helping us discover 
more reliable immune-related proteins. To enhance 
the model, we combined GCN with meta-learning, sig-
nificantly improving learning and generalization with 
limited labeled data, and systematically identifying key 
plasma proteins linked to immune status. Additionally, 
ProMetaGCN integrates advanced algorithms like Ran-
dom Forest, LightGBM, XGBoost, and Lasso Regression, 
boosting prediction and robustness for precise reflection 
of immune aging’s continuous changes, avoiding infor-
mation loss and inaccuracy from simplistic binary clas-
sification. In practice, ProMetaGCN performed well. 
Validated externally on samples from healthy donors and 
COVID-19 patients, it can monitor immune responses 
in systemic infectious diseases. We also introduced a 
new metric, ImmuneAgeGap, quantifying the difference 
between actual and immune ages, valuable for immune 
aging and health intervention research. Notably, Pro-
MetaGCN’s application in NSCLC patients revealed 
a significant correlation between immune aging and 
survival rates (and death risks), offering new insights 
and biomarkers for cancer prognosis and personalized 
immunotherapy, potentially advancing precision medi-
cine in oncology. In conclusion, combining GCN, meta-
learning, and diverse machine learning algorithms, we 
aim to provide an efficient, accurate, and innovative tool 
for immune-related protein research and immune state 
assessment, offering new ideas for disease diagnosis, 
treatment, and prevention.

Methods
The architecture of ProMetaGCN
ProMetaGCN is an interpretable and robust tool for 
assessing human immune status by utilizing plasma pro-
tein data collected from healthy individuals. The work-
flow comprises two principal steps: the prediction of 
immune-related proteins and the assessment of immune 
status, as illustrated in Fig.  1. In Step 1, ProMetaGCN 
employs a semi-supervised meta-learning graph con-
volutional network (Meta-GCN) model, enhanced by 
literature mining, to predict potential immune-related 
proteins. These predicted proteins serve as features 
and are subsequently input into various machine learn-
ing models. In Step 2, the proteins are utilized to evalu-
ate immune status. Additionally, the system conducts 
a series of downstream analyses and is validated using 
external datasets to ensure the accuracy and reliability of 
the results.

Datasets
Details about the datasets employed in this study are 
detailed as follows.
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Healthy dataset
The dataset is derived from the research conducted by 
Lehallier et al. [21], based on plasma proteomic data gen-
erated using the SOMAscan platform from four indepen-
dent cohorts in the United States and Europe (VASeattle, 
PRIN06, PRIN09, and GEHA). It includes plasma sam-
ples from 171 participants, aged between 21 and 107 
years, comprising 84 males and 87 females. The relative 
fluorescence units (RFU) of 1,305 plasma proteins were 
measured and subsequently log10-transformed to form 
the dataset.

COVID-19 dataset1
This dataset comes from the study conducted by Wang 
et al. [22], in which levels of 803 plasma proteins were 
measured using the TMTpro 16-plex platform. To ensure 
normalization, the data underwent log2 transforma-
tion. This dataset includes individual samples from three 
stages: the healthy group (n = 35, age range 25–64 years), 

the acute infection group (n = 26, age range 25–67 years), 
and the post-acute group (n = 32, age range 19–69 years).

COVID-19 dataset2
This dataset originates from the study by Zhong et al. 
[23], which recruited 50 patients aged 19 to 66 years 
who tested positive for SARS-CoV-2 via PCR. Blood 
samples were collected for analysis within 24  h of con-
firming COVID-19 infection (Day 0) and on Day 14. The 
analysis included NPX values for 1,459 quality-controlled 
proteins, where NPX represents a relative protein quanti-
fication unit on a log2 scale. The study tracked a cohort of 
individuals with COVID-19 and compared their plasma 
protein profiles with those of a healthy control group. All 
treatments commenced on the day of diagnosis, and by 
Day 14, all patients tested negative on PCR. The COVID-
19 cohort comprised individuals with mild to moderate 
symptoms who did not require hospitalization.

Fig. 1  The Overall workflow of the ProMetaGCN model, which consists of two steps: the prediction of immune-related proteins and the assessment 
of immune status. In Step 1, (a) The meta-learner module optimizes the model parameters, with training divided into m metagraphs; (b) The working 
mechanism of the GCN in immune-related protein prediction. The input to the Meta-GCN model includes feature matrices and adjacency matrices, 
which facilitate the classification of nodes based on the graph’s topological structure. In step 2, (c) The selection of multiple machine learning methods 
and downstream analyses (including GO/KEGG, correlation analysis, and validation with independent test datasets). (d) the age and gender distribution 
pyramid chart for the healthy sample dataset utilized in this study
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NSCLC dataset
This dataset is derived from the study by Harel et al. [24], 
which employed Quantibody multiplex ELISA antibody 
array technology to measure plasma protein levels. Data 
were gathered from 58 patients with non-small cell lung 
cancer (NSCLC) aged between 49 and 85 years, with 
plasma samples obtained from the Sheba Medical Center 
in Israel. All data utilized in this research were derived 
from pre-treatment plasma samples to exclude potential 
effects of treatment on immune status. The study mea-
sured levels of 810 proteins, and the data underwent log2 
transformation for normalization.

Semi-supervised meta-learning graph convolutional 
network
Semi-supervised learning effectively integrates the 
advantages of labeled and unlabeled data, minimizing 
annotation costs while enhancing model performance, 
stability, and adaptability in real-world scenarios. The 
Meta-GCN combines graph convolutional networks 
(GCNs) [25, 26] with meta-learning techniques [27] 
to improve the prediction of immune-related plasma 
proteins in protein-protein interaction networks. This 
approach encompasses three key components: adjacency 
matrix construction, GCN training, and meta-learning 
optimization.

