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Abstract 

Background The rapid increase in nucleotide sequence data generated by next-generation sequencing (NGS) 
technologies demands efficient computational tools for sequence comparison. Alignment-free (AF) methods offer 
a scalable alternative to traditional alignment-based approaches such as BLAST. This study evaluates alignment-
free methods as scalable and rapid alternatives for viral sequence classification, focusing on identifying techniques 
that maintain high accuracy and efficiency when applied to extremely large datasets.

Results We employed six established AF techniques to extract feature vectors from viral genomes, which were 
subsequently used to train Random Forest classifiers. Our primary dataset comprises 297,186 SARS-CoV- 2 nucleotide 
sequences, categorized into 3502 distinct lineages. Furthermore, we validated our models using dengue and HIV 
sequences to demonstrate robustness across different viral datasets. Our AF classifiers achieved 97.8% accuracy 
on the SARS-CoV- 2 test set, and 99.8% and 89.1% accuracy on dengue and HIV test sets, respectively.

Conclusion Despite the high-class dimensionality, we show that word-based AF methods effectively represent viral 
sequences. Our study highlights the practical advantages of AF techniques, including significantly faster processing 
compared to alignment-based methods and the ability to classify sequences using modest computational resources.

Keywords Feature extraction, Biological sequences, Alignment-free, Machine learning, Virus classification

Introduction
Amidst the plethora of groundbreaking contributions 
made to the field of molecular biology in the 1980’s and 
1990’s, perhaps one of the most significant was an algo-
rithm designed by two mathematicians [1]. In 1990, Kar-
lin and Altschul proposed a means to approximate the 
similarity between two DNA/RNA sequences and to do 
so an order of magnitude faster than existing alterna-
tives [2]. The algorithm would then become the statisti-
cal foundation of BLAST [3], the Basic Local Alignment 
Search Tool, one of the most successful alignment-based 
comparison tools ever created [1, 4].

Beyond its direct impact on the field, the success of 
BLAST also marked a significant developmental shift 
toward the refinement of probabilistic models for align-
ment-based sequence analysis, along with the devel-
opment and application of advanced string matching 
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algorithms [4]. Regardless of implementation, alignment-
based sequence comparison tools seek to identify regions 
of similarity between sequences through the matching of 
nucleotide bases that occur in the same order between 
the given sequences [1]. These methods, while funda-
mental to genomic research, require considerable com-
putational resources, noting that there is an exponential 
increase in possible alignments with increasing sequence 
length [1, 5].

The introduction of next-generation sequencing (NGS) 
technologies has reshaped the landscape of computa-
tional biology. In 1990, when BLAST was introduced, 
there were fewer than 50 million nucleotide bases pub-
licly available. Today, a single sequencing instrument has 
the capability to generate more than 1 trillion bases per 
run [6]. Contemporary research is increasingly turning to 
alignment-free (AF) methods as efficient alternatives for 
sequence comparison [5, 7–9].

AF sequence comparison techniques have undergone 
extensive research, development, and benchmarking over 
several decades [9, 10]. Despite demonstrating remark-
able performance on general biological sequence data-
sets in numerous studies, the widespread adoption of 
AF sequence classification remains limited. Two primary 
reasons may contribute to this hesitation. Firstly, datasets 
commonly utilized to evaluate AF techniques often con-
tain trivial cases, featuring only a small number of dis-
tinct species [10]. Secondly, we contend that the choice of 
datasets may not align with real-time scenarios where the 
rapid nature of AF sequence comparison could provide 
significant benefits.

Monitoring viral pathogen strains in near real time is 
a prominent application of AF sequence comparison 
methods, yet little research has assessed their ability to 
accurately represent viral sequences. This is particularly 
prevalent, as alignment-based tools depend on sequence 
collinearity, the preservation of homologous nucleotide 
order across genomes, an assumption frequently violated 
in viral genomes due to high mutation rates and frequent 
recombination events [1].

In this study, we conducted a comprehensive evalu-
ation of AF methods for classifying viral sequences at 
scale. We used six established AF sequence comparison 
techniques to extract representative feature vectors from 
viral genomes, serving as input for Random Forest classi-
fiers. We applied our AF models to a large-scale dataset 
of 297,186 SARS-CoV- 2 nucleotide sequences, assess-
ing their ability to classify sequences into 3502 distinct 
lineages. Given the size of the dataset, the considerable 
number of target classes, and the high similarity under-
stood among strains of the same virus, this experiment 
represents, to the best of our knowledge, one of the most 
intensive evaluations of AF sequence classification in the 

literature. Furthermore, we validated the effectiveness of 
our models using moderately sized datasets of HIV and 
dengue sequences.

