
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t t p  : / /  c r e a  t i  v e c  o m m  o n s .  o r  g / l i c e n s e s / b y / 4 . 0 /.

Polizel et al. BMC Genomics          (2025) 26:359 
https://doi.org/10.1186/s12864-025-11545-6

BMC Genomics

*Correspondence:
Miguel Henrique de Almeida Santana
mhasantana@usp.br

Full list of author information is available at the end of the article

Abstract
Background This study assessed the long-term metabolic effects of prenatal nutrition in Nelore bulls through an 
integrated analysis of metabolome and microbiome data to elucidate the interconnected host-microbe metabolic 
pathways. To this end, a total of 126 cows were assigned to three supplementation strategies during pregnancy: 
NP (control)– only mineral supplementation; PP– protein-energy supplementation during the last trimester; and 
FP– protein-energy supplementation throughout pregnancy. At the end of the finishing phase, blood, fecal, and 
ruminal fluid samples were collected from 63 male offspring. The plasma underwent targeted metabolomics 
analysis, and fecal and ruminal fluid samples were used to perform 16 S rRNA gene sequencing. Metabolite and 
ASV (amplicon sequence variant) co-abundance networks were constructed for each treatment using the weighted 
gene correlation network analysis (WGCNA) framework. Significant modules (p ≤ 0.1) were selected for over-
representation analyses to assess the metabolic pathways underlying the metabolome (MetaboAnalyst 6.0) and the 
microbiome (MicrobiomeProfiler). To explore the metabolome-metagenome interplay, correlation analyses between 
host metabolome and microbiome were performed. Additionally, a holistic integration of metabolic pathways was 
performed (MicrobiomeAnalyst 2.0).

Results A total of one and two metabolite modules associated with the NP and FP were identified, respectively. 
Regarding fecal microbiome, three, one, and two modules for the NP, PP, and FP were identified, respectively. 
The rumen microbiome demonstrated two modules correlated with each of the groups under study. Metabolite 
and microbiome enrichment analyses revealed the main metabolic pathways associated with lipid and protein 
metabolism, and regulatory mechanisms. The correlation analyses performed between the host metabolome and 
fecal ASVs revealed 13 and 12 significant correlations for NP and FP, respectively. Regarding the rumen, 16 and 17 
significant correlations were found for NP and FP, respectively. The NP holistic analysis was mainly associated with 
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Background
Pregnancy is a physiological status that demands sub-
stantial nutrients to meet the fetus’s needs for growth 
and development and the dam’s maintenance require-
ments [1]. When divided into three trimesters, bovine 
pregnancy is characterized by distinct fetal developmen-
tal milestones: placentation, organ differentiation, and 
rapid growth [2, 3]. The extent to which maternal nutri-
tional requirements are met during these periods can 
significantly impact fetal development [4]. In cow-calf 
operations in the tropics, the physiological and meta-
bolic conditions of cows, as well as the strategy of more 
technical production systems, coincide in that the breed-
ing season occurs during the rainy period when forage 
supply and quality are adequate for reproductive suc-
cess [5, 6]. However, mid to late pregnancy overlaps with 
the year’s dry season when forage supply is limited and 
of low quality [7–9]. Several studies have demonstrated 
that maternal nutrition during pregnancy has significant 
phenotypic, molecular, and metabolic effects, with both 
short and long-term consequences for the offspring [5, 
10–12]. To address these challenges and mitigate the 
potential negative impacts of undernutrition, protein and 
energy supplementation have been employed as a strat-
egy during critical pregnancy stages in beef cows raised 
in extensive pasture systems [13].

The influence of maternal nutrition on the offspring 
gastrointestinal microbiome still needs to be fully elu-
cidated despite well-established evidence that various 
host factors, including age, breed, genetics, and espe-
cially diet, shape the rumen and gut microbiome [14, 15]. 
While some studies have demonstrated a relationship 
between the microbiome of cows and their offspring in 
fecal and ruminal samples [16, 17], the understanding of 
microbial colonization timing continues to evolve. Tradi-
tionally, it was widely accepted that rumen colonization 
by microorganisms begins at birth [18–20]. However, this 
notion has been challenged by a recent study on bovine 
fetuses, which supports the theory of in-utero gastroin-
testinal tract colonization by bacteria and archaea. The 
study suggests that colonization may commence as early 
as the first trimester of gestation [21], significantly alter-
ing the perspective on early microbial establishment in 
ruminants.

Despite the advances in prenatal nutrition research 
in beef cattle, divergent findings persist in the observed 
effects on the offspring. Many of these contradictory 
results are often associated with the variation of nutri-
tional planes applied, including differences in the dura-
tion, composition, period and level [4]. Host nutrition 
broadly impacts the gut and rumen microbiome, health, 
and many individual microbial taxa. These changes in 
microbiome composition and diversity are associated 
with traits such as feed efficiency [22], disease [23], meth-
ane emissions [24], and metabolism [25]. To address 
these complexities and better understand the relation-
ship between host nutrition and microbiota, -OMIC 
approaches, such as plasma metabolomics [26–28], have 
been integrated with microbiome analysis. This integra-
tion enables more in-depth characterization and insights 
into the phenotype under study.

Moreover, the lack of holistic studies employing com-
prehensive and integrative -OMIC approaches has lim-
ited our ability to fully understand the causes of these 
differences. Implementing such studies may be a poten-
tial approach to minimize the impact of these differences 
and advance the knowledge in the fetal programming 
field. The association among maternal nutrition, off-
spring metabolome, and microbiome is complex. Key 
questions remain, such as how prenatal nutrition shapes 
the metabolome and microbiome, how these changes 
influence metabolic pathways, and what relationships 
exist between metabolites and microbial communi-
ties. Addressing these questions through integrative 
approaches will yield valuable insights into the molecular 
interactions and regulatory mechanisms affected by pre-
natal nutrition.

The hypothesis of this study is that different maternal 
nutritional strategies have long-term effects on offspring, 
impacting metabolic pathways through the integra-
tion of both plasma metabolome, and fecal and ruminal 
microbiome. The objectives were fourfold: (1) To evalu-
ate the impact of prenatal nutritional strategies on the 
plasma metabolome and microbiome co-abundance net-
works in the finishing phase; (2) To investigate associa-
tions between significant co-abundant metabolites and 
microbes and their involvement in metabolic pathways; 
(3) To examine relationships between metabolites and 

amino acid and methane metabolism. Glycerophospholipid and polyunsaturated fatty acid metabolism were over-
represented in the FP group.

Conclusions Prenatal nutrition significantly affected the plasma metabolome, fecal microbiome, and ruminal fluid 
microbiome of Nelore bulls, providing insights into key pathways in protein, lipid, and methane metabolism. These 
findings offer novel discoveries about the molecular mechanisms underlying the effects of prenatal nutrition.

Clinical trial number Not applicable.

Keywords Maternal nutrition, Metabolites, Methane, Microbiome, PUFAs, Systems biology, WGCNA
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microbial taxa (fecal and ruminal fluid); and (4) To con-
duct a holistic integration analysis of plasma metabolome 
and microbiome to assess how prenatal nutrition influ-
ences metabolic pathways in beef cattle.