Initially, we utilized the names of 1,305 plasma proteins 
from the Healthy dataset as input and analyzed interac-
tion data among 1,207 plasma proteins, which included 
82,828 interactions obtained from the STRING database 
(refer to Table S1 for details). These interactions were 
selected based on a medium confidence threshold of 0.4. 
We constructed the protein interaction adjacency matrix 
using a “combined_score” that integrates various factors, 
including chromosomal proximity, gene fusion, phyloge-
netic co-occurrence, homology, co-expression, experi-
mental validation, database annotations, and text mining. 
This combined_score approach enhances the accuracy 
of the adjacency matrix, providing a robust foundation 
for subsequent bioinformatics research. In the protein 
interaction network, the adjacency matrix A describes 
the interaction relationships between nodes (proteins). 
For each pair of proteins(i, j), we setAij in the adjacency 
matrix A to the value of the combined_score between 
them, ranging from 0 to 1, where a higher value indicates 
a greater likelihood of interaction. The normalized adja-
cency matrix Â is computed as follows:

	 Â =
∼
D

−1/2 ∼
A

∼
D

−1/2� (1)

Let Ã = A + I , where I is the identity matrix. D̃repre-
sents the degree matrix of Ã, with each element being 
the sum of the corresponding row of Ã. The normalized 
adjacency matrixÃfacilitates the capture of relationships 

between nodes and enhances the representational power 
of Graph Convolutional Networks (GCNs). Subsequently, 
GCNs are employed for feature learning on graph-struc-
tured data. The graph convolution operation in GCNs is 
defined as follows:

	 H(l+1) = σ(ÂH(l)W (l))� (2)

Where H(l)represents the node feature matrix at the l-th 
layer, W ldenotes the weight matrix at the l-th layer, andσ
refers to the activation functionReLU .

In this study, the GCN aggregates neighborhood infor-
mation through two convolutional layers to progressively 
extract features from the graph. The adjacency matrix is 
normalized using FirstOrderGCN. Since each protein is 
represented solely by its name and lacks actual features, 
we utilize an identity matrix as the feature matrix. The 
entire forward propagation process from input features X 
to output predictions Z can be described as follows:

	 Z = f(X, Â) = Softmax(A · ReLU(ÂXW (0))W (1))� (3)

where W (0)and W (1)represent the weight matrices for 
the first and second layers, respectively.ReLUserves as 
the activation function, whileSoftmaxis employed as the 
activation function for the output layer to produce the 
classification probability distribution.

In semi-supervised learning, we leverage a limited 
number of labeled nodes alongside a substantial quantity 
of unlabeled nodes for training. Through literature min-
ing, 35 immune-related proteins (including IFNB1, IL1A, 
IL23R, TGFB1, C2, C3, C5, C6, C7, C9, CCL13, CCL2, 
CCL20, CCL28, CXCL1, CXCL5, CXCL6, CXCL8, 
IFNA2, IFNG, IL10, IL13, IL17A, IL1B, IL2, IL22, IL34, 
IL4, IL5, IL6, IL9, TNF, CXCL9, GDF15, and CSF1) were 
designated as positive labels. Subsequently, 100 proteins 
were randomly selected from the remaining proteins to 
serve as negative labels. The interaction data of these 
proteins were utilized for model training and prediction. 
After training, we obtained the predicted probabilities 
for the immune-related nodes. While maintaining the 
positive labels unchanged, we relabeled the 100 proteins 
with the lowest predicted probabilities as negative and 
retrained the model until convergence of the predic-
tion results. The training setDtraincomprises the feature 
matrix X and the labels Y of the labeled nodes. The model 
is trained by optimizing the cross-entropy loss function, 
which is defined as:

	
Lce = −

∑
i∈L

[yilog(ŷi) + (1 − yi)log(1 − ŷi)]� (4)
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where L represents the set of labeled nodes,yidenotes the 
true label (0 or 1), andŷi is the probability predicted to be 
1.

Finally, meta-learning, also known as “learning to 
learn”, enhances the model’s adaptability across different 
tasks or environments, particularly in few-shot learn-
ing scenarios. It improves model performance when few 
labeled samples are available by acquiring learning expe-
riences from a small set of samples [27, 28]. The meta-
learning framework optimizes the initialization of model 
parameters to enable rapid adaptation to new tasks. The 
meta-learning process consists of two stages: model 
training and model testing. During the model train-
ing phase, we randomly select several nodes from each 
class in the training set Dtrainto form a support setSi

. The remaining nodes constitute the query setQi. Each 
meta-learning task Ti = Si + Qiis thus constructed, and 
by repeating this process M times, we generate M meta-
learning tasks. In each meta-learning task, the objective 
function is:

	
Lmeta =

∑
Ti∈T

Ltask(fθ∗(Ti))� (5)

wherefθ∗is the model optimized through meta-learn-
ing, andLtaskis the loss function for task Ti. The model 
is updated using the Adam optimizer with the following 
update rule:

	 θt+1 = θt − α · ∇θL(θt)� (6)

whereθtrepresents the model parameters at the t-th itera-
tion,αis the learning rate, and∇θL(θt)is the gradient of 
the loss function with respect to the parameters.

Using this method, we trained an efficient model 
based on a small number of known immune-related pro-
teins, capable of comprehensively predicting additional 
immune-related proteins for further assessments of 
immune status.

Prediction of immune status
To predict immune status, we evaluated six commonly 
utilized machine learning methods: Lasso regression, 
Support Vector Machine (SVM), LightGBM, Random 
Forest, XGBoost, and Decision Tree. Each method was 
systematically applied to forecast immune status, with 
the best-performing technique identified based on a 
range of performance metrics and the Pearson correla-
tion between predicted and actual values.