We provide the source code in the form of a library of 
AF feature extraction methods for custom model devel-
opment along with a command-line tool to classify HIV, 
dengue, and SARS-CoV- 2 sequences1. Additionally, the 
tool is adaptable to other viral pathogens and includes 
straightforward training infrastructure.

Background
AF approaches can fall under a number of different meth-
odologies, including those that rely on the frequencies 
of subsequences of a specific length (oligomeric/word-
based methods) [7, 8, 11, 12], those rooted in information 
theory [13–16], those based on the length of matching 
words or common substrings [17–19], and other unique 
methods that include chaos game representations [20] 
and digital signal processing [21, 22]. Regardless of the 
underlying implementation, AF techniques typically 
transform biological sequences into numeric feature 
vectors that are used to compute pairwise dissimilarity 
scores to construct phylogenetic models.

Alignment-free tools such as Kraken [23], Ganon [24], 
and BioBloom [25] are widely used for efficient sequence 
classification, however, these approaches do not rely on 
learning-based techniques. In contrast, alignment-free 
sequence comparison techniques can also serve as feature 
extraction methods for machine learning applications. In 
this context, feature extraction refers to the transforma-
tion of biological sequences into vectors that numerically 
describe the characteristics of the original sequences in 
a way that maximizes information gain while minimizing 
potential noise [26].

Zielezinski et  al. [10] highlight several challenges that 
hinder the widespread adoption of AF methodologies. 
They point out the lack of standardization in evalua-
tion strategies, benchmark datasets, and test criteria. 
More critically, they argue that new methods are fre-
quently evaluated using small, non-representative data-
sets chosen by their authors, and are often only validated 
against a limited selection of alternative AF approaches. 
To address these limitations, Zielezinski et al. developed 
AFproject, an online service designed to benchmark 
AF tools in various sequence analysis scenarios, includ-
ing protein sequence classification, gene tree inference, 
regulatory sequence identification, genome-based phy-
logenetics, and horizontal gene transfer. With regard to 
the use of machine learning methods, Bonidia et  al. [9] 
analyzed AF feature extraction approaches for biological 

1 https:// github. com/ INFORM- Africa/ AI- viral- linea ge- class ifica tion
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sequence classification, with the objective of evaluating 
the ability of mathematical features to generalize across 
different long noncoding RNA lncRNA classification 
tasks.

Neither Zielezinski et  al. nor Bonidia et  al. evaluated 
AF tools on viral datasets. As part of a novel machine 
learning method CASTOR-KRFE, Lebatteux et  al. [5] 
evaluated their method on a dozen diverse virus data-
sets, covering the seven major virus groups. The datasets 
included influenza virus, Ebola virus, human immunode-
ficiency virus 1, hepatitis C virus, hepatitis B virus, and 
human papillomavirus. However, their largest dataset 
consists of only 1352 samples with only 28 classification 
targets. Lebatteux et al. did not evaluate alternative fea-
ture extraction methodologies.

Regarding SARS-CoV- 2, the largest source of virus 
sequence data currently available, Muhammad et al. [27] 
implemented two boosting algorithms, eXtreme Gradi-
ent Boosting (XGBoost) and Light Gradient Boosting 
Machine (LGBM), to classify sequences of SARS-CoV- 2. 
However, their study only included variants of concern: 
alpha, beta, gamma, delta, and omicron (VOC); as well as 
variants of interest (VOI).

One of the largest studies of machine learning to date 
to classify SARS-CoV- 2 sequences is that of Lebatteux 
et  al. [28], who compared the machine learning tools 
KEVOLVE and CASTOR-KRFE with statistical tools 
to identify discriminative motifs in unaligned sequence 
sets to classify SARS-CoV- 2 variants. They constructed 
a comprehensive dataset of 334,956 SARS-CoV- 2 
genomes, but only included genomes with ambiguous 
nucleotides less than 1% and only covered 10 major vari-
ants with more than 100 samples each.

Cacciabue et  al. [29] introduced Covidex, an open 
source and alignment-free machine learning tool 
designed for subtyping SARS-CoV- 2 based on k-mer fre-
quency profiles, which are used as input features for Ran-
dom Forest classifiers. The tool achieved 96.56% accuracy 
in distinguishing among 1437 Pango lineages of SARS-
CoV- 2 as of late 2021. Despite its success, the study did 
not explore alternative feature extraction methods or 
extend its classification framework to other viruses.