Methods
Experimental design
The animals used in this experiment were provided by the 
Faculty of Animal Science and Food Engineering (FZEA-
USP) campus. All animal procedures were approved by 
FZEA-USP Institutional Animal Care and Use Commit-
tee (Protocol #1843241117). Thirty days after the cows’ 
artificial insemination, which was randomly assigned 
to semen from four sires, pregnancy was confirmed. 
The use of semen from multiple sires aimed to provide 
genetic variability and reduce potential sire-related biases 
in the study. Based on age, body weight (BW), and body 
condition score, the dams were divided into three groups 
of 42 animals each to provide a balanced experimental 
design. These groups were kept on Urochloa brizantha 
cv. Marandu grazing paddocks that included troughs 
for water and feed supplementation. The following pre-
natal treatments were provided to the three groups of 
cows: Not Programmed (NP (control)), Partial Program-
ming (PP), and Full Programming (FP). The NP cows 
received only mineral supplements throughout preg-
nancy (0.03% of their BW per day). The PP cows received 
protein-energy supplementation during the last tri-
mester of pregnancy equivalent to 0.3% of their BW per 
day. On the other hand, the FP cows received the same 

protein-energy supplementation for a longer period, 
starting from pregnancy confirmation until calving.

The protein-energy supplementation groups (PP and 
FP) also received mineral supplementation, totaling 
0.03% of their BW per day. The composition of the pro-
tein-energy supplement already accounted for this min-
eral addition (as shown in Table  1). During pregnancy, 
the nutritional values of the grazing paddocks were 
equivalent across all groups (Table 2) [29]. Detailed infor-
mation on the pasture conditions, along with the pheno-
typic and metabolic effects of the treatments (NP, PP, and 
FP) on dams, was described previously by Schalch Junior 
et al. [29].

After calving, protein-energy supplementation was 
stopped. All offspring, regardless of their prenatal nutri-
tional treatment, followed the same health procedures 
and dietary regimens until weaning at 240 ± 28 days. Dur-
ing this period, cows had the same mineral supplementa-
tion (0.03% of BW) as during the pregnancy phase and 
were kept on an extensive grazing system of Urochloa 
brizantha cv. Marandu paddocks.

Rearing and finishing phase
Post-weaning, animals were separated by sex, regardless 
of their prior treatment, and reared until the end of the 
developmental phase at 570 ± 28 days under the same 
nutritional management. During this phase, young bulls 
received two types of supplements: an energy supple-
ment (TDN = 67.55%; CP = 24.78%; fat = 2.61%; 0.3% of 
BW) during the dry season (winter), and a protein sup-
plement (TDN = 53.15%; CP = 30.03%; fat = 1.65%; 0.1% of 
BW) during the wet season (summer). From calving until 
570 ± 28 days of age, the young bulls grazed on Urochloa 
brizantha cv. Marandu pastures with free access to water.

The finishing phase for the 63 bulls started at 570 ± 28 
days of age and ended with slaughter at 676 ± 28 days. 
During this phase, the bulls were fed three different diets: 
an initial adaptation diet for 15 days, followed by a sec-
ond diet for 35 days, and a final diet for 56 days. These 
diets were formulated to gradually adjust the bulls’ nutri-
tion throughout the finishing phase. Additional informa-
tion about the finishing diet was reported elsewhere [30].

After completing the finishing phase, the bulls were 
slaughtered at the FZEA/USP school slaughterhouse, 

Table 1 Composition of prenatal supplement, including the 
mineral and protein-energy supplement with their respective 
ingredient and nutrient levels
Ingredients Mineral 

Supplement
Protein-Energy 
Supplement

Corn (%) 35.00 60.00
Soybean meal (%) - 30.00
Dicalcium phosphate (%) 10.00 -
Urea 45% (%) - 2.50
Salt (%) 30.00 5.00
Minerthal 160 MD (%)* 25.00 2.50
Nutrients Mineral 

Supplement
Protein-Energy 
Supplement

Total digestible nutrients (%) 26.76 67.55
Crude protein (%) 2.79 24.78
Non-protein nitrogen (%) - 7.03
Acid detergent fiber (%) 1.25 4.76
Neutral detergent fiber (%) 4.29 11.24
Fat (%) 1.26 2.61
Calcium (g/kg) 74.11 6.20
Phosphorus (g/kg) 59.38 7.24
*Mineral premix composition (Minerthal company): Calcium = 8.6  g/kg; 
Cobalt = 6.4  mg/kg; Copper = 108  mg/kg; Sulfur = 2.4  g/kg; Fluorine = 64  mg/
kg; Phosphorus = 6.4  g/kg; Iodine = 5.4  mg/kg; Manganese = 108  mg/kg; 
Selenium = 3.2 mg/kg; Zinc = 324 mg/kg; Sodium monensin = 160 mg/kg [90]

Table 2 Nutrient composition of the pastures consumed by 
cows in the different groups
Pasture nutrients NP PP FP
CP % (crude protein) 7.38 ± 1.72 7.82 ± 2.28 7.40 ± 2.30
TDN % (total digestible nutrients) 63.1 ± 1.45 64.1 ± 2.33 61.4 ± 2.12
NDF % (neutral detergent fiber) 59.0 ± 3.67 61.4 ± 5.05 58.4 ± 4.11
Ca % (calcium) 0.38 ± 0.11 0.35 ± 0.05 0.39 ± 0.08
P % (phosphorus) 0.19 ± 0.03 0.19 ± 0.03 0.17 ± 0.03
(NP, PP, and FP), with values presented as mean ± standard deviation [29]



Page 4 of 21Polizel et al. BMC Genomics          (2025) 26:359 

which is located approximately 500  m from the feed-
lot facilities. The average weights and ages at slaughter 
were as follows: NP = 591.2 ± 40.05  kg (678 ± 29 days), 
PP = 602.6 ± 49.65 kg (676 ± 29 days), and 597.4 ± 51.06 kg 
(675 ± 28 days). The slaughter process and subsequent 
carcass processing were carried out in accordance with 
the guidelines set by the Ministry of Agriculture, Live-
stock, and Supply of Brazil (MAPA), as specified in Nor-
mative Instruction No. 9 of 2004. Detailed phenotypic 
information about slaughter, gastrointestinal and meat 
parameters are available in [30, 31].

Plasma, fecal and ruminal sample collection
Blood and fecal samples from 63 Nelore bulls were col-
lected at 660 ± 28 days of age, 16 days prior to slaughter. 
The rumen fluid samples were collected in the slaugh-
terhouse, within 15  min after slaughter (676 ± 28 days), 
during the processing of the animals. For this study, 5 
experimental units were randomly selected from each 
treatment group (Plasma, n = 15; Feces, n = 15; Rumi-
nal fluid, n = 15), with the same animals included in all 
analyses.

Blood samples were aseptically collected from the 
jugular vein of each animal into EDTA-coated tubes (BD 
Vacutainer, São Paulo, Brazil) to prevent coagulation. 
Immediately after collection, the tubes were placed on 
ice to maintain sample integrity and minimize metabolic 
activity. All blood samples were processed within one-
hour post-collection to ensure consistency and reliability 
of downstream analyses. To separate plasma, the blood 
samples were centrifuged at 3,000×g for 10  min at 4  °C 
using a refrigerated centrifuge. This step allowed for the 
effective separation of plasma from cellular components. 
Following centrifugation, the plasma supernatants were 
carefully aspirated to avoid contamination with the buffy 
coat or red blood cells and transferred to pre-labeled, 
sterile microcentrifuge tubes. The plasma aliquots were 
then immediately stored at -80  °C to preserve their bio-
chemical properties and prevent degradation until fur-
ther analysis.

Stringent protocols were used to obtain fecal and rumi-
nal fluid samples for metagenomics analysis, ensuring 
sample integrity and minimizing contamination. Fecal 
samples were collected directly from the rectum of each 
animal to retrieve fresh material. Disposable gloves were 
used throughout collection to minimize cross-contami-
nation, and sterile, pre-labeled microtubes were used to 
collect around 10–20  g of feces from each animal. Fol-
lowing the slaughtering and evisceration, ruminal fluid 
samples were filtered with 4 layers of sterilized cheese-
cloth and placed in conical tubes (20 mL per animal). The 
tubes (feces and ruminal fluid) were initially kept in ice 
packs and later stored in an ultrafreezer at -80  °C until 
DNA extraction.