We initiated this process by training and testing each 
method, randomly partitioning the dataset in an 8:2 ratio. 
To facilitate comparability of prediction results across 
different methods and ensure experimental reproduc-
ibility, the “random_state” parameter was set to 42. For 

feature selection, we incorporated 309 immune-related 
proteins as input features. The output was determined by 
immune status scores derived from our previous study 
of 16,705 healthy individuals, which were mapped onto 
a scale from 60 to 100, taking into account age-related 
factors; further details can be found in our prior research 
[14]. During model training, we executed multiple train-
ing iterations for each method while optimizing relevant 
hyperparameters to ensure an optimal fit on the training 
set and robust generalization capabilities. To evaluate 
the performance of each method, we employed several 
common error metrics, including mean absolute error 
(MAE), mean squared error (MSE), root mean squared 
error (RMSE), and the coefficient of determination (R2). 
Additionally, we calculated the Pearson correlation coef-
ficient between the predicted and actual values to assess 
the predictive accuracy of the models further. By compar-
ing the correlation coefficients (r values) of each method, 
we identified those with a high correlation (≥ 0.9) as the 
final predictive model.

Ultimately, we amalgamated the predictions from vari-
ous methods by calculating the mean of the predicted 
values to derive the final immune status score, aiming 
to enhance the accuracy and stability of the predictions 
through the consolidation of multiple machine learning 
models.

Immune age gap
Immune age more accurately reflects an individual’s 
aging and immune status. Previous research has estab-
lished the relationship between age and immune status 
score [14], deriving a formula shown in the left part of 
Figure S1. In this study, focusing on healthy individuals, 
we set the immune status score to be no less than 60 to 
make it more intuitive. The original score range of 0–1 
was remapped to 60–95 based on interval proportions, 
as shown in the right part of Figure S1. Based on current 
data, we’ve set the reference range from 19 to 110 years 
old and assigned an immune status score for each age in 
this span in Table S2. Compare the individual’s calculated 
immune status score with those in Table S2. The age with 
the smallest difference in scores is the person’s immune 
age. Subsequently, this immune age is compared with 
the chronological age to assess whether the individual’s 
immune status is better or worse relative to their chrono-
logical age. The difference between the immune age and 
chronological age is defined as the “ImmuneAgeGap”, as 
shown in Eq. (7):

	 ImmuneAgeGap = Immune age − Chronological age� (7)

IfImmuneAgeGap < 0, it indicates that the individual’s 
immune system is performing more youthfully than their 
chronological age, reflecting immune rejuvenation(immu



Page 6 of 17Zhang et al. BMC Genomics          (2025) 26:360 

nerejuvenation). Conversely, if ImmuneAgeGap > 0, it 
suggests that the individual’s immune system is older in 
comparison to their chronological age, indicating immu-
nosenescence. Immunosenescence refers to the gradual 
decline and functional deterioration of the immune sys-
tem with age, leading to weakened immune capacity. 
This deterioration increases susceptibility to infections, 
diseases, tumors, and other immune-related issues. The 
degradation of the immune system is reflected in both 
cellular and humoral immunity, impacting antibody 
production and the functionality and responsiveness 
of immune cells. This evaluation method facilitates the 
quantification and in-depth analysis of an individual’s 
immune system health status.

Statistical analysis
In this study, we applied z-score normalization to the 
protein data from various datasets during the construc-
tion of the predictive model. This method addresses dis-
parities in feature scales across datasets, thereby ensuring 
the model’s effective applicability to data from different 
studies.

In this study, we applied z-score normalization to the 
protein data from various datasets during the construc-
tion of the predictive model. This method addresses dis-
parities in feature scales across datasets, thereby ensuring 
the model’s effective applicability to data from different 
studies.

The protein-protein interaction (PPI) network of 
immune-related proteins was constructed using STRING 
(https://cn.string-db.org/) and Cytoscape version 3.7.0. 
In our study, we employed the Mann–Whitney U test 
and Pearson correlation analysis. The Mann–Whitney U 
test was applied to compare the expression differences of 
immune-related proteins between sample groups, with 
statistical significance defined as p < 0.05, to uncover the 
potential functions of these differences in immune pro-
cesses. Pearson correlation analysis was utilized to assess 
linear correlations between variables and to explore 
interactions among immune proteins. Statistical signifi-
cance thresholds were established as follows: * p < 0.05, 
** p < 0.01, *** p < 0.001, **** p < 0.0001, while p ≥ 0.05 was 
designated as “ns” (not significant).

Results
Identifying potential immune-related proteins in plasma 
using Meta-GCN
In predicting immune-related proteins in plasma using 
the Meta-GCN model, the model parameters were con-
figured for 20 iterations and 50 training epochs, with a 
learning rate of 0.0001. During training, 35 immune-
related proteins were designated as positive, while 100 
randomly selected proteins served as negative samples; 
the remaining nodes were classified into other categories. 

In each iteration, 20 random selections of nodes were 
performed, each selection comprising 10 negative and 5 
positive protein nodes to ensure comprehensive coverage 
of all known positive samples. This approach facilitated 
adequate representation of both positive and negative 
samples during training. In the testing phase, a pre-
trained model was employed to predict outcomes for all 
nodes, with the 100 proteins exhibiting the lowest pre-
dicted probabilities being relabeled as negative and sub-
sequently used for retraining. This process was iterated 
until the predictions converged. To enhance the reliabil-
ity of the results, the entire procedure was repeated 100 
times, and the median predicted probability for each pro-
tein was recorded as its immune-related probability.

Utilizing this methodology, we identified 307 proteins 
with prediction probabilities exceeding 0.95, as presented 
in Table S3, with the probability range illustrated in 
Fig. 2. Furthermore, through a literature mining, we aug-
mented the dataset with two proteins whose prediction 
probabilities were below 0.95—one with a probability 
greater than 0.9 and the other exceeding 0.75—bringing 
the total count of candidate immune-related proteins to 
309. In subsequent validations using external datasets, 
these candidate proteins, along with the intersection of 
all protein types, were utilized as input features for the 
immune status evaluation model.

