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Abstract
Background Rapid turnaround time for a third-field resolution deceased donor human leukocyte antigen (HLA) 
typing is critical to improve organ transplantation outcomes. Third generation DNA sequencing platforms such as 
Oxford Nanopore (ONT) offer the opportunity to deliver rapid results at single nucleotide level resolution, in particular 
sequencing data that could be denoised computationally. Here we present a computational pipeline for up-to third-
field HLA allele typing following ONT sequencing.

Results From a R10.3 flow cell batch of 31 samples of known HLA allele types, up to 10,000 ONT reads were aligned 
using BWA aligner to reference allele sequences from the IPD-IMGT/HLA database. For each gene, the top two hits to 
reference alleles at the third field were selected. Using our pipeline, we obtained the following percent concordance 
at the 1st, 2nd and 3rd field: HLA-A (98.4%, 98.4%, 98.4%), HLA-B (100%, 96.8%, 96.8%), HLA-C (100%, 98.4%, 98.4%), 
HLA-DPA1 (100%, 96.8%, 96.8%), HLA-DPB1 (100%, 100%, 98.4%), HLA-DQA1 (100%, 98.4%, 98.4%), HLA-DQB1 (100%, 
98.4%, 98.4%), HLA-DRB1 (83.9%, 64.5%, 64.5%), HLA-DRB3 (82.6%, 73.9%, 73.9%), HLA-DRB4 (100%, 100%, 100%) and 
HLA-DRB5 (100%, 100%, 100%). By running our pipeline on an additional R10.3 flow cell batch of 63 samples, the 
following percent concordances were obtained:: HLA-A (100%, 96.8%, 88.1%), HLA-B (100%, 90.5.4%, 88.1%), HLA-C 
(100%, 99.2%, 99.2%), HLA-DPA1 (100%, 98.4%, 97.6%), HLA-DPB1 (98.4%, 97.6%, 92.9%), HLA-DQA1 (100%, 100%, 
98.4%), HLA-DQB1 (100%, 97.6%, 96.0%), HLA-DRB1 (88.9%, 68.3%, 68.3%), HLA-DRB3 (81.0%, 61.9%, 61.9%), HLA-
DRB4 (100%, 97.4%, 94.7%) and HLA-DRB5 (73.3%, 66.7%, 66.7%). In addition, our pipeline demonstrated significantly 
improved concordance compared to publicly available pipeline HLA-LA and concordances close to Athlon2 in 
commercial development.

Conclusion Our algorithm had a > 96% concordance for non-HLA-DRB genes at 3rd field on the first batch and 
> 88% concordance for non-HLA-DRB genes at 3rd field and > 90% at 2nd field on the second batch tested. In 
addition, it out-performs HLA-LA and approaches the performance of the Athlon2. This lays groundwork for better 
utilizing Nanopore sequencing data for HLA typing especially in improving organ transplant outcomes.
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Background
The success of organ transplant procedures is marred by 
the immune system driven rejections of allografts [1]. The 
UNOS data also reports a stagnancy in the short-term 
(within 1 year) survival rate of transplanted organs since 
last decade [2]. One of ways to improve the transplant 
survival is to better understand the immunogenicity of 
the transplanted organ, and the third-field resolution 
human leukocyte antigen (HLA) matching is certainly a 
way forward. The current paradigm of serotyping HLA 
region of the donor and the recipient, fails to truly quan-
tify the match, leading to suboptimal organ assignments 
and poor allograft survival [3–7]. For a third-field reso-
lution (SNP level) HLA matching, applications of rapid 
DNA sequencing technologies are reported by several 
groups [8–13]. Most of these works argue for the use of 
sequencing platforms which can not only help an SNP 
level data analysis but also deliver such data within a 
short period (3–4 h).

Short read sequencing offers a high-throughput option 
yet has many limitations, with the biggest being a longer 
sequencing time (up to 2 days) [9, 14]. Other difficulties 
include ambiguous alignments and gaps in read cover-
age. Phasing or the separation of alleles into haplotypes is 
also difficult. Long read sequencing technologies such as 
Oxford Nanopore technology (ONT) allow for the cover-
age of larger regions with faster turnaround time (~ 3 h) 
[10, 11, 15–18]. One caveat is that the data can be rather 
noisy and there is a need for bioinformatics algorithms to 
denoise such data to perform HLA typing.

While bioinformatics algorithms for HLA typing do 
exist, they have limitations such as mostly being con-
cordant for class I alleles or requiring manual editing 
to achieve accurate results [10]. One of the first pipe-
lines has been the Athlon pipeline that focused on the 
generation of consensus sequences of alleles to denoise 
long read data [10, 11, 19]. For Athlon2, previous stud-
ies have achieved concordances of over 90% (94–100%) 
at the 2-field resolution, however this was only for key 
exons on class I genes [10–12, 19]. Recently, a new ver-
sion, Athlon2, has been made publicly available and has 
been expanded to 3rd field resolution of both class I and 
class II genes [20]. The Nanotyper pipeline is another 
approach that uses read clustering and hierarchical scor-
ing (prioritizing key exons) to call HLA alleles. Nano-
typer has achieved 100% and 92% 4th field resolution on 
HLA-A and HLA-B, respectively, however, it will need 
improvements for class II genes [10, 21, 22]. HLA-LA, an 
additional promising approach, utilizes the graph-based 
alignment approach. This graph alignment approach 

aims to identify linear alignments between reads and a 
population reference graph by combining known refer-
ence gene sequences into a model for genetic variation. 
This approach has achieved accuracies of 95–100% for 
long read data, however additional validation data is 
needed [10, 23]. While these publicly available tools do 
achieve considerable performance, many of the Github 
repositories have not been maintained for years and there 
can be a great deal of difficulty in installing and setting 
up such software especially for non-computational users. 
Commercial tools such as NGSengine® are widely used, 
however like other methods there have been concerns 
with homopolymers and results generally need manual 
inspection [10, 24–26].