Plasma targeted metabolomics
The AbsoluteIDQ® p180 Kit (Biocrates Life Sciences, 
Innsbruck, Austria) was utilized to conduct targeted 
metabolomics analyses on plasma samples. This kit 
measures 188 metabolites (21 amino acids, 21 biogenic 
amines, 40 acylcarnitines (Cx), 14 lysophosphatidylcho-
lines (lysoPC), 76 phosphatidylcholines (PC), 15 sphin-
golipids (SMx), and one monosaccharide). The analyses 
were conducted by Apex Science Company (Campinas, 
São Paulo, Brazil) using the SCIEX 4000 series® system. 
Amino acids and biogenic amines were quantified using 
high-performance liquid chromatography tandem mass 
spectrometry (HPLC-MS/MS) with electrospray ioniza-
tion. Lysophosphatidylcholines, phosphatidylcholines, 
acylcarnitines, and hexose were assessed via flow injec-
tion analysis-tandem mass spectrometry (FIA-MS/MS). 
The quantification and identification of metabolites were 
based on Biocrates MetIDQ™ software and its propri-
etary library, which contains prevalidated reference stan-
dards and optimized methods tailored for the p180 Kit. 
The data were processed using MetIDQ® software, and 
metabolite concentrations were determined using iso-
topically labeled internal standards, ensuring high pre-
cision and reproducibility. Biocrates employs rigorous 
quality control measures, including experimental meth-
ods to determine metabolite-specific limits of detection 
(LOD) for each analyte. Three distinct levels of qual-
ity control samples were included on the analysis plate 
as described in the user manual. These controls consist 
of lyophilized human plasma samples spiked with low, 
medium, and high concentrations of target metabolites. 
The performance of these quality control samples was 
assessed using the MetVAL module of the MetIDQ® soft-
ware, and the results were displayed in both the MetVAL 
module and the MetSTAT results table. The inclusion of 
these quality control measures ensures that the analytical 
process adheres to the highest standards of accuracy and 
reliability.

Metabolomics data processing
The identified metabolites were filtered based on the 
LOD established by the Biocrates company. Initially, 
values exceeding the LOD (observed in nine of the 188 
metabolites, representing 4.78%) were treated as miss-
ing data. Metabolites with more than 70% of their values 
falling below or above the LOD threshold were subse-
quently removed from the dataset (six metabolites were 
removed; 3.19%) ensuring that at least 5 animals had 
values within the LOD range. Compounds with uniform 
values across the samples were also excluded (five metab-
olites were removed; 2.66%), resulting in a final dataset 
of 177 metabolites. For the metabolites retained after 
filtering, values below the LOD were replaced with the 
minimum detected value, while values above the LOD 
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were replaced with the maximum detected value for each 
respective variable. This adjustment was applied to three 
metabolites, accounting for 1.69% of the dataset. This 
approach ensured that the dataset was suitable for sub-
sequent analyses. The dataset was autoscaled using the 
“scale” function in the R statistical environment v.4.4.0 to 
meet normalization requirements and prepare it for fur-
ther analyses. The raw metabolomics dataset is available 
on the Additional file 1.

DNA extraction, PCR amplification and 16 S rRNA 
sequencing from fecal and ruminal fluid samples
The Macherey Nagel NucleoSpin Tissue® commer-
cial kit was used to extract the DNA, and 16  S rRNA 
gene sequencing was performed on the MiSeq platform 
(2 × 250 bp; Illumina, San Diego, CA, USA) using primers 
for the V3 to V4 region, as recommended by the manu-
facturer. The methodology involved two PCR steps. The 
first step amplified the targeted region of the 16 S rRNA 
gene from the template DNA, including the Illumina 
adapter sequences. The PCR products were then purified 
using AMPure XP beads, and fragment sizes were evalu-
ated via agarose gel electrophoresis. In the second step, 
barcodes from the Nextera XT kit were attached. This 
was followed by additional PCR purification and library 
validation steps. The libraries were quantified to ensure 
uniform sample pooling into a single library.

The Illumina forward overhang adapter sequence [5ʹ- 
T C G T C G G C A G C G T C A G A T G T G T A T A A G A G A C A 
G-(locus-specific sequence)-3´] and reverse overhang 
adapter sequence [5ʹ- G T C T C G T G G G C T C G G A G A T G T 
G T A T A A G A G A C A G‐(locus-specific sequence)-3´] were 
completed with the locus-specific sequence using S-D-
Bact-0341-b-S-17 (5′-CCTACGGGNGGCWGCAG-3′) 
as forward primer, and S-D-Bact-0785-a-A-21 (5′-GAC-
TACHVGGGTATCTAATCC-3´) as reverse primer [32].

A heterogeneous control, the phi-X phage, was com-
bined with the pool of amplicons. Finally, the libraries 
and phi-X were denatured to allow sequencing.

Metagenomics data processing
The processing of amplicon metagenomic data was car-
ried out on the statistical environment R v.4.4.0. The 
DADA2 v.1.32.0 workflow [33] was used to infer the 
Amplicon Sequence Variants (ASVs) and for the taxo-
nomic assignments. Briefly, we first filtered and trimmed 
the raw sequencing reads to remove poor-quality bases 
(quality score ≥ 30) and adapter contamination. Identi-
cal reads were then combined (dereplication). The reads 
were then denoised, merged, and filtered to remove 
artifacts related to PCR and PhiX-related chimeras. The 
ASVs were quantified and taxonomically annotated using 
the SILVA database of non-redundant sequences (version 
v.138.1, nr99) [34]. The data were structured in objects 

including the ASVs quantifications, the taxonomy anno-
tations and the sample treatments groups (NP, PP and 
FP) through the phyloseq package v.1.48.0 [35]. The phy-
loseq was used to remove phyla with just one feature and 
to filter for prevalence (≥ 20%; at least three samples with 
counts). After all filtering steps, the fecal (Additional file 
2) and ruminal fluid (Additional file 3) dataset resulted 
in 258 and 302 microbial taxa (genus level), respectively. 
Fecal and ruminal fluid microbiome taxonomy table can 
be accessed in Additional files 4 and 5, respectively. The 
final datasets were then log2 transformed for further 
analyses. Results regarding taxa abundance and diversity 
can be found in [30].

WGCNA analysis
The Weighted Gene Co-expression Network Analysis 
(WGCNA) R-package v. 1.72-5 [36] was used to explore 
the co-expression pattern of metabolites and ASVs in 
response to the prenatal nutrition effects. In addition, the 
WGCNA approach was used to reduce the data dimen-
sionality, and the results were used for further analyses.

The first stage of the WGCNA analysis required turn-
ing our nutritional treatment groups (NP, PP, and FP) into 
binary variables using dummy transformation to match 
the WGCNA requirements. An adjacency matrix was 
generated using the WGCNA framework, which esti-
mated the Spearman’s correlation coefficients between 
metabolite pairs and ASVs pairs datasets separately. To 
create co-abundance networks following the scale-free 
assumptions (R2 ≥ 0.80) [37], soft thresholds were estab-
lished for the plasma metabolome (power = 12, R2 = 0.92), 
fecal microbiome (power = 11, R2 = 0.85), and rumen fluid 
microbiome (power = 18, R2 = 0.93).