Biological significance and potential functions of the 
predicted immune-related plasma proteins
To investigate the biological significance of the predicted 
immune-related proteins, we conducted GO/KEGG 
enrichment analysis on plasma proteins with prediction 
scores exceeding 0.95, as presented in Fig. 3. The results 
indicated that the ten most significantly enriched bio-
logical processes and pathways were primarily associ-
ated with immune responses and inflammation. These 
included cytokine-mediated signaling pathways, leuko-
cyte migration, cytokine-cytokine receptor interactions, 
and the JAK-STAT signaling pathway (see Fig.  3a and 
c). These findings suggest that proteins with prediction 
scores above 0.95 are indeed linked to immune functions. 
Additional details regarding the GO/KEGG biological 
processes and pathways can be found in Table S4.

Concurrently, we performed GO/KEGG enrichment 
analysis on proteins that were predicted to be unrelated 
to immune function, with scores below 0.05. The results 
showed that the ten most significantly enriched biologi-
cal processes and pathways were primarily connected to 
growth and development, with axon development and 
axon guidance pathways being particularly prominent 
(refer to Fig.  3b and d). This further substantiates that 
proteins with predicted values below 0.05 are indeed 
unrelated to immune functions. Detailed descriptions of 

https://cn.string-db.org/
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the enriched GO/KEGG biological processes and path-
ways are provided in Table S5.

In our analysis of the top ten GO biological processes, 
we identified four proteins (CCL19, IL1B, IL6, and XCL1) 
that collectively contribute to these processes, as illus-
trated in Fig.  3e. These four proteins play critical roles 
in the immune system. Specifically, CCL19 is primar-
ily responsible for the migration of T cells and dendritic 
cells, thus facilitating immune responses. It also partici-
pates in thymocyte development and the functions of 
regulatory and memory T cells [29]. IL1β, predominantly 
produced by monocytes and macrophages, is a cru-
cial factor in innate immunity, regulating inflammatory 
responses and promoting the activation of inflamma-
tory and immune cells [30]. IL6 (interleukin-6) is mainly 
synthesized by macrophages, T cells, and B cells; it is 
involved in the differentiation of Th17 cells and enhances 
the proliferation and differentiation of B cells, thereby 
boosting humoral immune responses [17]. XCL1, an 
important C-type chemokine, is primarily secreted by 
activated T cells and natural killer (NK) cells. It facilitates 
the migration of immune cells and the establishment of 
self-tolerance, thus strengthening cytotoxic immune 
responses [16].

These cytokines are crucial for assessing immune sta-
tus and studying immune-related diseases. Variations 
in their expression levels can yield valuable insights into 
immune status and disease progression.

Interaction analysis of immune-related proteins
We conducted an analysis of interactions among 
immune-related proteins (Fig.  4), which highlighted 

the close connections between various protein fami-
lies. These six modules are not isolated; rather, they are 
interconnected by specific proteins that form a larger 
network, as illustrated in Fig. 4a. Within the chemokine 
network (Fig.  4b), cytokines such as CCL11 and CCL2 
regulate the migration and chemotaxis of immune cells, 
directing leukocytes to sites of inflammation and tumors 
to enhance immune responses. The interleukin net-
work (Fig.  4c) encompasses essential functions related 
to the proliferation, differentiation, and activation of 
immune cells; IL-6 and IL-10 play vital roles in modulat-
ing immunity and inflammation. The tumor necrosis fac-
tor network (Fig.  4d) influences cell death and immune 
activation, with TNF-α being crucial for apoptosis and 
immune responses through its receptors (TNFRSF1A 
and TNFRSF1B). The complement system (Fig.  4e) bol-
sters immune responses by identifying and eliminating 
pathogens, featuring critical components such as C3 and 
C5 that augment antibody and leukocyte function. The 
colony-stimulating factor network (Fig. 4f ) supports the 
proliferation and differentiation of hematopoietic stem 
cells, which are essential for the generation of immune 
cells; CSF1 and CSF3 facilitate the differentiation of bone 
marrow cells. Finally, the interferon network (Fig. 4g) is 
pivotal for antiviral defense, with interferons (e.g., IFNG 
and IFNA2) enhancing immune responses against viral 
infections. Collectively, these cytokines and their recep-
tors coordinate the body’s adaptive strategies to confront 
external threats and manage disease.

In the protein interaction network, “degree” denotes 
the number of interactions a specific protein has with 
other proteins. This metric reflects the protein’s centrality 

Fig. 2  The probability distribution of immune-related protein predictions by Meta-GCN
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and importance within the network; a higher degree 
value typically indicates that a protein plays a crucial role 
in biological processes and may be involved in various 
biological pathways or functions. By analyzing protein 

degrees, we can identify potential key regulatory proteins 
and important biological processes, providing valuable 
insights for understanding complex intracellular signal-
ing and metabolic networks. We conducted a differential 

Fig. 3  Enrichment analysis results. (a) GO enrichment analysis (BP) of immune-related proteins (top 10). The GeneRatio represents the proportion of 
immune-related genes in the gene list that are enriched in the target pathway, relative to the total number of genes in the gene set. The size of the bubble 
indicates the number of enriched genes, and the color of the bubble represents the enrichment significance, i.e., p-value. (b) GO enrichment analysis (BP) 
results for immune-unrelated proteins (top 10). (c) KEGG enrichment analysis results for immune-related proteins (top 10). (d) KEGG enrichment analysis 
results for immune-unrelated proteins (top 10). (e) The intersections of the top ten biological processes from the GO enrichment analysis of immune-
related proteins are visualized using UpSet plots and Venn diagrams
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analysis of the top ten proteins ranked by degree between 
the young and old groups. The young group consisted 
of individuals aged 20–40, while the old group included 
individuals aged 60 and above. The results, presented 
in Fig.  4h, reveal significant differences in CSF2, IL1B, 
CCL2, CXCL8, CXCL10, IL6, TNF, IL4, IL10, and IFNG 
between the two age groups.