We have developed a rather simple alignment and 
voting-based algorithm that can successfully de-noise 
and perform HLA typing at high concordance with 
NGSEngine® allele results for most genes. Unlike other 
approaches, we focus on alignment of long reads to the 
IPD-IMGT/HLA database and then aim to identify 
which two 3rd field allele groups have the highest num-
ber of hits (Fig. 1) [27]. The aim is not to re-construct a 
consensus allele sequence but to perform readily acces-
sible third-field resolution HLA typing using publicly 
available long read aligners [28–31]. While this approach 
is rather straightforward compared to other approaches, 
the aim is to develop a readily accessible approach with 
minimal complexity that can provide third-field resolu-
tion HLA typing with reduced throughput turnaround 
time from both laboratory and computational process-
ing. From our initial results, we believe that this can lay 
groundwork for better using long read technology for 
HLA typing. (Fig. 1)

Methods
Amplicon and sequencing chemistry
Two different batches were used for our bioinformat-
ics study. The first batch or development batch, used 
for pipeline development, contained 31 samples. DNA 
was amplified using NGSgo® MX11-3 PCR mix (GenDx) 
which covers 11 HLA genes (3 class I and 8 class II) 
(Additional File 1: Table S1). Nanopore sequencing was 
performed on the GridION instrument using ONT 
SQK-LSK109 reagents and R10.3 flow cells [13, 27]. All 
HLA sequence data had been initially analyzed using 
NGSengine® software from GenDx (2.24.0) followed by 
manual inspection. The NGSengine® analysis utilized 
the IPD-IMGT/HLA database (3.46.0) with HLA typ-
ing performed to the 3rd field of resolution. The second 
batch or test batch, used for pipeline testing, contained 
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63 samples. Like the first batch, DNA was amplified using 
NGSgo® MX11-3 PCR mix (GenDx). Nanopore sequenc-
ing was performed on the GridION instrument using 
ONT SQK-LSK109 reagents and R10.3 flow cells [13, 27]. 
Like the first batch, all HLA sequence data was analyzed 
using NGSengine® software (followed by manual inspec-
tion) from GenDx (2.24.0) and the IPD-IMGT/HLA 
database (3.46.0) with HLA typing was performed to the 
3rd field of resolution. In addition, for each batch, a fastq 
file was made by merging up to 10,000 reads from each 
sample and NanoStats was used to perform a quality con-
trol analysis [32].

Extracting IPD-IMGT/HLA data
Genomic sequences from the IPD-IMGT/HLA database 
(3.53.0) corresponding to the 11 HLA genes (HLA-A, 
HLA- HLA-B, HLA-C, HLA-DRB1, HLA-DRB3, HLA-
DRB4, HLA-HLA-DRB5, HLA-DPA1, HLA-DPB1, HLA-
DQA1, and HLA-DQB1) were extracted via custom R 
scripts [27]. Furthermore, using R scripts, an allele group 
classification table was prepared containing for each 
allele, the allele group at different fields of resolution, 
and the allele sequence. For example, the allele HLA-
A*01:01:01:01 would belong to the 1st field group of 
HLA-A*01, the 2nd field group of HLA-A*01:01, the 3rd 
field group of HLA-A*01:01:01, and the 4th field group of 
HLA-A*01:01:01:01. In cases of sequences that only had 
a 2nd field name, the 2nd field group was the 3rd and 4th 
field group. From this table, a FASTA file is output and is 
used to develop an index for the BWA aligner and for the 
Minimap2 aligner.

Duplicates analysis
As amplicons from NGSgo® MX11-3 PCR mix (GenDx) 
did not cover all regions (Additional File 1: Table S1), 
we wanted to ensure that doing so would not result in a 

loss of information. This loss of information may arise as 
amplicon regions can be identical in the same region of 
many alleles (referred to here on as Duplicates) (Addi-
tional File 2: Figure S1). Custom scripts in R were devel-
oped to subset sequences from each gene based on 
regions and/or coordinates and to “duplicates”. For each 
gene, we created a table of the start and end regions that 
would be extracted. The information from this table 
was used via our custom scripts to subset sequences 
and check for duplicates. Genes that contained 2 ampli-
con regions had allele sequences merged by an “N” in 
between and these merged sequences were checked for 
duplicates to ensure that no duplicates were present at 
the 3rd field.

Alignment and voting-based algorithm
Up to 10,000 reads from the FASTQ files of ONT reads 
were aligned to the IPD-IMGT/HLA sequences at the 
4th field using BWA-MEM aligner with “-x ont2d” mode 
or Minimap2 using “-ax map-ont -z 600,200” mode. 
Using custom R scripts, we imported the resulting SAM 
files into R and merged the 4th field alignments with 
allele group classification tables. Using the R scripts, 
we counted all alignments to each allele at the 3rd field 
resolution. For each gene, the alleles at 3rd field resolu-
tion with the top 2 counts were assigned as the genotype. 
(Figures 1 and 2)

Allele concordances
HLA-typing results from our previous analysis with 
NGSengine® software (manual inspection) were imported 
into R and merged with allele group tables to obtain reso-
lution at 1st, 2nd, and 3rd fields. A match was found if 
a previous NGSengine® allele call was also identified by 
the described voting-based algorithm genotypes. In cases 
of alleles reported on NGSengine® to be homozygous or 

Fig. 1 Overview of voting-based algorithm for HLA typing. Long FASTQ sequences aligned using BWA MEM or Minimap2 aligner. Top 2 votes at 3rd field 
are assigned as the genotype
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for single allele calls, we only considered the allele with 
the top-ranked counts when determining concordances. 
In the case of HLA-DRB3/4/5, we only considered the 
unique allele calls from NGSengine®. For each gene, the 
percentages of matches were determined for each of the 
datasets.