Following this, the adjacency matrix was converted 
into a topological overlap matrix. The cluster analysis 
was then carried out to detect modules, ensuring a mini-
mum of five components per module for both -OMICs 
(metabolomics and metagenomics) [38, 39]. Modules 
having a correlation value (r) of 0.75 or higher were 
merged within each dataset. Using hierarchical clustering 
(Additional file 6), metabolites or microbial taxa with a 
similar abundance pattern (individually in each -OMIC 
dataset) across samples were placed into the same mod-
ule and randomly designated by color. The modules were 
then summarized based on the eigengene concept, and 
the module eigengene values were correlated (Spearman’s 
correlation) with the groups (NP, PP, and FP). Modules 
were considered significant when the p-value was ≤ 0.1, 
according to WGCNA manual guidelines. Heatmaps 
were then created to show the correlations (with corre-
sponding p-values) between the groups and the metabo-
lite and microbial taxa modules.
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Functional enrichment analysis
Functional enrichment analyses to uncover metabolic 
pathways underlying each significant module were con-
ducted for both ASVs and metabolites. To perform 
ASVs functional enrichment analysis, we first used the 
EMBOSS Transeq tool ( h t t p  s : /  / w w w  . e  b i .  a c .  u k / j  d i  s p a  t c h  e 
r / s  t /  e m b o s s _ t r a n s e q) to translate the nucleotide FASTA 
sequences into amino acid FASTA sequences. These 
sequences were then annotated using the database genus_
prokaryotes + viruses of the GhostKOALA [40]. This 
web service maps genes to KOs, which represent groups 
of orthologous genes associated with specific molecu-
lar functions. By analyzing the KO content, organisms 
and samples can be clustered, revealing distinct groups 
with unique characteristics. These groups are identified 
through various data mining techniques and primarily, 
though not exclusively, reflect differences in metabolic 
potential [41]. Ultimately, these insights facilitate the 
formulation of targeted hypotheses about the physiologi-
cal traits of individual ASVs and the broader community 
within specific samples and the prenatal nutritional treat-
ments applied. Over representation analysis was carried 
out using the MicrobiomeProfiler v.1.10.0 R package 
to identify the metabolic pathways using KEGG (Kyoto 
Encyclopedia of Genes and Genomes) database involved 
in each significant module generated by the WGCNA 
analysis. Metabolic pathways with FDR (False Discovery 
Rate) ≤ 0.1 were considered significant.

Metabolomic data enrichment analysis was conducted 
by inputting the list of metabolites identified in each 
significant module into the MetaboAnalyst v.6.0 plat-
form [42] The “Over Representation Analysis” function 
was used to identify enriched metabolic pathways. This 
approach evaluates whether certain metabolites are over-
represented within specific pathways, providing insights 
into the biological relevance of the metabolite modules. 
Pathway analysis was based on the KEGG database, 
ensuring comprehensive coverage of known metabolic 
pathways. Additionally, chemical structures (sub-classes) 
of the metabolites within each module were examined to 
further characterize the modules. Significance was deter-
mined using an adjusted p-value threshold of ≤ 0.1.

Metagenomics-metabolomics data integration
Two approaches were used to integrate the metagenom-
ics and metabolomics data: (1) Spearman’s correlation 
analysis between the plasma metabolites and ASVs for 
each treatment, and (2) integration of all significant com-
ponents from each treatment, regardless the sample tis-
sue, to fully understand the impact of prenatal nutrition 
on metabolic pathways. Our inputs comprised all ASVs 
and metabolites from significantly associated modules. It 
is worth noting that the PP treatment was not included in 

the integration analyses because it did not show any sig-
nificant modules in the plasma WGCNA analysis.

The Spearman’s correlation analysis was used to iden-
tify host metabolites and ASVs significantly correlated, 
and consequently associated with the prenatal nutritional 
treatments (NP and FP). This method was selected due 
to its robustness to non-normal distributions and non-
linear relationships, particularly relevant as metabolites 
were autoscaled and ASVs log2-transformed. Significant 
correlations were visualized as heatmaps, highlighting 
associations influenced by prenatal nutrition.

Additionally, the NP and FP treatments were also indi-
vidually analyzed (regardless of the -OMIC technology 
or approach or tissue type used) to identify the differen-
tial metabolic pathways affected by prenatal nutrition. 
The MicrobiomeAnalyst v.2.0 [43] was employed to 
obtain functional insights, carrying out an integrated 
over representation analysis across the whole metabolic 
map involving the three tissues simultaneously (plasma 
metabolome, fecal and ruminal microbiome). For this 
analysis, significant components identified in each pre-
natal treatment (NP and FP) were imputed. Metabolic 
pathways with FDR ≤ 0.1 were considered significant, 
and common metabolic pathways between the treat-
ments were removed. Figure  1 illustrates the workflow 
of the analyses conducted, along with the experimental 
design, providing a comprehensive overview of each step 
performed.

Results
WGCNA analysis
The metabolome co-abundance analysis identified one 
significant module for the NP group (yellow), with a cor-
relation coefficient of 0.49, and two significant modules 
for the FP group (yellow and green), with correlation 
coefficients of -0.52 (yellow) and 0.49 (green). No sig-
nificant modules were found for the PP group. Notably, 
while the yellow module was shared between the NP 
and FP groups, it exhibited opposite correlation signs, 
suggesting different metabolic behaviors between these 
groups (Fig. 2).

The significant correlations (p ≤ 0.1) regarding fecal 
microbiome ranged from|0.47| to|0.49| in the NP group 
modules, and|0.56| to|0.59| in the FP group modules. In 
the PP group, only one significant module was correlated 
with the fecal microbiome (purple module [r = -0.49]). 
As demonstrated in the Fig. 3, we also identified shared 
modules between the groups in the fecal microbiome. 
The NP and PP groups shared the purple module, show-
ing opposite correlation (0.49 and − 0.49, respectively). 
In addition, the NP group showed two more significant 
modules (pink [r = -0.49] and cyan [r = -0.47]). The FP 
group showed significant negative correlations with the 
brown (r = -0.59) and salmon (r = -0.56) modules.

https://www.ebi.ac.uk/jdispatcher/st/emboss_transeq
https://www.ebi.ac.uk/jdispatcher/st/emboss_transeq
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Regarding the ruminal fluid microbiome, the NP group 
was correlated (p ≤ 0.1) with pink and purple modules 
(r = 0.52; r = 0.69, respectively). The pink module was like-
wise shared with PP group (r = -0.59), while the purple 
module was shared with the FP group (r = -0.54), both 
indicating opposite correlations between the groups. 
Thus, the metabolic pathways associated with each 

module act differently among the prenatal groups. Fur-
thermore, the PP group was exclusively correlated with 
the blue module (r = 0.46), and the FP group uniquely 
correlated with the magenta module (r = -0.53). Table 3 
presents all the components of each significant module 
identified in the WGCNA analyses.

Fig. 1 Experimental design and workflow illustrating sample collection, treatments, and analyses performed
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Metabolome functional enrichment analysis
Based on the metabolome functional enrichment analy-
sis of each significant module, we found several impor-
tant metabolic pathways and sub-classes (adjusted 
p-value ≤ 0.1) related to the prenatal treatments.

The yellow module showed that all metabolic path-
ways were associated with amino acid metabolic pro-
cesses (arginine biosynthesis [p = 9.13e-07]; valine, 
leucine and isoleucine biosynthesis [p = 8.47e-05]; ala-
nine, aspartate and glutamate metabolism [p = 7.7e-04]; 
histidine metabolism [p = 0.001]; arginine and proline 
metabolism [p = 0.001]; glyoxylate and dicarboxylate 
metabolism [p = 0.010]; phenylalanine, tyrosine and tryp-
tophan biosynthesis [p = 0.013]; nitrogen metabolism 
[p = 0.025]; beta-alanine metabolism [p = 0.025]; phenyl-
alanine metabolism [p = 0.041]; glutathione metabolism 
[p = 0.048]; and glycine, serine and threonine metabolism 
[p = 0.069]).

Regarding the functional enrichment of the green mod-
ule (correlated exclusively with the FP group; Fig. 6), two 
metabolic sub-classes involved in lipid metabolism (glyc-
erophosphocholines [p = 8.7e-52]; and phosphosphingo-
lipids [p = 0.066]) were identified.