Results and discussion
Table 1 lists the key performance results of the selected 
feature extraction techniques on the dengue, HIV and 
SARS-Cov- 2 hold out test sets across three key met-
rics, accuracy, Macro F1 score and Mathew’s Correlation 
Coefficient (MCC).

The selected feature extraction techniques include k-
mer counting, Frequency Chaos Game Representation 
(FCGR) [20], Return Time Distribution (RTD) [7], Spaced 

Word Frequencies (SWF) [8], Genomic Signal Processing 
(GSP) [21, 22] and Mash [6].

The optimal parameter configurations and strate-
gies for handling degenerate nucleotides remained con-
sistent for each feature extraction technique across all 
datasets. Consequently, the optimal configurations are 
summarized in Table 2. See Additional file 1 for an analy-
sis of feature extraction parameters on the SARS-CoV- 2 
dataset.

Dengue
FCGR, SWF, k-mers, RTD, and MASH all achieve near-
perfect classification performance for dengue sequence 

Table 1 Summary of the performance results for various 
AF feature extraction methods applied to dengue, HIV, and 
SARS-CoV- 2 hold-out test sets. For each method, the accuracy, 
Macro F1 Score, and Matthews Correlation Coefficient (MCC) are 
reported with their respective standard deviations

Virus Method Accuracy Macro F1 MCC

Dengue FCGR 0.998 ± 0.000 0.986 ± 0.000 0.998 ± 0.000

k-mer 0.998 ± 0.000 0.986 ± 0.001 0.998 ± 0.000

RTD 0.998 ± 0.000 0.985 ± 0.000 0.998 ± 0.000

SWF 0.998 ± 0.000 0.986 ± 0.000 0.998 ± 0.000

GSP 0.992 ± 0.000 0.971 ± 0.002 0.990 ± 0.000

MASH 0.998 ± 0.000 0.984 ± 0.000 0.998 ± 0.000

HIV FCGR 0.840 ± 0.003 0.760 ± 0.012 0.833 ± 0.004

k-mer 0.844 ± 0.004 0.764 ± 0.006 0.838 ± 0.004

RTD 0.826 ± 0.006 0.740 ± 0.009 0.818 ± 0.007

SWF 0.838 ± 0.004 0.748 ± 0.008 0.831 ± 0.004

GSP 0.669 ± 0.005 0.517 ± 0.008 0.652 ± 0.005

MASH 0.891 ± 0.003 0.791 ± 0.005 0.886 ± 0.003

SARS-CoV- 2 FCGR 0.979 ± 0.000 0.977 ± 0.000 0.979 ± 0.000

k-mer 0.978 ± 0.000 0.976 ± 0.000 0.978 ± 0.000

RTD 0.973 ± 0.000 0.969 ± 0.000 0.973 ± 0.000

SWF 0.978 ± 0.000 0.975 ± 0.000 0.978 ± 0.000

GSP 0.325 ± 0.001 0.320 ± 0.001 0.324 ± 0.001

MASH 0.516 ± 0.007 0.514 ± 0.007 0.516 ± 0.002

Table 2 Optimal parameter configurations and degeneracy 
handling for each feature extraction method

AF method Parameters Degenerates

FCGR r = 128 Removed

k-mer k = 7 Removed

RTD k = 7 Removed

SWF k = 7 Removed

GSP Real Mapping Replaced

MASH k = 21 ; s = 1000 Removed
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classification. All five methods achieve an overall classi-
fication accuracy and MCC of 99.8%, with FCGR, SWF 
k-mers achieving the highest Macro F1 score of 98.6%.

The exceptionally high performance results for these 
five feature extraction techniques indicate a strong suit-
ability for AF sequence classification in the context of 
dengue classification at the genotypic level. However, the 
slight discrepancy between the accuracy scores and the 
Macro F1 scores indicates a slight bias toward the major-
ity classes.

The outlying feature extraction technique, GSP, still 
performs reasonably well with a classification accuracy 
greater than 99%. In previous work, Randhawa et  al. 
[21] demonstrated that signal processing feature extrac-
tion techniques could achieve perfect accuracy at the 
serotypic level. Thus, our findings suggest that when the 
classification task is extended to the genotypic level, the 
performance of GSP begins to degrade slightly.

HIV
Among the evaluated methods, Mash stands out with the 
highest accuracy (0.891), Macro F1 Score (0.793), and 
MCC (0.886). In general, the classification performance 
of all feature extraction techniques was significantly 
lower in the case of HIV classification than in the case 
of dengue classification. Similarly to the dengue dataset, 
we found that the respective models all achieved lower 
Macro F1 scores than accuracy scores, however, in the 
case of HIV, this discrepancy was larger, indicating that 
the models struggled to classify minority classes.