HLA-LA and Athlon2 pipeline
The performance of our pipeline was tested against pub-
licly available pipelines, such as HLA-LA [23] and Ath-
lon2 [20] pipelines. The HLA-LA analysis was done as 
follows. Using BWA-MEM aligner with “ont2d” mode, 
FASTQ reads were aligned to the hg38 genome FASTA 
file from 1000 Genomes [33]. HLA-LA.pl was run on the 
resulting BAM files using the “PRG_MHC_GRCh38_
withIMGT” graph database. HLA genotypes were deter-
mined from the “bestguess_G.txt” files. For the Athlon2 
web-server, de-identified reads were uploaded, and allele 
assignment reports were downloaded. Allele concor-
dances for both HLA-LA and Athlon2 pipelines were 
determined using the same method used for our voting-
based algorithm.

Comparing concordances between pipelines
McNemar’s test was performed in the R environment to 
compare concordances to NGSengine® results between 
analyses from different pipelines [34]. A contingency 
table was prepared containing alleles concordant for 
pipeline 1, alleles not concordant for pipeline 1, alleles 
concordant for pipeline 2, and alleles not concordant for 
pipeline 2. McNemar’s test was performed on the con-
tingency table and p < 0.05 was deemed to be significant. 
McNemar’s test was performed at the overall alleles level 
and at the gene level.

Allele count ratios and sums
We sorted the BWA-MEM results from genes with 
unique NGSengine® allele calls of 0 to 2 calls and 

determined the ratios and sums of H1 = allele with high-
est allele counts and H2 = alleles with second highest 
allele counts as well as their sums. The purpose of this is 
to investigate potential cutoffs for homozygous vs. het-
erozygous as well as whether HLA-DRB3/4/5 alleles are 
present or not. Unique allele calls of 0 correspond to 
missing HLA-DRB3/4/5 alleles, unique allele calls of 1 
correspond to homozygous or only single allele present 
for a gene, and unique allele calls of 2 correspond to het-
erozygous [35, 36].

Results
Alignment and voting pipeline
Using BWA-MEM aligner and Minimap2 aligner, along-
side custom R scripts, we were able to generate a work-
flow for determining genotype from Nanopore reads 
(Fig.  2A). Each sample file would undergo alignment 
via ONT-based parameters using BWA-MEM or Mini-
map2. Using R scripts, the resulting SAM files would 
be imported into R as a data frame object and reference 
sequences or allele IDs at 4th resolution were merged 
with allele group classification tables. The allele counts 
at 3rd resolution were summed and the top 2 counts for 
each gene were assigned as the genotype. This was used 
to determine HLA genotypes for each patient (Fig. 2B).

Duplicate analysis
Genes with full-length amplicon coverage (HLA-A, 
HLA-B, HLA-C, HLA-DQB1, HLA-DPA1, HLA-DQA1) 
had a total of 4616, 5422, 5113, 780, 318, and 402 alleles 
respectively and all sequences were unique to each allele 
with no duplicate sequences at 4th field or 3rd field 
(Additional File 1: Table S2).

For genes split by amplicons, duplicates were identified 
at 4th field and at 3rd field, however merging the ampli-
con-split sequences resulted in no duplicates at 3rd field 
(Additional File 1: Table S3). For HLA-DRB1, there were 
a total of 602 alleles. The HLA-DRB1 amplicon from 

Fig. 2 Voting-based algorithm pipeline workflow and example results. Pipeline workflow for FASTQ file (A) and example results for sample (B)
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start to 2.5 kb contained 74 duplicates at 4th field and 60 
duplicates at 3rd field. The HLA-DRB1 amplicon from 
exon 2 to the end contained 27 duplicates at 4th field and 
1 duplicate at 3rd field. Merging the 2 HLA-DRB1 ampli-
con sequences resulted in 21 duplicates at 4th field and 
0 duplicates at 3rd field. For DPB1, there were a total of 
940 alleles. For HLA-DPB1 amplicon from start to exon 
1, 11 duplicates were found at 4th field and 10 duplicates 
were found at 3rd field. For HLA-DBP1 amplicon from 
exon 2 to end, 57 duplicates were found at 4th field and 3 
duplicates at 3rd field. Merging the amplicon sequences 
resulted in 55 duplicates at 4th field and 0 duplicates 
at 3rd field. For HLA-DRB3, there were 36 alleles. For 
HLA-DRB3 amplicon from start to 2.5 kb, there were 7 
duplicates identified at 4th field and 3 duplicates identi-
fied at 3rd field. For HLA-DRB3 amplicon from exon 2 to 
end of gene, 2 duplicates were identified at 4th field and 
0 at 3rd field. Merging the amplicon sequences resulted 
in 2 duplicates at 4th field and 0 at 3rd field. For HLA-
DRB5, there were a total of 11 sequences. For HLA-DRB5 
amplicon from start to 2.6  kb, 3 duplicates were found 
at 4th field and 2 at 3rd field. For HLA-DRB5 amplicon 
from exon 2 to end, 0 duplicates were found at 3rd field 
and 4th field. Merging the amplicon sequences resulted 
in 0 duplicates being found for the 3rd field and 4th field. 
HLA-DRB4 contained 28 sequences and only one ampli-
con region from exon 2 to exon 3. 3 duplicates were 
found at 4th field and 0 at 3rd field. (Additional File 1: 
Table S3)

The duplicates analyses demonstrated that the ampli-
con coverage from the NGSgo® MX11-3 PCR mix 
(GenDx) was sufficient to obtain up to 3rd field resolu-
tion HLA typing for the characterized 11 genes.

NanoStats results
Using NanoStats, we were able to obtain quality control 
information for each batch (Additional File 3: Data S1) 

[32]. For the development batch, there was a mean read 
quality of 13.2 and a median read quality of 14.4. 100% 
of reads were above Q7 cutoff, 98.5% of the reads were 
above the Q10 cutoff, 86.1% of reads were above the Q12 
cutoff, and 34.8% of reads were above the Q15 cutoff. For 
the test batch, there was a mean read quality of 13 and 
median read quality of 14.1. 100% of reads were above 
Q7 cutoff, 97.8% of the reads were above the Q10 cutoff, 
81.2% of reads were above the Q12 cutoff, and 32.8% of 
reads were above the Q15 cutoff.