Microbiome functional enrichment analysis
The microbiome functional enrichment analysis of each 
significant module revealed some relevant metabolic 

pathways (adjusted p-value ≤ 0.1) associated with the pre-
natal groups.

In the fecal microbiome (Fig.  7), we identified four 
functionally enriched modules (cyan, purple, brown 
and salmon). In the cyan module (Fig. 7A), three meta-
bolic pathways were significantly enriched (nitrogen 
metabolism [p = 0.024]; phenylalanine, tyrosine and 
tryptophan biosynthesis [p = 0.024]; and biosynthesis 
of amino acids [p = 0.051]). Regarding the purple mod-
ule (Fig.  7B), five metabolic pathways were significantly 
enriched (nitrogen metabolism [p = 0.062]; Phenylala-
nine, tyrosine and tryptophan biosynthesis [p = 0.062]; 
Bacterial secretion system [p = 0.062]; cysteine and 
methionine metabolism [p = 0.078]; and biosynthesis of 
amino acids [p = 0.099). The brown module (Fig. 7C) pre-
sented four metabolic pathways significantly enriched 
(nitrogen metabolism [p = 0.031]; RNA degradation 
[p = 0.031]; pertussis [p = 0.031]; and glycerophospholipid 
metabolism [p = 0.033]). A total of five metabolic path-
ways were identified associated with the salmon module 
(Fig.  7D) including RNA degradation [p = 0.053], nitro-
gen metabolism [p = 0.062], lipopolysaccharide biosyn-
thesis [p = 0.067], Galactose metabolism [p = 0.067], and 
biosynthesis of siderophore group nonribosomal pep-
tides [p = 0.075]). No significant metabolic pathways were 
identified in the pink module.

In the rumen fluid microbiome (Fig. 8), we also found 
four significant enriched modules (pink, purple, blue and 
magenta). The pink module (Fig. 8A) presented five sig-
nificant metabolic pathways enriched (nitrogen metabo-
lism [p = 0.012]; biotin metabolism [p = 0.071]; pinene, 
camphor and geraniol degradation [p = 0.071]; fatty acid 
biosynthesis [p = 0.071]; and protein export [p = 0.071]). 
The purple module (Fig. 8B) showed five significant meta-
bolic pathways enriched (lipoarabinomannan (LAM) bio-
synthesis [p = 0.061]; biotin metabolism [p = 0.062]; fatty 
acid biosynthesis [p = 0.062]; protein export [p = 0.062]; 
biosynthesis of cofactors [p = 0.063]). In the blue mod-
ule (Fig.  8C), four metabolic pathways were signifi-
cantly enriched (RNA degradation [p = 0.091]; nitrogen 
metabolism [p = 0.094]; ribosome [p = 0.095]; and nucle-
otide metabolism [p = 0.098]. Lastly, the magenta mod-
ule (Fig.  8D) showed five metabolic pathways enriched 
(pinene, camphor and geraniol degradation [p = 0.063]; 
lysine biosynthesis [p = 0.063]; protein export [p = 0.064]; 
mismatch repair [p = 0.066]; and peptidoglycan biosyn-
thesis [p = 0.071].

Metagenomics-metabolomics correlation analysis
Figure 9 shows the significant correlations observed 
based on the Spearman’s correlation analysis between 
significant plasma metabolites and ASVs for each treat-
ment (NP and FP).

Fig. 2 Plasma metabolome module–treatment correlation heatmap. 
Each row corresponds to a metabolite module, and each column corre-
sponds to a prenatal nutritional treatment group (NP, PP, and FP). Each cell 
contains the corresponding correlation and p-value. The table is colour-
coded by correlation, according to the colour legend
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In the NP treatment, we identified 13 significant cor-
relations between fecal ASVs and plasma metabolites 
(Fig. 9A). The correlation coefficients ranged from|0.65| 
to|0.81|, with threonine and tyrosine accounting for eight 
of these significant correlations. Tyrosine exhibited the 
strongest correlation (r = -0.81) with ASV65 (Romboutsia 
genus), followed by threonine, which showed the second 
highest correlation with the same ASV (r = -0.74).

The correlations between rumen fluid ASVs and 
plasma metabolites in the NP treatment (Fig. 9B) showed 
16 significant correlations ranging from|0.65| to|0.77|. 
Two metabolites, malonylcarnitine (C3-DC C4(OH)) 
and carnosine, accounted for 11 out of the 16 significant 
correlations identified. The top two correlations were 

associated with malonylcarnitine and ASV76 (Saccharo-
fermentans genus; r = 0.77), and carnosine and the same 
ASV (r = 0.77).

Regarding the FP treatment, the correlation between 
plasma metabolites and fecal microbial taxa revealed 
12 significant correlations ranging from|0.64| to|0.75| 
(Fig.  9C). This assessment did not show significant cor-
relations concentrated in specific metabolites, unlike 
previous findings. The top two highest correlation values 
were between proline and ASV205 (Agathobacter genus; 
r = 0.75), and between aspartate and ASV149 (Clostrid-
ium sensu stricto 1 genus; r = 0.73).

The correlations between rumen fluid microbial taxa 
and plasma metabolites in the FP treatment (Fig.  9D) 

Fig. 3 Fecal microbiome module–treatment correlations heatmap. Each row corresponds to an ASV module, and each column corresponds to a prenatal 
nutritional treatment group (NP, PP, and FP). Each cell contains the corresponding correlation and p-value. The table is colour-coded by correlation, ac-
cording to the colour legend
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showed 17 significant correlations ranging from|0.65| 
to|0.77|. Most of the correlations (15 out of 17), including 
the highest ones, were associated mainly with malonyl-
carnitine and carnosine. Malonylcarnitine is involved 
in five of the top six correlations. These include its cor-
relation with Saccharofermentans genus (ASV76 and 
ASV186; r = 0.77 and r = 0.73, respectively), Acetitomac-
ulum genus (ASV45 and ASV67; r = 0.76 and r = 0.75, 
respectively) and Christensenellaceae R-7 group genus 
(ASV57; r = 0.74).

Metagenome-metabolome metabolic pathways analysis
We refined the first findings (32 significant pathways 
for the NP group and 26 significant pathways for the 
FP group) by focusing on the distinct metabolic path-
ways related with each nutritional treatment group (NP 
and FP). A total of 10 unique metabolic pathways were 
found for NP treatment including methane metabo-
lism [FDR = 0.029], pantothenate and CoA biosynthesis 
[0.037], thiamine metabolism [FDR = 0.029], carbapenem 
biosynthesis [FDR = 0.039], novobiocin biosynthesis 
[FDR = 0.039], phenylalanine, tyrosine and tryptophan 
biosynthesis [FDR = 0.043], staurosporine biosynthesis 
[FDR = 0.073], phenylalanine metabolism [FDR = 0.076], 
porphyrin metabolism [FDR = 0.088] and phenylpro-
panoid biosynthesis [FDR = 0.096]), which are involved 
with processes such as amino acid and methane metabo-
lism, as well as antibiotics biosynthesis.

In the FP group, five unique metabolic pathways were 
identified, predominantly related to lipid metabolism 
(i.e., glycerophospholipid metabolism [FDR = 8.24e-25], 
linoleic acid metabolism [4.0e-25], alpha-linolenic acid 
metabolism [FDR = 3.44e-17], arachidonic acid metabo-
lism [FDR = 8.92e-14]), and antibiotic biosynthesis (Peni-
cillin and cephalosporin biosynthesis [FDR = 0.047]). 
Figure 10 shows the unique metabolic pathways underly-
ing each prenatal nutritional approach.