Following Mash, the word-based methods FCGR, 
k-mers, RTD and SWF all achieve similarly high perfor-
mance scores of above 80% accuracy and MCC and 70% 
Macro F1. However, GSP performed significantly worse 
than the other methods, achieving only a classification 
accuracy of 55.8% in the HIV dataset.

SARS-CoV- 2
Among the methods evaluated, FCGR proved to be the 
most effective, achieving the highest accuracy (0.979), 
Macro F1 Score (0.977), and MCC (0.979). Similarly, k-
mer RTD (0.978) and SWF (0.974) also achieve high 
accuracy, with the top-performing methods all utilizing 
word counting techniques. In contrast, GSP achieves 
notably poor performance, with an average accuracy of 
only 0.325, making it the least effective method by a sig-
nificant margin. All models produce similar and consist-
ent results across all evaluation metrics, indicating that 
all models achieve balanced performance across different 
classes independent of class size.

Table  3 compares Macro F1 scores between training, 
validation, and test sets. We consider Macro F1 to be the 
most robust performance metric, as it more effectively 

accounts for class imbalances and bias. All models 
exhibit a higher (near perfect) performance in the train-
ing set compared to the validation and test sets. This dis-
crepancy is most pronounced with GSP, which achieves 
perfect accuracy on the training set but relatively poor 
accuracy on the validation and test sets. This pattern 
typically indicates overfitting, where the models learn the 
noise in the training data, reducing their generalization 
ability. However, for this application, increasing the com-
plexity of the Random Forest models results in the best 
generalization performance, although the improvement 
in generalization did not match the rate of improvement 
in training performance with increasing model depth. 
The validation and testing results are strongly correlated 
across all models, indicating consistent performance on 
unseen data and confirming the reliability of the valida-
tion results as predictors of testing performance.

Class‑wise classification accuracy
We analyzed the class-wise accuracy of each model to 
determine whether the models perform uniformly across 
all classes or whether they excel or under perform for 
certain sets of classes. Figure 1 gives the class-wise accu-
racy results for the different models. The SARS-CoV- 2 
lineages (classes) are ordered in descending order of the 
average classification performance across all models. The 
figure demonstrates the overall classification behavior of 
the models and the rate at which performance degrades 
when models face lineages that are more challenging to 
classify correctly.

Our findings again indicate that word-based models 
achieve the best results, while also displaying remarkably 
similar behavior. These models achieved near-perfect 
accuracy for the vast majority of the 3502 classes in the 
test set, with a sharp decline in performance observed 
in only a few classes. Furthermore, in the vast majority 
of cases in which these models achieve perfect accuracy, 
they did so with zero deviation. The word-based models 
exhibit a steep decline in performance in only around 

Table 3 Comparison of Macro F1 performance across the train, 
validation and test sets for the SARS-CoV- 2 dataset

Model Set

Train Validation Test

SWF 0.9999 0.9756 0.9754

k-mer 0.9999 0.9766 0.9755

MASH 0.9981 0.5133 0.5144

FCGR 0.9999 0.9773 0.9768

GSP 1.0000 0.3189 0.3149

RTD 0.9999 0.9697 0.9687
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200 classes. In contrast, GSP showed an immediate and 
notable decline in performance, while Mash displayed an 
almost linear decline in class-wise accuracy. Both GSP 
and Mash also demonstrated a higher degree of perfor-
mance deviation throughout.

Factors influencing classification performance
Given that even the best models exhibit notably poor 
performance in a small minority of classes, we investi-
gated potential reasons for this behavior. One possible 
challenge identified in the classification of SARS-CoV- 
2 sequences is the presence of recombinants, lineages 
resulting from the combination of genetic material from 
different lineages of the virus, leading to new hybrid 
sequences. This recombination process can introduce 
inherent noise that can complicate the classification task 
for machine learning models. To assess the impact of 
recombinants on model performance, we compared the 
class-wise accuracy of the models on nonrecombinant 

sequences and on recombinants, as shown in a set of split 
violin plots in Fig. 2.

The results indicate that recombinants are indeed 
more challenging to classify across all models. The per-
formance drop is most pronounced for Mash and GSP, 
which struggle significantly with recombinant sequences. 
In contrast, word-based models show only a slight 
decrease in performance.

We further investigated three additional factors that 
could potentially influence model performance: the num-
ber of available training samples, the evolutionary depth 
of the sequences, and the number of direct descendants, 
also known as sublineages, that each lineage possesses.

Figure  3 presents a grid of hexbin correlation plots, 
with each column corresponding to one of these three 
variables.