Allele concordance resulting using development batch
Using our development batch of 31 samples, our align-
ment and voting-based pipeline using BWA-MEM 
aligner was able to obtain an overall high allele concor-
dance with our previous results. For 1st field resolution, 
we obtained an overall concordance of 97.2%, for 2nd 
field resolution an overall concordance of 93.4%, and for 
3rd field resolution, an overall concordance of 93.2%. 
The following percent concordances were obtained for 
the 1st, 2nd and 3rd field for each gene: HLA-A (98.4%, 
98.4%, 98.4%), HLA- B (100%, 96.8%, 96.8%), HLA-C 
(100%, 98.4%, 98.4%), HLA-DPA1 (100%, 96.8%, 96.8%), 
HLA-DPB1 (100%, 100%, 98.4%), HLA- DQA1 (100%, 
98.4%, 98.4%), HLA-DQB1 (100%, 98.4%, 98.4%), HLA-
DRB1 (83.9%, 64.5%, 64.5%), HLA-DRB3 (82.6%, 73.9%, 
73.9%), HLA-DRB4 (100%, 100%, 100%) and HLA-DRB5 
(100%, 100%, 100%).(Additional File 3: Data S2, Table 1; 
Fig. 3).

Using Minimap2 aligner, our pipeline obtained an over-
all allele concordance of 96.1% at the 1st field, 90.8% at 
the 2nd field, and 90.1% at the 3rd field (Additional File 
3: Data S2, Table 1; Fig. 3). The following percent concor-
dances were obtained for the 1st, 2nd and 3rd field for 
each gene: HLA-A (100%, 98.4%, 98.4%), HLA- B (98.4%, 
93.5%, 93.5%), HLA- C (100%, 98.4%, 98.4%), HLA-DPA1 
(100%, 98.4%, 93.5%), HLA-DPB1 (98.4%, 98.4%, 98.4%), 

Table 1 Percent concordance by gene for 31 development batch samples aligned via BWA-MEM aligner and Minimap2 aligner
BWA Aligner Minimap2 Aligner

Gene 1st field 2nd field 3rd field 1st field 2nd field 3rd field
(% success) (% success) (% success) (% success) (% success) (% success)

HLA-A 98.4% 98.4% 98.4% 100.0% 98.4% 98.4%
HLA-B 100.0% 96.8% 96.8% 98.4% 93.5% 93.5%
HLA-C 100.0% 98.4% 98.4% 100.0% 98.4% 98.4%
HLA-DPA1 100.0% 96.8% 96.8% 100.0% 98.4% 93.5%
HLA-DPB1 100.0% 100.0% 98.4% 98.4% 98.4% 98.4%
HLA-DQA1 100.0% 98.4% 98.4% 91.9% 77.4% 77.4%
HLA-DQB1 100.0% 98.4% 98.4% 100.0% 98.4% 98.4%
HLA-DRB1 83.9% 64.5% 64.5% 83.9% 66.1% 66.1%
HLA-DRB3 82.6% 73.9% 73.9% 82.6% 73.9% 73.9%
HLA-DRB4 100.0% 100.0% 100.0% 100.0% 100.0% 93.8%
HLA-DRB5 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Overall 97.2% 93.4% 93.2% 96.1% 90.8% 90.1%
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HLA-DQA1 (91.9%, 77.4%, 77.4%), HLA-DQB1 (100%, 
98.4%, 98.4%), HLA-DRB1 (83.9%, 66.1%, 66.1%), HLA-
DRB3 (82.6%, 73.9%, 73.9%), HLA-DRB4 (100%, 100%, 
93.8%) and HLA-DRB5 (100%, 100%, 100%).

In comparing the 2 pipelines, BWA-MEM had a higher 
overall concordance at all fields of resolution (1st field: 
97.2% BWA-MEM vs. 96.1% Minimap2, 2nd field: 93.4% 
BWA-MEM vs. 90.8% Minimap2, 3rd field: 93.2% vs. 
90.1% Minimap2). For non- HLA-DRB genes, Minimap2 
had overall > 93% concordance at the 3rd field except for 
HLA-DQA1, however BWA-MEM performed much bet-
ter at > 96% concordance at the 3rd field for non- HLA-
DRB genes. HLA-DRB1 had a slightly better performance 
on Minimap2 of 66.1% at 3rd field compared to BWA-
MEM at 64.5%. HLA-DRB3 performance was similar 
on both at 73.9% at 3rd field (Table  1). McNemar’s test 

was performed on 3rd field results from BWA-MEM 
and Minimap2 to ascertain whether the concordance 
differences were statistically significant. Overall, there 
was a higher statistically significant concordance for 
BWA-MEM (93.2%) compared to Minimap2 (90.1%) at 
p = 1.37E-03. HLA-DQA1 had a statistically significant 
higher concordance of 98.4% in BWA-MEM compared to 
Minimap2 of 77.4% (p = 8.74E-04) (Table 2).

Allele concordance resulting using test batch
Using our test batch of 63 samples, our alignment and 
voting-based pipeline using BWA-MEM aligner was able 
to obtain an overall high allele concordance with our 
previous results. For 1st field resolution, we obtained an 
overall concordance of 97.5%, a 2nd field overall con-
cordance of 92.1%, and a 3rd field overall concordance 

Fig. 3 Percent concordance for third field resolution using different methods. Heatmap showing third field resolution concordances with BWA Mem, 
Minimap2, HLA-LA, and Athlon2
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of 89.8%. The following percent concordances were 
obtained for the 1st, 2nd and 3rd field for each gene: 
HLA-A (100%, 96.8%, 88.1%), HLA-B (100%, 90.5.4%, 
88.1%), HLA-C (100%, 99.2%, 99.2%), HLA-DPA1 (100%, 
98.4%, 97.6%), HLA-DPB1 (98.4%, 97.6%, 92.9%), HLA-
DQA1 (100%, 100%, 98.4%), HLA-DQB1 (100%, 97.6%, 
96.0%), HLA-DRB1 (88.9%, 68.3%, 68.3%), HLA-DRB3 
(81.0%, 61.9%, 61.9%), HLA-DRB4 (100%, 97.4%, 94.7%) 
and HLA-DRB5 (73.3%, 66.7%, 66.7%). (Additional File 
3: Data S2, Additional File 1: Table S4, (Additional File 2: 
Figure S2)