This shows that immune system regulatory mecha-
nisms change significantly with age, especially in the 
elderly, where alterations in protein expression are closely 
related to immune dysfunction and chronic inflamma-
tion. For instance, increased CSF2 and IL1B expression 
may indicate chronic inflammation and immune cell dys-
function. Higher levels of pro-inflammatory cytokines 

like IL1B, IL6, and TNF suggest exacerbated chronic 
inflammation in the elderly. Changes in proteins such as 
CCL2, CXCL8, and CXCL10 may be linked to increased 
immune cell recruitment at inflammation and injury 
sites. Also, altered expression of proteins like IL4, IL10, 
and IFNG, which are crucial for immune cell prolifera-
tion, differentiation, and regulation, may be associated 
with immune system decline. These key regulatory pro-
tein expression changes reveal the immune system’s 
complex regulatory network during aging. The chronic 
inflammation common in the elderly may stem from 
reduced immune system function and regulatory capac-
ity, and changes in these key regulatory proteins may 
worsen this condition. Moreover, the decline in immune 

Fig. 4  Protein interaction network and its analysis. (a) Interaction network of immune-related proteins (top100); node size is proportional to the degree, 
with cooler colors indicating higher degree values; (b) Chemokine Network; (c) Interleukin Network; (d) Tumor Necrosis Factor Network; (e) Complement 
System Network; (f) Colony-Stimulating Factor Network; (g) Interferon Network; (h) Differential expression analysis of the top 10 proteins by interaction 
degree in different age groups (Mann–Whitney U test)
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cell function is closely related to these protein expression 
changes. Overall, analyzing age-related differences in 
immune-related protein expression not only reveals sig-
nificant immune system changes with age but also pro-
vides insights into the mechanisms of immune decline 
and chronic inflammation during aging, offering poten-
tial targets for further research on age-related immune 
regulation.

Prediction of immune status score
This study aims to evaluate the effectiveness of vari-
ous machine learning algorithms in predicting immune 
status scores, thereby providing an efficient approach 
for assessing individual immune status. We selected six 
algorithms—Lasso, Decision Tree, LightGBM, Support 
Vector Machine (SVM), XGBoost, and Random Forest—
primarily due to their exceptional performance in man-
aging high-dimensional features and complex non-linear 
relationships. The extensive application of these algo-
rithms in the fields of medicine and biology establishes a 
robust theoretical foundation for our research.

In this experiment, we utilized immune-related pro-
teins as input features and immune status scores as labels 
for model training, with the results and analyses pre-
sented in Fig. 5. To evaluate the predictive performance 
of the six algorithms, we primarily employed the Pearson 
correlation coefficient to measure the linear relationship 
between predicted and true values. Additionally, we com-
puted several error metrics, including the Mean Absolute 
Error (MAE), Mean Squared Error (MSE), Root Mean 
Squared Error (RMSE), and the coefficient of determina-
tion (R²). The results indicate (Fig. 5a) that, considering 
the five evaluation metrics, the Pearson correlation coef-
ficients for the predictions made by Lasso, LightGBM, 
XGBoost, and Random Forest all exceeded 0.9, demon-
strating that these algorithms significantly outperformed 
Decision Tree and SVM in this study. This finding sug-
gests that Lasso, LightGBM, XGBoost, and Random For-
est are more accurate in capturing variations in immune 
status scores. To enhance the stability of the experimental 
results, we used the average of the predicted values from 
these four algorithms as the final immune status score for 
each individual.

All four machine learning methods exhibit interpret-
ability, allowing for the assessment of each feature’s 
importance in relation to the predictive outcomes. Fig-
ure  5b illustrates that among the top ten important 
features identified by these four methods, three pro-
teins—ADAMTS13, GDF15, and SERPINF2—appeared 
repeatedly, suggesting these proteins may play a signifi-
cant role in predicting immune status scores. To further 
validate this conclusion, we conducted a differential anal-
ysis based on age and gender (Fig. 5c and d). The results 
indicate no significant differences between genders; 

however, a notable difference was observed between the 
younger group (ages 20–40) and the older group (60 years 
and older). Specifically, the expression level of GDF15 
was higher in the older group, whereas ADAMTS13 
and SERPINF2 exhibited higher expression levels in the 
younger group.

It is worth noting that there is a certain functional 
association between these three proteins and the poten-
tial key regulatory proteins identified by the interaction 
network analysis. In the interaction network analysis, 
we focused on the interactions between proteins and 
identified proteins with high “degree” values in the 
immune-related protein network, such as CSF2, IL1B, 
CCL2, CXCL8, CXCL10, IL6, TNF, IL4, IL10, and IFNG. 
These proteins exhibited significant expression differ-
ences between the younger and older groups, reflecting 
changes in immune regulatory mechanisms with age, 
associated with immune function decline and chronic 
inflammation.

ADAMTS13, identified as an important feature in the 
machine learning model and highly expressed in the 
younger group, participates in cellular responses to bac-
terial-derived molecules (GO:0071219, GO:0002237), 
which is functionally related to multiple proteins in the 
interaction network (e.g., TNF, CCL2, CXCL10, CXCL8, 
IL6, IL1B, CSF2), potentially playing a role in regulat-
ing inflammatory responses and immune cell activation. 
Additionally, its involvement in cellular responses to 
interleukin-4 (GO:0071353) is related to the interleukin 
network in the interaction network (e.g., IL-4), which 
may be important for immune cell proliferation, differen-
tiation, and regulation.