Discussion
Prenatal nutrition can affect fetal growth and develop-
ment through epigenetic alterations, which may conse-
quently impact the short and long-term metabolism of 
the offspring [44–47]. Alongside this, the -OMICs inte-
gration studies are becoming increasingly essential for 
improving knowledge about the functional and biological 
processes in all organisms [48].

Prenatal nutrition effects on plasma metabolic pathways
From the two significant co-abundance modules of 
plasma metabolome, we identified several pathways 
impacted by prenatal nutrition. The yellow module 
showed that all 13 significant metabolic pathways were 
highly associated with amino acid metabolic processes. 
Although the yellow module showed significant cor-
relation with both NP and FP groups, the correlation 

Table 3 Components of the significant modules from WGCNA analysis. The table lists the corresponding -OMIC dataset, tissue type, 
module color, and the components associated with each significant module
-OMICS Tissue Modules Components
Metabolome Plasma Yellow Ala; Arg; Asn; Asp; Gln; Glu; Gly; His; Ile; Leu; Lys; Met; Orn; Phe; Pro; Ser; Thr; Tyr; Val; Ac.Orn; Carno-

sine; t4.OH.Pro; C3-DC.C4(OH)
Metabolome Plasma Green Alpha.aaa; ADMA; Creatinine; Serotonin; C10.1; C10.2; C12.1; C14.1; lysoPC.a.C16.1; lysoPC.a.C17.0; 

lysoPC.a.C18.1; lysoPC.a.C20.3; lysoPC.a.C24.0; lysoPC.a.C26.0; lysoPC.a.C28.0; lysoPC.a.C28.1; PC.aa.
C26.0; PC.aa.C30.0; PC.aa.C32.0; PC.aa.C34.1; PC.aa.C36.0; PC.aa.C36.1; PC.aa.C36.3; PC.aa.C36.5; PC.aa.
C36.6; PC.aa.C38.3; PC.aa.C38.4; PC.aa.C38.5; PC.aa.C40.1; PC.aa.C40.2; PC.aa.C40.3; PC.aa.C40.4; PC.aa.
C40.5; PC.aa.C42.2; PC.aa.C42.4; PC.ae.C30.0; PC.ae.C30.1; PC.ae.C30.2; PC.ae.C32.2; PC.ae.C34.0; PC.ae.
C34.3; PC.ae.C36.0; PC.ae.C36.1; PC.ae.C38.0; PC.ae.C38.1; PC.ae.C38.2; PC.ae.C38.3; PC.ae.C38.4; PC.ae.
C40.1; PC.ae.C40.2; PC.ae.C40.3; PC.ae.C40.4; PC.ae.C40.5; PC.ae.C42.0; PC.ae.C42.1; PC.ae.C42.2; PC.ae.
C42.3; PC.ae.C42.4; PC.ae.C42.5; SM.OH.C22.2; SM.OH.C24.1; SM.C16.0; SM.C16.1; SM.C24.0; SM.C26.0

Metagenome Feces Pink ASV9; ASV16; ASV17; ASV19; ASV29; ASV38; ASV60; ASV65; ASV82; ASV104; ASV111; ASV112; ASV119; 
ASV180; ASV463

Metagenome Feces Cyan ASV76; ASV169; ASV174; ASV189; ASV217; ASV268; ASV270; ASV552; ASV567
Metagenome Feces Purple ASV69; ASV81; ASV89; ASV113; ASV117; ASV181; ASV234; ASV245; ASV309; ASV330; ASV437
Metagenome Feces Brown ASV7; ASV8; ASV15; ASV21; ASV24; ASV25; ASV26; ASV28; ASV30; ASV31; ASV32; ASV33; ASV34; 

ASV37; ASV40; ASV46; ASV50; ASV54; ASV58; ASV72; ASV73; ASV86; ASV92; ASV95; ASV328
Metagenome Feces Salmon ASV97; ASV98; ASV116; ASV149; ASV182; ASV205; ASV213; ASV238; ASV275; ASV751
Metagenome Rumen 

fluid
Pink ASV39; ASV51; ASV53; ASV63; ASV65; ASV68; ASV87; ASV95; ASV109; ASV131; ASV142; ASV215; 

ASV220; ASV290; ASV387
Metagenome Rumen 

fluid
Purple ASV12; ASV34; ASV57; ASV76; ASV100; ASV133; ASV186; ASV198; ASV231; ASV587; ASV648; ASV861; 

ASV1035
Metagenome Rumen 

fluid
Blue ASV21; ASV78; ASV89; ASV91; ASV110; ASV158; ASV192; ASV197; ASV200; ASV230; ASV233; ASV245; 

ASV276; ASV347; ASV402; ASV458; ASV520; ASV547; ASV1042; ASV1139
Metagenome Rumen 

fluid
Magenta ASV9; ASV27; ASV30; ASV45; ASV67; ASV83; ASV85; ASV96; ASV101; ASV116; ASV268; ASV309; 

ASV322; ASV443; ASV1045
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Fig. 4 Rumen fluid microbiome module–treatment correlations heatmap. Each row corresponds to an ASV module, and each column corresponds to a 
prenatal nutritional treatment group (NP, PP, and FP). Each cell contains the corresponding correlation and p-value. The table is colour-coded by correla-
tion, according to the colour legend
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coefficients were inverses, indicating different modula-
tion of these pathways.

Amino acids play important roles, such as energy 
sources, primary producers of C1 carbon compounds, 
anaplerotic metabolites providing intermediates for the 
tricarboxylic acid (TCA) cycle and gluconeogenesis, pre-
cursors for numerous hormones, neurotransmitters, and 
other specialized metabolites [49].

Biosynthesis of amino acids, as well as glycine, serine 
and threonine metabolism have already shown an asso-
ciation with prenatal nutrition on fetal skeletal muscle 
in beef cattle [50]. According to Elolimy et al. [51], the 
prenatal methionine supplementation during late preg-
nancy affected metabolic pathways including alanine 
metabolism, phenylalanine and tyrosine metabolism, 
glutamate metabolism, arginine and proline metabo-
lism, and tryptophan metabolism during the prewean-
ing period of offspring. Although, valine, leucine and 
isoleucine degradation pathways have been identified by 
the same authors, our study revealed that prenatal nutri-
tion affected the biosynthesis instead of the degradation 

of this metabolic pathway. In general, these metabolic 
pathways are similar with our present findings in the yel-
low module. Additionally, our previous studies [29, 52] 
have identified the effect of prenatal nutrition on simi-
lar amino acid metabolic pathways as the present study 
(arginine biosynthesis; histidine metabolism; beta-ala-
nine metabolism). These findings indicate that the meta-
bolic alterations caused by prenatal nutrition persist until 
the animal’s slaughter.

Arginine and proline play important roles in proper 
cellular function and development by participating in 
DNA and RNA synthesis, protein glycosylation, and 
detoxification [53, 54]. Phenylalanine, tryptophan, and 
tyrosine act as precursors to neurotransmitters including 
dopamine and serotonin [55]. The branched-chain amino 
acids (BCAA) are composed by leucine, isoleucine and 
valine, playing roles such as protein metabolism, energy 
homeostasis (lipid and glucose), gut health and immu-
nity [56]. Therefore, we speculate that prenatal nutrition 
plays a pivotal role in modulating the intricate crosstalk 
between the blood, brain, and gastrointestinal tract. This 

Fig. 5 Bubble plot illustrating the over-representation analysis of metabolites associated with the yellow module from plasma WGCNA analysis
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modulation has the potential to influence key physi-
ological processes, including nutrient metabolism, neu-
rotransmitter synthesis, and immune responses, thereby 
shaping developmental and functional outcomes.