Using Minimap2 aligner, we obtained an overall con-
cordance of 96.0% for 1st field, 88.5% for 2nd field, and 
86.4% for 3rd field. %. The following percent concor-
dances were obtained for the 1st, 2nd and 3rd field for 
each gene: HLA-A (99.2%, 86.5%, 84.9%), HLA-B (98.4%, 
86.5%, 85.7%), HLA-C (99.2%, 95.2%, 93.7%), HLA-DPA1 
(100%, 98.4%, 97.6%), HLA-DPB1 (97.6%, 97.6%, 95.2%), 
HLA-DQA1 (94.4%, 82.5%, 77.8%), HLA-DQB1 (99.2%, 
99.2%,96.8%), HLA-DRB1 (88.9%, 69.0%, 69.0%), HLA-
DRB3 (73.8%, 66.7%, 66.7%), HLA-DRB4 (100%, 97.4%, 
84.2%) and HLA-DRB5 (73.3%, 66.7%, 66.7%). (Addi-
tional File 1: Table S4, (Additional File 2: Figure S2)

To compare BWA-MEM and Minimap2 concordances, 
we performed McNemar’s test between the BWA-MEM 
and Minimap2 concordance results at the 3rd field. Over-
all, there was a statistically significantly higher overall 
concordance in BWA-MEM (89.8% overall concordance) 
compared to Minimap2 (86.4% overall concordance) 
at p = 2.51E-05. From the results, HLA-C (BWA-MEM 
99.2%, Minimap2 93.7%, p = 2.33E-02) and HLA-DQA1 
(BWA-MEM 98.4%, Minimap2 77.8%, p = 2.31E-06) had 
significantly higher concordances in BWA-MEM. (Addi-
tional File 1: Table S5) Due to BWA-MEM pipeline hav-
ing an overall higher statistically significant concordance 
compared to Minimap2 across both datasets as well as 2 
genes with significantly higher concordance, we decided 
to focus on the BWA-MEM aligner-based pipeline when 
making comparisons to other pipelines.

Comparing performance of our pipeline with other 
publicly available tools
Using the HLA-LA pipeline, HLA genotypes were 
obtained for all genes except HLA-DRB5. With Ath-
lon2, HLA genotypes were obtained for all genes except 
HLA-DRB4. For the development batch, the HLA-LA 
pipeline resulted in overall concordances of 99.1% (1st 
field), 89.5% (2nd field), and 86.4% (3rd field). The fol-
lowing percent concordances were obtained for the 1st, 
2nd and 3rd field for each gene: HLA-A (100%, 100.0%, 
98.4%), HLA-B (100%, 98.4.4%, 91.1%), HLA-C (100%, 
98.4%, 95.2%), HLA-DPA1 (100%, 93.5%, 93.5%), HLA-
DPB1 (91.9%, 91.9%, 87.1%), HLA-DQA1 (100%, 67.7%, 
56.5%), HLA-DQB1 (100%, 91.9%, 91.9%), HLA-DRB1 
(100.0%, 90.3%, 90.3%), HLA-DRB3 (100.0%, 95.7%, 
95.7%), and HLA- DRB4 (100%, 18.8%, 18.8%). For non- 
HLA-DRB genes, the HLA-LA concordances were > 80% 
at 3rd field except for HLA-DQA1 at 56.5%. HLA-DRB1 
and HLA-DRB3 concordance were above 90%, however 
HLA-DRB4 had low concordance at 3rd field of 18.8%. 
(Table 3, Additional File 3: Data S2, Fig. 3)

Athlon2 concordances were at 98.5% (1st field), 98.3% 
(2nd field), and 98.1% (3rd field). The following percent 
concordances were obtained for the 1st, 2nd and 3rd field 
for each gene: HLA-A (100%, 100.0%, 98.4%), HLA-B 
(100%, 100.0%, 100.0%), HLA-C (100%, 100.0%, 100.0%), 
HLA-DPA1 (100%, 100.0%, 100.0%), HLA-DPB1 (100.0%, 
100.0%, 100.0%), HLA-DQA1 (100.0%, 100.0%, 100.0%), 
HLA-DQB1 (100%, 98.4%, 98.4%), HLA-DRB1 (96.8%, 
96.8%, 96.8%), HLA-DRB3 (78.3%, 78.3%, 78.3%), and 
HLA-DRB5 (87.5%, 87.5%, 87.5%). For non- HLA-DRB 
genes, Athlon2 had > 98% concordances for all non-HLA-
DRB genes with a 96.8% concordance for HLA-DRB1 and 
a 78.3% for HLA-DRB3. (Table 3, Additional File 3: Data 
S2, Fig. 3)

Using McNemar’s test, we compared the concor-
dances of HLA-LA and Athlon2 that of BWA aligner 
voting based pipeline. In comparing BWA-MEM results 
to the HLA-LA pipeline, there was a higher statistically 