GDF15, also an important feature in the machine 
learning model and highly expressed in the older group, 
participates in cytokine-cytokine receptor interac-
tion (hsa04060), which is functionally related to mul-
tiple cytokines in the interaction network (e.g., TNF, 
CCL2, CXCL10, CXCL8, IL6, IL1B, CSF2), potentially 
playing a role in immune regulation and inflammatory 
responses. Moreover, its role in the acute-phase response 
(GO:0006953) may involve regulating inflammatory 
responses and immune cell activation in response to tis-
sue damage or infection.

SERPINF2, identified as an important feature in the 
machine learning model and highly expressed in the 
younger group, participates in the complement and coag-
ulation cascades (hsa04610), which is functionally related 
to the complement system network in the interaction 
network (e.g., C3, C5), crucial for the normal functioning 
of the immune system. Additionally, its role in the acute-
phase response (GO:0006953) may involve regulating 
inflammatory responses and immune cell activation in 
response to tissue damage or infection, with related pro-
teins including TNF, SERPINF2, IL6, and IL1B.
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Fig. 5  Predictions and protein expression differences across various machine learning models. (a) Correlation analysis between the predicted results of 
Lasso, Decision Tree, LightGBM, SVM, XGBoost, and Random Forest and the true age. (b) Intersection of the top ten important proteins identified by the 
four machine learning methods (upset plot). (c) Analysis of protein expression differences across different age groups (Mann–Whitney U test). (d) Analysis 
of protein expression differences between different genders (Mann–Whitney U test)
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In summary, although ADAMTS13, GDF15, and SER-
PINF2 were not directly identified in the interaction 
network analysis, their immune system functions are 
associated with the mechanisms of key proteins in the 
interaction network, suggesting they may play important 
roles in immune regulation and aging.

External validation of model performance
In this study, two external datasets were employed to 
validate the model and evaluate its effectiveness and reli-
ability. Firstly, the immune status assessment model was 
validated using samples from healthy individuals. Sec-
ondly, the model was assessed by comparing immune sta-
tus scores across groups with varying immune statuses, 
thereby examining differences in immune status scores 
between different stages of infection and healthy indi-
viduals. The analysis of immune status scores from these 

two datasets is detailed below, with results illustrated in 
Fig. 6.

For the COVID-19 dataset1, due to its external origin, 
not all known immune-related proteins were included. 
Therefore, we identified the intersection of immune-
related proteins with all measured proteins in the dataset, 
resulting in 81 common features for model input. These 
features were utilized in the immune status score predic-
tion model to calculate scores for each sample. To con-
firm the model’s effectiveness in assessing the immune 
status of healthy individuals, we conducted a correlation 
analysis between immune status scores and age within 
the healthy individuals of the COVID-19 dataset1. The 
results, presented in Fig. 6a, showed a correlation coeffi-
cient of r = -0.444 with a p-value less than 0.01, indicating 
a significant negative correlation between immune status 
scores and age. This finding demonstrates the validity 

Fig. 6  Analysis of immune status in two external datasets. (a) Correlation analysis between immune status scores and age in the healthy control group of 
the COVID-19 dataset1. (b) Correlation analysis between immune status scores and age on Day 14 (negative nucleic acid test) in the COVID-19 dataset2. 
(c) Comparison of immune status scores across different immune status groups in the COVID-19 dataset1. (d) Comparison of immune status scores at 
different time points (Day 0 vs. Day 14) post-infection in the COVID-19 dataset2
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of the model in evaluating the immune status of healthy 
individuals.

In the COVID-19 dataset2, we identified the intersec-
tion of immune-related proteins with all measured pro-
teins in the dataset, resulting in 185 common features 
for model input. These features were used to compute 
immune status scores for individuals at early infection 
(Day 0) and recovery (Day 14) stages. Day 0 and Day 14 
correspond to infection day 0 and day 14 of the same 
cohort of 50 samples, respectively, maintaining a one-
to-one relationship. Further analysis revealed a signifi-
cant negative correlation between immune status scores 
at Day 14 and age, with a correlation coefficient of r = 
-0.608 and a p-value less than 0.0001, indicating statisti-
cal significance, as shown in Fig. 6b. This result suggests 
that age significantly impacts immune status, indicating 
the necessity of considering age when evaluating immune 
recovery. This finding is consistent with the negative 
correlation observed in the healthy individuals of the 
COVID-19 dataset1, further validating the stability of the 
immune status assessment model.

To assess differences in immune status scores across 
various immune states, we validated the model’s appli-
cation in infectious diseases. In the COVID-19 dataset1, 
we compared immune status scores among three groups: 
healthy individuals, patients in the acute infection phase, 
and those in the post-acute infection phase. Due to the 
lack of a one-to-one correspondence between samples in 
different groups (only samples XGO_81, XGO_91, and 
XGO_92 have data available for both acute and post-
acute infection phases, while other samples appear in 
only one group), individual differences may influence the 
results. In the Mann-Whitney U test, shown in Fig.  6c, 
although there was no statistically significant differ-
ence between acute and post-acute infection phases, the 
median immune status score of the post-acute group was 
slightly higher than that of the acute group. Compared to 
the healthy control group, the immune status score was 
significantly higher in the healthy group than in the post-
acute group (p < 0.01), while the difference between the 
acute infection group and the healthy control group was 
even more significant (p < 0.001).

In the COVID-19 dataset2, we calculated immune sta-
tus scores for the early infection phase (Day 0) and the 
recovery phase (Day 14). The Mann-Whitney U test 
results, shown in Fig. 6d, indicated that the immune sta-
tus score on Day 14 was significantly higher than on Day 
0 (p < 0.0001), suggesting a significant improvement after 
14 days of recovery.