Regarding the green module, which was significant 
exclusively for the FP group, the metabolites were over-
represented in the glycerophosphocholine (GPC) and 
phosphosphingolipid sub-classes. The GPC metabolite 
subclass, also known as choline alfoscerate, functions as 
a choline precursor and is closely related to phospha-
tidylcholine. It plays essential roles in cell membrane 
integrity, osmoregulation, signaling, and lipid transport 
[57, 58]. Phosphosphingolipids, an important subclass 
of lipids within the sphingolipid class, are involved in 
key biological processes such as plasma membrane com-
position, cell signaling, proliferation and differentiation, 
stress responses, apoptosis, insulin resistance, aging, 
cancer, and lipid signaling pathways [59, 60]. In beef 
cattle, Menezes et al. [61] reported that maternal nutri-
tion, particularly maternal body weight gain, changed 
the hepatic fetal lipid composition in the first trimester 
of pregnancy. These findings suggest that the over-rep-
resentation of GPC and phosphosphingolipids in the FP 
group may reflect changes in lipid metabolism and pro-
cesses related to cell signaling and osmoregulation, which 

are crucial for energy balance and cellular function dur-
ing development.

Prenatal nutrition effects on microbiome metabolic 
pathways
The cyan and purple fecal microbiome modules were cor-
related with the NP group (r = -0.47 and r = 0.49, respec-
tively). Despite showing moderate correlations [62], 
these modules were biologically relevant because four of 
the five significant metabolic pathways identified in the 
NP fecal microbiome were closely related to amino acid 
metabolism, including nitrogen metabolism, phenylala-
nine, tyrosine and tryptophan biosynthesis, cysteine and 
methionine metabolism, and biosynthesis of amino acids. 
Notably, these pathways are similar to those observed in 
the NP plasma metabolome. Given the moderate cor-
relations and the strong functional relevance of these 
pathways, we focused on these modules as they highlight 
important metabolic processes potentially influenced 
by prenatal nutrition. The PP group was also correlated 
with the purple module; however, showing an inverse 
correlation regarding the NP group. This indicates dif-
ferent modulation of the metabolic pathways involved 
in the purple module. Furthermore, the NP metabolic 
levels of tyrosine were negatively correlated with four 

Fig. 6 Bubble plot illustrating the over-representation analysis of metabolites associated with the green module from plasma WGCNA analysis
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ASVs (ASV29 [Paeniclostridium], ASV60 [Romboutsia], 
ASV65 [Romboutsia], ASV112 [Romboutsia]). This find-
ing, alongside the tyrosine biosynthesis pathway identi-
fied, highlights the strong association among Romboutsia 
genera, tyrosine and NP group.

The gut microbiota is essential for amino acid pro-
duction, particularly de novo biosynthesis. Several in 
vitro studies have revealed that ruminal bacterial spe-
cies engage in the de novo biosynthesis of amino acids 
when physiological peptide amounts are present [63]. 
Furthermore, the gut microbiota profile is determinant 
for the tryptophan catabolite levels in the systemic cir-
culation [60, 61]. These findings are consistent with our 
plasma metabolic pathway results, which highlight the 
interplay between prenatal nutrition, host metabolism, 
and the gut microbiome. Our correlation results align 
with these findings, as the NP fecal microbiome demon-
strated significant associations with metabolites, five of 
which belong to the amino acid class. While this suggests 
a potential link between the NP group and amino acid 
metabolism, further investigation is required to establish 
causation or fully substantiate this connection.

The FP group was exclusively correlated with the 
brown (r = -0.59) and salmon (r = -0.56) modules. While 

nitrogen metabolism was also over-represented in the 
FP group, most of the important metabolic pathways 
found were not related to amino acid metabolism. Path-
ways including RNA degradation, glycerophospholipid 
metabolism, and lipopolysaccharide (LPS) biosynthesis 
were identified. This is an intriguing discovery, given that 
GPC and phosphosphingolipid were over-represented in 
the FP plasma metabolome. Nevertheless, the correla-
tion results demonstrated that only two metabolites from 
the phospholipid class (PC aa C36:6 and PC ae C36:0) 
were significantly correlated with a fecal microbial taxon 
(ASV32 [Faecalibacterium]).

Although our study did not specifically investigate the 
epigenome or related molecules, the RNA degradation 
pathway identified in the FP group is associated with 
these factors; thus, we discuss their potential relevance 
in this context. Epigenetic alterations and regulatory 
mechanisms, like RNA degradation, represent main pro-
cesses via which gut bacteria can affect the host health 
[64, 65]. Cortese et al. [66] has demonstrated that bacte-
ria may directly cause epigenetic alterations in the host, 
as indicated by distinct patterns of DNA modification in 
immature intestinal epithelial cells after exposure to com-
mensal or pathogenic pathogens. Notably, the same study 

Fig. 7 Bar plots illustrating the over-representation analysis of fecal microbiome from the significant modules correlated in the WGCNA. A Significant 
metabolic pathways associated with ASVs in the cyan module. B Significant metabolic pathways associated with ASVs in the purple module. C Significant 
metabolic pathways associated with ASVs in the brown module. D Significant metabolic pathways associated with ASVs in the salmon module
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discovered that prenatal glucocorticoid-induced epigen-
etic programming leads to changes in gut microbiota 
composition in mice, demonstrating intricate connec-
tions between the microbiome and epigenome. In addi-
tion, alterations in the LPS biosynthetic pathways have 
been reported in cesarean delivered neonates in compari-
son with vaginally delivered neonates [67]. The LPS is a 
surface membrane component of gram-negative bacteria 
and is recognized by toll-like receptor 4 (TLR4) on the 
membranes of intestinal epithelial cells, which stimulates 
components of the immune system [67]. The epigenetic 
alterations caused by prenatal nutrition may be reflected 
in the long-term gut microbiome, potentially leading to 
immunomodulatory effects. In summary, considering the 
prenatal nutrition effects on fecal microbiome pathways, 
we can clearly identify a close association among the pre-
natal nutrition group, the over-represented pathways in 
the fecal microbiome, and those in the plasma (discussed 
in the Sect.  “Prenatal nutrition effects on plasma meta-
bolic pathways”).

Regarding the ruminal fluid microbiome, the metabolic 
pathways detected in the NP group consisted mainly 
of protein metabolism (nitrogen metabolism, protein 
export), followed by vitamin metabolism (biotin metab-
olism), and lipid metabolism (fatty acid biosynthesis). 

Biotin (vitamin B7) is a water-soluble vitamin that plays 
a significant role in mammal health and illness as a coen-
zyme for carboxylases involved in a variety of metabolic 
pathways, including the cellular stress response, gene 
regulation, and immunological responses [68–70]. In 
the rumen, the metabolism of proteins and fatty acids 
is closely linked to microbial activity and fermentation 
processes. The anaerobic nature of the rumen involves 
partial breakdown of substrates (including proteins), 
and the end fermentation products involve volatile fatty 
acids (VFAs; mainly acetate, propionate, and butyrate), in 
addition to CO2 [71]. As ruminants consume dietary pro-
tein, it is quickly digested in the rumen into peptides and 
amino acids, resulting in ammonia generation and nitro-
gen loss. When nitrogen retention is inefficient, financial 
expenses increase due to the demand for more dietary 
protein. In severe cases, high amounts of rumen ammo-
nia can induce metabolic stress in the animal, whereas 
excessive nitrogen excretion in manure might harm the 
ecosystem [72]. Despite the fact that three of the five 
significant metabolites in the NP rumen fluid ASVs cor-
relation analysis belonged to the amino acid class, mal-
onylcarnitine and carnosine exhibited a higher number 
and stronger degree of correlations. Given that the cor-
relation analysis of NP fecal ASVs included more than 

Fig. 8 Bar plots illustrating the over-representation analysis of rumen fluid microbiome from the significant modules correlated in the WGCNA. A Sig-
nificant metabolic pathways associated with ASVs in the pink module. B Significant metabolic pathways associated with ASVs in the purple module. C 
Significant metabolic pathways associated with ASVs in the blue module. D Significant metabolic pathways associated with ASVs in the magenta module

 



Page 16 of 21Polizel et al. BMC Genomics          (2025) 26:359 

80% of the significant correlated metabolites belonging to 
amino acids, these findings may indicate a reduced rela-
tionship between the rumen fluid microbiota and amino 
acid metabolites. The FP rumen fluid correlations were 
similar to NP rumen fluid correlations, with malonylcar-
nitine and carnosine demonstrating several significant 
correlations with different ASVs. More research combin-
ing host metabolites and microbiota is needed to fully 
understand these relationships.