Table 2 Comparison of concordance between BWA-MEM and Minimap2 for development batch
Gene P-Value BWA-MEM Concordance Minimap2 Concordance Difference
HLA-A 1.00E + 00 98.4% 98.4% ns
HLA-B 4.80E-01 96.8% 93.5% ns
HLA-C NA 98.4% 98.4% ns
HLA-DPA1 6.17E-01 96.8% 93.5% ns
HLA-DPB1 NA 98.4% 98.4% ns
HLA-DQA1 8.74E-04 98.4% 77.4% BWA-MEM higher concordance*
HLA-DQB1 NA 98.4% 98.4% ns
HLA-DRB1 1.00E + 00 64.5% 66.1% ns
HLA-DRB3 1.00E + 00 73.9% 73.9% ns
HLA-DRB4 1.00E + 00 100.0% 93.8% ns
HLA-DRB5 NA 100.0% 100.0% ns
Overall 1.37E-03 93.2% 90.1% BWA-MEM higher concordance*
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significant concordance in BWA-MEM (93.1%) compared 
to HLA-LA (86.4%) at p = 3.54E-06. HLA-DPB1 (98.4% 
BWA-MEM, 87.1% HLA-LA, p = 4.55E-02), HLA-DQA1 
(98.4% BWA-MEM, 56.5% HLA-LA, p = 9.44E-07), 
and HLA-DRB4 (100.0% BWA-MEM, 18.8% HLA-LA, 
p = 8.74E-04) were found to have statistically significant 
higher concordances in BWA-MEM aligner. HLA-DRB1 
(64.5% BWA-MEM, 90.3% HLA-LA, p = 2.20E-03) was 
found to have a statistically significant concordance in 
HLA-LA aligner. HLA-DRB3 had a higher concordance 

in HLA-LA (95.7%) compared to BWA-MEM (73.9%), 
however that difference was not significant (p = 7.36E-
02) (Table  4) In comparing BWA-MEM’s results to that 
of the Athlon2 pipeline, there was a higher statistically 
significant concordance in Athlon2 (98.1%) compared to 
BWA-MEM (93.0%) at p = 3.14E-05. The only statistically 
significant difference at the gene level was HLA-DRB1 
concordance being higher in Athlon2 (64.5% BWA-
MEM, 96.8%, p = 2.15E-05). (Table 5)

Table 3 Percent concordance by gene for 31 development batch samples aligned via HLA-LA pipeline and Athlon2 pipeline
HLA-LA pipeline Athlon2 Pipeline

Gene 1st field 2nd field 3rd field 1st field 2nd field 3rd field
(% success) (% success) (% success) (% success) (% success) (% success)

HLA-A 100.0% 100.0% 98.4% 100.0% 100.0% 98.4%
HLA-B 100.0% 98.4% 91.9% 100.0% 100.0% 100.0%
HLA-C 100.0% 98.4% 95.2% 100.0% 100.0% 100.0%
HLA-DPA1 100.0% 93.5% 93.5% 100.0% 100.0% 100.0%
HLA-DPB1 91.9% 91.9% 87.1% 100.0% 100.0% 100.0%
HLA-DQA1 100.0% 67.7% 56.5% 100.0% 100.0% 100.0%
HLA-DQB1 100.0% 91.9% 91.9% 100.0% 98.4% 98.4%
HLA-DRB1 100.0% 90.3% 90.3% 96.8% 96.8% 96.8%
HLA-DRB3 100.0% 95.7% 95.7% 78.3% 78.3% 78.3%
HLA-DRB4 100.0% 18.8% 18.8% 0.0% 0.0% 0.0%
HLA-DRB5 N/A N/A N/A 87.5% 87.5% 87.5%
Overall 99.1% 89.5% 86.4% 98.5% 98.3% 98.1%

Table 4 Comparison of concordance between BWA-MEM and HLA-LA for development batch
Gene P-Value BWA-MEM Concordance HLA-LA Concordance Difference
HLA-A 1.00E + 00 98.4% 98.4% ns
HLA-B 3.71E-01 96.8% 91.9% ns
HLA-C 6.17E-01 98.4% 95.2% ns
HLA-DPA1 6.17E-01 96.8% 93.5% ns
HLA-DPB1 4.55E-02 98.4% 87.1% BWA-MEM higher concordance*
HLA-DQA1 9.44E-07 98.4% 56.5% BWA-MEM higher concordance*
HLA-DQB1 1.34E-01 98.4% 91.9% ns
HLA-DRB1 2.20E-03 64.5% 90.3% HLA-LA higher concordance*
HLA-DRB3 7.36E-02 73.9% 95.7% ns
HLA-DRB4 8.74E-04 100.0% 18.8% BWA-MEM higher concordance*
Overall 3.54E-04 93.1% 86.4% BWA-MEM higher concordance*

Table 5 Comparison of concordance between BWA-MEM and Athlon2 for development batch
Gene P-Value BWA-MEM Concordance Athlon2 Concordance Difference
HLA-A 1.00E + 00 98.4% 98.4% ns
HLA-B 4.80E-01 96.8% 100.0% ns
HLA-C 1.00E + 00 98.4% 100.0% ns
HLA-DPA1 4.80E-01 96.8% 100.0% ns
HLA-DPB1 1.00E + 00 98.4% 100.0% ns
HLA-DQA1 1.00E + 00 98.4% 100.0% ns
HLA-DQB1 NA 98.4% 98.4% ns
HLA-DRB1 2.15E-05 64.5% 96.8% Athlon2 higher concordance*
HLA-DRB3 1.00E + 00 73.9% 78.3% ns
HLA-DRB5 1.00E + 00 100.0% 87.5% ns
Overall 3.14E-05 93.0% 98.1% Athlon2 higher concordance*
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For the test batch (second batch), the HLA-LA pipe-
line resulted in overall concordances of 98.3% (1st field), 
87.5% (2nd field), and 81.0% (3rd field). The following 
percent concordances were obtained for the 1st, 2nd and 
3rd field for each gene: HLA-A (97.6%, 95.2%, 88.1%), 
HLA-B (100%, 100.0%, 88.1%), HLA-C (99.2%, 96.8%, 
88.9%), HLA-DPA1 (100%, 96.0%, 94.4%), HLA-DPB1 
(93.7%, 93.7%, 85.7%), HLA-DQA1 (100%, 63.5%, 47.6%), 
HLA-DQB1 (97.6%, 82.5%, 81.7%), HLA-DRB1 (98.4%, 
87.3%, 85.7%), HLA-DRB3 (97.6%, 97.6%, 92.9%), and 
HLA-DRB4 (97.4%, 26.3%, 26.3%). For non- HLA-DRB 
genes, the HLA-LA concordances were > 80% at 3rd field 
except for HLA-DQA1 at 47.6%. HLA-DRB1 concor-
dance was at 85.7% and HLA-DRB3 concordance was at 
92.9%. Athlon2 overall concordances were at 97.0% (1st 
field), 96.6% (2nd field), and 94.8% (3rd field). The follow-
ing percent concordances were obtained for the 1st, 2nd 
and 3rd field for each gene: HLA-A (97.6%, 97.6%, 94.4%), 
HLA-B (100%, 100.0%, 95.2%), HLA-C (99.2%, 99.2%, 
99.2%), HLA-DPA1 (100%, 99.2%, 99.2%), HLA-DPB1 
(100.0%, 100.0%, 96.0%), HLA-DQA1 (100.0%, 100.0%, 
99.2%), HLA-DQB1 (97.6%, 96.0%, 94.4%), HLA-DRB1 
(97.6%, 96.8%, 96.0%), HLA-DRB3 (69.0%, 69.0%, 69.0%), 
and HLA-DRB5 (40.0%, 40.0%, 40.0%). Athlon2 had > 94% 
concordances for all non-HLA-DRB genes with a 96.0% 
concordance for HLA-DRB1 and a 69.0% concordance 
for HLA-DRB3. (Additional File 1: Table S6, Additional 
File 3: Data S2, (Additional File 2: Figure S2)