To further investigate the effect of infection stages on 
immune status scores, we examined scores at different 
infection days in the COVID-19 dataset1 (see Table  1). 
For example, in sample XGO_81, infection days during 
the acute phase were 9 and 12 days, with a noticeable 
score increase at Day 12, suggesting gradual improve-
ment as infection progresses. For samples XGO_91 and 
XGO_92, post-acute phase scores were higher than 
those in the acute phase. These results indicate that, fol-
lowing acute infection, the patient’s immune status sig-
nificantly improves as recovery progresses, underscoring 
the importance of timely monitoring and assessment of 
immune status.

Impact of the immune age gap
To further evaluate the immune status of individuals, 
we predicted the immune score to determine each indi-
vidual’s immune age and utilized the Immune Age Gap 
(ImmuneAgeGap) to assess the quality of their immune 
status, as illustrated in Fig. 7. The test set comprised 34 
healthy individuals, 29 of whom were over the age of 50, 
including 12 individuals aged over 80. This distribution 
reflects the characteristics of our dataset, which pre-
dominantly consists of elderly individuals with longevity. 
In Fig.  7a, segments with ImmuneAgeGap < 0 indicate 
immune rejuvenation, while ImmuneAgeGap > 0 signifies 
immunosenescence. The ImmuneAgeGap values are clas-
sified into four categories: Low, Moderate, Severe, and 
Extreme.

Our analysis revealed that the ImmuneAgeGap val-
ues for healthy individuals in the test set were primarily 
concentrated within the range of -15 to 15, suggesting a 
degree of discrepancy between an individual’s immune 
age and chronological age. This discrepancy may be asso-
ciated with the adaptive capacity of the immune system 
in individuals of advanced age (> 90 years). Research indi-
cates that the immune systems of longevity individuals 
often display enhanced resistance and recovery capabili-
ties, implying that their immune status may be relatively 
younger than their chronological age, as demonstrated 
in Fig.  7b. Furthermore, longevity individuals typically 
benefit from factors such as lifestyle, genetic predisposi-
tions, and nutritional intake, all of which may contribute 
to improved immune function. Therefore, the phenom-
enon observed in our study, where many longevity indi-
viduals have lower immune ages than their chronological 
ages, is reasonable. This finding underscores the necessity 

Table 1  Immune status scores of the same sample at different 
stages and days of infection
Sample Age Disease Stage score Time (days)
XGO_81 36 Acute 84.379 9
XGO_81 36 Acute 84.784 12
XGO_81 36 Post acute 85.673 18
XGO_91 48 Acute 74.868 12
XGO_91 48 Post acute 76.372 22
XGO_92 60 Acute 75.611 14
XGO_92 60 Post acute 77.858 25
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for further investigation into the immune health status of 
elderly individuals.

In a study on non-small cell lung cancer (NSCLC) 
employing an external dataset [24], we conducted sur-
vival analyses on the top and bottom 20% of the Immune 
Age Gap (ImmuneAgeGap) groups. The analysis revealed 
a significant difference in survival rates between these 
two groups. The survival curve for the immune rejuve-
nation group (bottom 20%) was markedly higher than 
that of the immunosenescence group (top 20%), indi-
cating that individuals with immune rejuvenation had 
a higher likelihood of survival (see Fig.  7c). Statistical 
analyses further confirmed that the difference in survival 
rates between these groups was statistically significant 
(p < 0.05), highlighting the critical role of ImmuneAgeGap 
in survival prognosis. This finding underscores the 

potential value of immune status in predicting survival 
rates and lays a theoretical foundation for immuno-sta-
tus-based intervention strategies. Additionally, we exam-
ined the age-specific cumulative incidence of NSCLC 
diagnosis within both the immunosenescence group (top 
20%) and the immune rejuvenation group (bottom 20%). 
The results revealed a significant difference between the 
two groups (see Fig. 7d). The immunosenescence group 
displayed an earlier age of onset for NSCLC (death) and 
a higher risk of mortality, while the immune rejuve-
nation group exhibited a later age of onset and a lower 
risk of incidence. This outcome further supports the 
relationship between the ImmuneAgeGap and NSCLC 
risk. The biological significance of these findings is that 
immune system function is crucial in the aging process. 
Immune rejuvenation may indicate a stronger immune 

Fig. 7  Association analysis of ImmuneAgeGap with survival prognosis and cancer risk. (a) Distribution of the age difference (ImmuneAgeGap) between 
immune age and chronological age in the healthy individuals test set; (b) The count of ImmuneAgeGap > 0 and ImmuneAgeGap < 0 in each age group 
within the healthy individual test set; (c) Survival analysis of NSCLC (pre-treatment) patients grouped by ImmuneAgeGap. The survival curves for the 
immune rejuvenation group (Bottom 20%) and the immunosenescence group (Top 20%) are displayed, accompanied by statistical testing. The lighter 
shaded area in the figure represents the 95% confidence interval. (d) Trajectory analysis of ImmuneAgeGap in NSCLC patients concerning age-specific 
cancer risk, where the x-axis indicates age and the y-axis represents the cumulative incidence of risk
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system with better adaptability and resistance, which 
could be more effective in combating diseases and aging. 
This could be linked to factors such as lifestyle, genetics, 
and nutrition that influence immune function. Thus, a 
smaller ImmuneAgeGap might be associated with better 
immune function, enabling individuals to better fight dis-
eases, such as through more efficient pathogen recogni-
tion and clearance or better-regulated immune responses 
to prevent excessive inflammation.