The PP group, in addition to the previously mentioned 
pathways, also exhibited regulatory mechanisms related 
to RNA degradation and nucleotide metabolism, while 
the FP group was associated with processes like mis-
match repair. These findings suggest potential regula-
tory roles of prenatal nutrition in microbiome-mediated 
pathways. However, further research is needed to address 
the gaps in the literature regarding the complex inter-
actions between epigenetic modifications, regulatory 

mechanisms, and the microbiome, particularly in the 
context of prenatal nutrition and its long-term effects on 
offspring development. In summary, our results reveal 
significant divergences in the ruminal and fecal micro-
biomes of offspring from different prenatal nutritional 
treatments despite uniform management throughout 
their productive cycle. These microbial differences are 
interconnected with the host metabolome, influencing 
multiple metabolic pathways including protein, lipid, and 
vitamin metabolism, as well as regulatory mechanisms 
in the ruminal fluid microbiome. This interconnection 
underscores the lasting impact of prenatal nutrition on 
offspring development and metabolic function.

Fig. 9 Heatmaps demonstrating the significant correlations between the host plasma metabolome and its fecal and rumen fluid microbiome. A NP 
group correlation between its significant metabolites and its significant fecal ASVs. B NP group correlation between its significant metabolites and its 
significant rumen fluid ASVs. C FP group correlation between its significant metabolites and its significant fecal ASVs. D FP group correlation between its 
significant metabolites and its significant rumen fluid ASVs. The heatmaps were reduced to just display components with at least one significant correla-
tion. Significant correlations are numerically represented in the heatmap, and the significant levels are demonstrated according to the p-values threshold 
(*p-value < 0.01; **p-value < 0.001)
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Metabolomics-metagenomics integration approach 
reveals lipid and methane metabolism as main pathways 
impacted by prenatal nutrition
The results found in the holistic integration analy-
sis revealed the most important metabolic pathways 
involved in the long-term impacts of prenatal nutrition in 
beef cattle offspring. The NP group demonstrated close 
associations with amino acid metabolism and methane 
metabolism, while the FP group showed a strong rela-
tionship with lipid metabolism.

Regarding the NP group, we found some pathways sim-
ilar with our previous analyses (phenylalanine, tyrosine 
and tryptophan biosynthesis; phenylalanine metabolism) 
related to amino acid metabolic processes. However, the 
most significant metabolic pathway identified was asso-
ciated with methane metabolism. Ruminants emit 16% 
of worldwide methane (CH4), with the beef cattle and 
dairy sectors accounting for 35% and 30%, respectively 
[73]. Methane is an unnecessary by-product of micro-
bial fermentation of mostly complex carbohydrates in the 
rumen, produced by methanogenic archaea and expelled 

into the environment via the animal’s mouth and nose. 
Eructated methane from ruminal microbial fermentation 
not only contributes to global warming but also wastes 
energy, reducing feed efficiency [74]. Given the micro-
biome’s crucial role in methane production, strategies to 
mitigate emissions in ruminants primarily target dietary 
interventions that alter rumen conditions and microbial 
ecology [75–77]. Our findings suggest a novel associa-
tion between prenatal nutrition and methane metabolism 
pathways in the offspring’s ruminal microbiome. This 
association could have implications for feed efficiency, as 
previous research has shown that less feed-efficient steers 
have a higher relative abundance of methanogens in their 
ruminal microbial populations compared to high feed-
efficient steers [78]. Our results raise the intriguing possi-
bility that prenatal nutrition throughout gestation might 
influence the animal’s long-term feed efficiency and 
methane production capacity. Further research is needed 
to elucidate the mechanisms underlying this association 
and its potential applications in sustainable livestock 
management and methane mitigation strategies [81].

Fig. 10 Diamond plot showing the holistic integration of significant metabolites and ASVs (fecal and rumen fluid) in each prenatal nutrition group (NP 
and FP). The figure illustrates all the significant exclusive metabolic pathways associated with each group
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Interestingly, the FP group continues to show a strong 
association with lipid metabolism, as demonstrated in 
our previous analyses performed in this study. Glycero-
phospholipid metabolism (also identified in the brown 
module of the fecal microbiome), as well as linoleic acid, 
alpha-linolenic acid, and arachidonic acid metabolism 
pathways, were shown as the main pathways affected 
by the FP group in a holistic perspective. Lipid metabo-
lism is a pivotal focus in livestock industry research, 
whether for milk or meat production [79]. In addition to 
the lipid roles already discussed (available in the discus-
sion Sect. 4.1 and 4.2), the PUFAs (polyunsaturated fatty 
acids) play several other important roles. The intramus-
cular fat content in beef typically includes only 5% PUFAs 
[80], which can vary depending on nutritional factors 
[81]. A high ratio of omega-6 (n-6; such as linoleic acid 
and arachidonic acid) in relation to n-3 fatty acids pro-
motes several illnesses, including cardiovascular disease, 
arthritis, and cancer, whereas lower levels have suppres-
sive effects in humans [82], pigs [83–85] and mice [86]. 
Association between maternal low-protein diet and 
disordered regulation of lipid metabolism in rats was 
reported [87]. In ruminants, some studies have identi-
fied prenatal nutrition effects on lipid metabolism [88, 
89]. Supporting our findings, Menezes et al. [61] demon-
strated that maternal nutrition significantly influenced 
fetal hepatic lipid composition in cattle during early 
gestation. Their study revealed that appropriate mater-
nal nutrition leading to moderate weight gain optimized 
fetal lipid profiles, resulting in higher omega-3 and lower 
omega-6 fatty acid abundances in fetal livers. This aligns 
with our observed alterations in PUFA metabolism path-
ways. Although Menezes et al. [61] focused on fetal liver 
tissue, in contrast to our analysis of blood metabolome 
and fecal microbiome, both studies highlight the broad 
impact of prenatal nutrition on offspring lipid metabo-
lism. This concordance across different experimental 
approaches suggests that prenatal nutrition may have 
lasting effects on various aspects of lipid metabolism in 
offspring.

In general, our findings corroborate to novel discover-
ies, particularly related to the association among prenatal 
nutrition, methane metabolism and PUFA metabolism 
in beef cattle. Further studies are needed to assess more 
in-depth the linkage between beef prenatal nutrition and 
these pathways.

Conclusions
Prenatal nutrition modulated several metabolic pathways 
in bulls, mainly involved with protein, lipid and meth-
ane metabolism, as well as some regulatory mechanisms. 
Based on all the analyses performed, we conclude that 
the NP group had a high association with amino acid 
metabolic processes and methane metabolism, while the 

FP group showed a strong relationship with lipid metabo-
lism, mainly PUFA metabolism. The PP group demon-
strated metabolic pathways associated with regulatory 
mechanisms and amino acid metabolism. It is important 
to note that, in addition to exclusive modules within each 
treatment, modules shared between groups revealed in 
all contrasts opposing correlations, presumably indicat-
ing epigenetic modifications caused by prenatal nutri-
tion. Briefly, the integration of plasma host metabolome 
and metagenomics (fecal and ruminal fluid) has provided 
intriguing insights into prenatal nutrition in beef cattle, 
revealing novel discoveries.
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