In comparing overall BWA-MEM results to the HLA-
LA pipeline, BWA-MEM had a higher statistically sig-
nificant concordance of 90.1% compared to 81.0% for 
HLA-LA (p = 5.29E-11). HLA-C (99.2% BWA-MEM, 
88.9% HLA-LA, p = 8.74E-04), HLA-DPB1 (92.9% BWA-
MEM, 85.7% HLA-LA, p = 2.65E-02), HLA-DQA1 (98.4% 
BWA-MEM, 47.6% HLA-LA, p = 3.41E-15), HLA-DQB1 
(BWA-MEM 96.0%, 81.7% HLA-LA, p = 5.20E-04), 
and HLA-DRB4 (BWA-MEM 94.7%, HLA-LA 26.3%, 
p = 2.31E-06) were found to have statistically signifi-
cant higher concordances in BWA-MEM aligner. HLA-
DRB1 (68.3% BWA-MEM, 85.7% HLA-LA, p = 6.58E-04) 
and HLA-DRB3 (61.9% BWA-MEM, 92.9%, HLA-LA, 
p = 8.74E-04) were found to have a statistically signifi-
cant concordance in HLA-LA aligner. (Additional File 
1: Table S7). In comparing overall BWA-MEM results to 
the HLA-LA pipeline, Athlon2 has a higher statistically 
significant concordance of 94.8% compared to 89.6% for 
BWA-MEM (p = 2.76E-08). HLA-A (88.1% BWA-MEM, 
94.4% Athlon2, p = 2.69E-02), HLA-B (88.1% BWA-MEM, 
95.2% Athlon2, p = 7.66E-03), and HLA-DRB1 (68.3% 
BWA-MEM, 96.0% Athlon2, p = 2.28E-08) were found to 
have statistically significant higher concordances in Ath-
lon2 aligner. (Additional File 1: Table S8)

Comparing counts of top 2 alleles
As a preliminary study to incorporate homozygosity and 
heterozygosity, we studied the ratios of the allele counts 
of the top-ranked allele (H1) and the allele counts of the 
second top-ranked allele (H2). Using the development 
batch, for genes with unique allele calls of 1 (homozy-
gous) in the samples, the H2/H1 ratio was 0.040 to 0.209 
for non-HLA-DRB genes. For HLA-DRB3 and HLA-
DRB5, the H2/H1 ratio was 0.681 and 0.658 respectively. 
For samples with unique allele calls of 2 (heterozygous), 
the H2/H1 ratio was 0.442 to 0.789. In cases of missing 
HLA-DRB3/4/5 alleles, mean H2 + H1 was 42 and under. 
For other alleles, the mean H2 + H1 was 203 and above. 
Using the test batch, for genes with unique allele calls of 1 
(homozygous) in the samples, the H2/H1 ratio was 0.080 
to 0.180 for non-HLA-DRB genes. For HLA-DRB1, HLA-
DRB3 and HLA-DRB5, the H2/H1 ratio was 0.493, 0.576, 
and 0.757 respectively. For samples with unique allele 
calls of 2 (heterozygous), the H2/H1 ratio was 0.514 to 
0.857. In cases of missing HLA-DRB3/4/5 alleles, mean 
H2 + H1 was 57 and under. For other alleles, the mean 
H2 + H1 was 147 and above. (Additional File 3: Data S3)

Discussion
While ONT sequencing data is still error prone, compu-
tational pipelines to denoise the data and perform third-
field resolution HLA typing seem to mature rapidly. In 
our current work we not only developed a new bioinfor-
matics protocol to perform the HLA typing, but we also 
compared its performance with other publicly available 
tools. The results for our BWA-MEM voting-based pipe-
line are promising with > 96% at 3rd field concordance 
for non-HLA-DRB genes in our development dataset 
and > 88% at the 3rd field and > 90% for 2nd field in our 
test dataset. Our results had a greater and statistically 
significant overall concordance compared to HLA-LA 
(development batch BWA-MEM voting based method 
93.1% vs. HLA-LA 86.4%, test batch BWA-MEM vot-
ing based method 90.1% vs. 81.0% HLA-LA) with dif-
ferences of 6.7% in development batch and 9.1% in test 
batch. The major exceptions were in the genotype con-
cordances for HLA-DRB1 and HLA-DRB3 with both 
being stronger in HLA-LA. Athlon2 overall had a greater 
concordance (development batch BWA-MEM voting 
based method 93.0% vs. Athlon2 98.1%, test batch BWA 
voting based method 89.6% vs. Athlon2 94.8%) with dif-
ferences of 5.1 and 5.2% in development and test batch 
respectively. HLA-DRB1 concordance was stronger in 
both development and test datasets in Athlon2. In the 
test dataset, genes HLA-A and HLA-B were more con-
cordant in Athlon2. In general, there was an overall lower 
concordance across the different algorithms used for the 
test dataset compared to the development dataset. From 
the NanoStats results, it did appear that the development 
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dataset had slightly better quality and this may account 
for the lower concordance in the test dataset.