In this study, we also analyzed the relationship between 
immune scores and prognosis in NSCLC patients. 
Higher immune scores imply better immune function. 
We divided patients into Max 20% and Min 20% groups 
based on immune scores. Results in Figure S2 show that 
the high immune score group had a significantly higher 
survival rate (p = 0.036) and a lower cumulative risk of 
death (p = 0.019) compared to the low immune score 
group. This indicates that patients with higher immune 
scores tend to have a better prognosis. This finding is 
in line with the conclusions drawn from the Immu-
neAgeGap analysis, further highlighting the importance 
of immune status in predicting patient survival rates 
and disease risk. The biological significance lies in the 
immune system’s crucial role in disease resistance and 
overall health. Patients with higher immune scores may 
have immune systems that function more effectively, 
enabling better pathogen recognition, clearance, and reg-
ulation of immune responses to prevent excessive inflam-
mation, thus contributing to a better prognosis.

Discussion
In this study, we developed the ProMetaGCN frame-
work to explore immune-related plasma proteins and 
predict immune status scores, thereby facilitating effec-
tive assessment of individual immune health. Inte-
grating external validation datasets, we thoroughly 
investigated these proteins and evaluated the robustness 
of the immune status scores, yielding several significant 
findings.

ProMetaGCN demonstrated outstanding performance 
in predicting immune-related proteins, successfully 
identifying 309 proteins linked to immune responses, 
including key regulatory proteins such as CCL19, IL-6, 
IL-1β, and XCL1. Protein interaction analyses further 
corroborated these findings and provided new insights 
into immune mechanisms. The framework’s integration 
of diverse machine learning techniques enhanced the 
accuracy of immune status score predictions. Validation 
results revealed significant variations in immune status 
across different stages of infectious diseases, including 
COVID-19. These results underscored the model’s effi-
cacy in evaluating immune recovery, as scores exhibited a 
negative correlation with age.

Feature importance analysis revealed significant 
roles for ADAMTS13, GDF15, and SERPINF2 among 
the immune-related proteins. Literature indicates 
ADAMTS13 is involved in thrombosis regulation and 
inflammatory response suppression, alleviating exces-
sive inflammation through interactions with endothelial 
cells [31, 32]. GDF15, an important regulatory fac-
tor, promotes inducible T regulatory cell generation by 
binding to the CD48 receptor on T cells while enhanc-
ing immunosuppressive functions of natural Treg cells. 
Additionally, GDF15 inhibits dendritic cell maturation 
and function, contributing to tumor immune evasion by 
promoting TGFβ1 secretion and suppressing T cell acti-
vation. Recent studies show GDF15 inhibits dendritic cell 
function via interaction with CD44, facilitating immune 
evasion in ovarian cancer [33–35]. Therefore, GDF15 is 
crucial in regulating immune responses, suppressing 
inflammation, and maintaining immune tolerance. Lit-
erature also indicates SERPINF2 protects by regulating 
inflammatory factors and modulating complement and 
coagulation cascades [36, 37].

In exploring immune status scores to assess immune 
age, we introduce the concept of ImmuneAgeGap to eval-
uate individual immune quality. Results show that Immu-
neAgeGap effectively distinguishes immune rejuvenation 
from aging, demonstrating relevance in both healthy 
individuals and cancer patients. Longevity cohorts often 
display signs of immune rejuvenation, potentially linked 
to adaptability, lifestyle, and genetics. In NSCLC patients, 
lower ImmuneAgeGap values correlate with higher sur-
vival rates and lower mortality, while immune aging cor-
responds to poorer prognoses. These findings highlight 
immune age disparities’ potential in assessing immune 
status, providing theoretical foundations for personalized 
interventions in immune-related diseases, including can-
cer. Future integration of immune age with biomarkers 
could lead to precise diagnostics and treatment strategies 
for immunological diseases.

This study presents a novel model for immune protein 
screening and immune status assessment by combining 
machine learning with biological data. ProMetaGCN not 
only enhances the predictive accuracy of immune-related 
proteins but effectively evaluates immune health through 
immune status scoring. The model holds promise for 
early diagnosis of immune diseases, particularly in cancer 
immunotherapy and personalized treatment strategies.

Despite these achievements, several limitations still 
exist. Although multiple external datasets were used for 
validation, the limited sample size and data types may 
affect the model’s generalizability, particularly when 
verifying outcomes across different diseases. Addition-
ally, the relationship between immune status scores and 
factors such as genetics and lifestyle requires further 
investigation. Future research could focus on increasing 
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sample size, extending follow-up time and dataset diver-
sity (including the number and proportion of immune 
cells and subtypes, and the diversity of TCR and BCR) to 
validate the ProMetaGCN model’s universality and stabil-
ity. Furthermore, incorporating a wider range of immu-
nological markers could improve predictive accuracy, 
and integrating concepts like immune age with other 
biomarkers could facilitate a comprehensive assessment. 
As clinical data accumulate, validating the link between 
immune status scores, disease progression, treatment 
efficacy, and prognosis will be crucial for advancing per-
sonalized immunotherapy.

In summary, the ProMetaGCN model provides an 
innovative tool for screening immune-related proteins 
and assessing immune status from plasma protein data, 
thus advancing immunological research. While the 
model has limitations, future studies will aim to optimize 
its performance, offering more precise guidance for the 
prevention and treatment of immune-related diseases.

Conclusion
The ProMetaGCN model introduced in this study dem-
onstrates substantial advantages in predicting immune-
related proteins and assessing immune status utilizing 
plasma protein data from healthy individuals. This model 
not only effectively identifies critical immune-related 
proteins but also clarifies their essential roles in immune 
responses and inflammatory processes. By integrating 
literature mining, meta-learning graph convolutional 
networks, and diverse machine learning techniques, Pro-
MetaGCN establishes new theoretical foundations and 
practical tools for personalized immunotherapy and the 
assessment of immune health.
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