The main area of improvement for our algorithm is the 
HLA-DRB genes performance. HLA-DRB1 had < 70% 
concordance at 3rd field using the voting-based algo-
rithm. A previous study using full-length amplicons also 
reported a low HLA-DRB1 concordance (< 70%) [37]. It is 
important to note that HLA-DRB1 is a highly polymor-
phic gene and can be linked to alleles of other genes [38, 
39]. In addition, the HLA-DRB genes themselves have 
sequence similarity due to evolutionary relationships 
[39]. HLA-DRB3 had concordances ranging from 61 to 
73% across the aligners. HLA-DRB4 had > 90% 3rd field 
resolution concordances across the datasets and align-
ers. HLA-DRB5 had > 90% concordances for the devel-
opment batch but < 70% for the test batch. Especially 
for HLA-DRB1 and HLA-DRB3, there will be a need to 
study adaptations to the algorithm that can improve such 
performance.

While other pipelines did perform better on HLA-
DRB1 and in the case of HLA-LA on HLA-DRB3, other 
HLA-DRB concordances were weak. The HLA-LA pipe-
line has stronger concordances for both HLA-DRB1 
(> 85%) and HLA-DRB3 (> 90%). Athlon2 had stronger 
concordance on HLA-DRB1 (~ 96%) however < 80% per-
formance for HLA-DRB3 that was not significantly dif-
ferent from the BWA-MEM method. HLA-DRB4 had low 
concordances < 30% at 3rd field on HLA-LA and HLA-
DRB5 concordance using Athlon2 on the test dataset 
(40%) was weaker than the BWA-MEM method (66.7%) 
though not significantly different. One potential explana-
tion for the lower performance of HLA-DRB genes may 
result from amplicon designs that split the HLA-DRB 
genes into 2 regions. Many of these amplicon regions can 
be identical across alleles, making it difficult to distin-
guish them. Of note, the higher BWA-MEM HLA-DRB4 
concordance (> 90%) may be in part due to the use of a 
single amplicon. One future modification can be consid-
ering HLA-DRB linkages however this may exclude rare 
associations [35, 36].

In addition to weaker HLA-DRB performance, there 
are other limitations. While other algorithms do have 
alignment and mapping steps, much of their aim is recon-
structing the allele sequences using de novo assembly 
[10, 11, 19, 20]. Others incorporate reads clustering and 
graph-based alignment algorithms [21–23, 29]. In any 
case, highly conclusive results may still be difficult due 
to noisy Nanopore data even if these additional steps are 
incorporated. Our aim is quantifying and sorting the top 
alleles by their alignment hits. Unfortunately, ambiguities 
may arise especially if reads can align to multiple alleles 
due to amplicon design especially with limited and/or 
split coverage. Additional interpretation of alignment 
results may be needed to finalize alignments especially 

in cases of ambiguity. Currently, we are focused on iden-
tifying whether the NGSEngine® results contain a match 
with our top 2 alleles. We will need to further investi-
gate cutoffs for homozygous and heterozygous alleles. 
For non-HLA-DRB genes, the ratio of H2/H1 was > 0.4 
for heterozygous alleles and < 0.2 for homozygous alleles. 
This however did not hold for HLA-DRB genes and that 
remains inconclusive. We did also notice that missing 
HLA-DRB3/4/5 alleles had low counts of 42 or below 
compared to other alleles with counts above 140 (up to 
10,000 reads). Another limitation is that the current algo-
rithm does not take into account the possibility certain 
alleles are being preferentially amplified over others. By 
taking this into account in future versions, we can better 
determine cutoffs for assigning alleles. Another current 
limitation is that the algorithm relies solely on alignment 
to sequences within the IPD-IMGT/HLA database. One 
limitation of this is that there are partial or incomplete 
sequences. In addition, at a given locus, there can be vari-
ations in allele length. While aligners tuned for long reads 
can capture distinctive nucleotide changes, this may still 
result in biases or error especially with noisy data. In the 
future, we will modify our algorithm to account for this.

In the future, additional modifications to our initial 
algorithm can further improve performance, especially 
for HLA-DRB genes. These include filtering sequences 
by quality, mismatches, and weighting the score of dif-
ferent alignments (e.g. multiple mapping reads). Pres-
ently, we have focused on BWA-MEM and Minimap2 
aligners. While BWA-MEM aligner gave an overall bet-
ter performance, the overall difference was less than 5%. 
Future studies can focus on studying additional long read 
aligners. In addition, integrating other pipelines such as 
HLA-LA into our algorithm may also help improve per-
formance. As an example, HLA-LA had overall 1st field 
performance of > 98% and had superior performance 
for HLA-DRB1 and HLA-DRB3. HLA-LA can be used 
to determine 1st field allele calls and the voting-based 
method can hone in on the 3rd field. Of course, incorpo-
rating other pipelines should be done in a careful manner 
to not increase the computational complexity and pro-
cessing time beyond what is needed.

Despite the limitations, this algorithm shows promising 
results with concordances above HLA-LA and approach-
ing Athlon2. A major strength is that it promotes the use 
of widely used and publicly available aligners with con-
figurations for long-read sequences. This algorithm can 
be extended to other long read aligners. It also may serve 
as an important tool to assist in amplicon design (via 
simulations). Of note, due to its simplicity of using pub-
licly available aligners, this method is relatively accessible 
to the wider bioinformatics community and can provide 
reduced computational processing time, something that 
will be crucial in deceased donor typing. Additionally, in 
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conjunction with other methods, it may serve as a valu-
able tool to better utilize Nanopore sequencing technol-
ogy for assisting transplant patients.
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