With regard to the number of training samples avail-
able, it is evident that word-based models exhibit a 
noticeable decrease in classification accuracy when 

Fig. 1 The SARS-CoV- 2 testing accuracy results of each AF feature extraction method on a class-wise basis. The findings provide insights 
into the distribution of model performance across classes. Classes are ordered in descending order of average classification accuracy across all 
models. The standard deviations of the accuracy for each model are also depicted. For the purposes of visual clarity, the values depicted have been 
smoothed using a sliding window of 50 classes. On the right-hand side, we provide isolated views of the top performing models

Fig. 2 Comparison of the performance of each AF feature extraction model on nonrecombinant genomes (blue) and recombinant (orange) 
genomes. The horizontal lines in each violin plot indicate the models’ achieved accuracy for different individual classes, while the width of the violin 
plots represents the density of samples at different accuracy levels
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fewer training samples are available. Lineages with fewer 
than 10 training samples demonstrated a proportionally 
higher likelihood of suboptimal classification accuracy. 
However, a significant proportion of lineages with sub-
optimal accuracy also had the maximum available train-
ing sample size of 30. Although this is consistent with the 
general observation that most lineages have 30 training 
samples, it suggests that factors beyond the quantity of 
training samples also contribute to reduced classification 
performance. For Mash and GSP, less notable interac-
tions are evident.

Across all models, no significant relationship was 
observed between lineage depth and model performance. 
Although most lineages with suboptimal classification 
accuracy had an evolutionary depth of less than 10, this 

trend reflects the higher overall representation of such 
lineages in the dataset rather than a direct influence of 
depth on performance.

Lastly, all models exhibited a significant decline in 
classification accuracy as the number of sublineages 
increased. This performance degradation was more pro-
nounced than the impact of limited training samples, and 
all models consistently fell below perfect accuracy once a 
universal sublineage threshold was exceeded.

As a final evaluation of our models, we investigated 
the performance of the three best performing models 
(FCGR, k-mers, and SWF) on the most frequently occur-
ring lineages during the SARS-CoV- 2 pandemic. This 
analysis provides a holistic view of model performance in 
a more tangible and recognizable set of samples.

Fig. 3 This figure depicts the interaction between classification accuracy and the number of training samples for each class (left), the depth 
of each lineage (middle), and the number of direct descendants of each lineage (right) for each SARS-CoV- 2 model in the form of hexbin plots. We 
only show depth and number of descendant interactions for nonrecombinant, nonrecombinant sequences
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Figure  4 shows a radar chart of classification perfor-
mance in the 200 most common nonrecombinant line-
ages. The surrounding circular bar chart represents the 
evolutionary depth of each lineage, color-coded accord-
ing to the clades to which the lineages belong. The find-
ings show remarkably similar behavior across all models. 
Consistent with the overall results, the models perform 
very well in the majority of classes, with significant dips 
for certain lineages. Model performance does not fluc-
tuate significantly between different clades. However, 
we observe significant performance drops for lineages B 
(one of the two original haplotypes), B.1.617.2 (Delta), 
B.1.1.529 (Omicron), B.1.1, BA.2 (a direct descendant of 
Omicron) and JN.1. These performance drops are par-
ticularly notable in some of the most critical strains of 
the SARS-CoV- 2 virus, especially Delta and Omicron.

Classification throughput
We evaluated the run time and peak memory usage of 
each model across 10 trials while performing classifica-
tion on a test set of 89,156 SARS-CoV- 2 sequences. Fea-
ture extraction was conducted using 8 CPU cores, while 
classification with Random Forests utilized 2 CPU cores.

Additionally, we compared the computational perfor-
mance of these models to two widely used SARS-CoV- 
2 lineage classification tools: Pangolin (Phylogenetic 
Assignment of Named Global Outbreak Lineages) [30] 
and NextClade [31]. Pangolin remains the standard for 
Pango lineage classification, although NextClade is sig-
nificantly faster. However, NextClade does not always 
perfectly replicate Pangolin’s assignments, since its refer-
ence tree prioritizes recent sequences, reducing accuracy 
for older lineages.

Fig. 4 A composite figure of the class-wise classification performance of the top three performing models, FCGR, k-mers, and SWF on the 200 
most prominent SARS-CoV- 2 lineages. The inner plot consists of a radar chart, where optimal performance corresponds to observations 
near the perimeter of the chart. The outer figure shows a circular bar plot in which the bars correspond to the depth of the SARS-CoV- 2 lineages 
and are colored according to the respective clades of the lineages
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All experiments were executed on a MacBook Pro 
with an M4 Pro chip and 24GB of total memory. Next-
Clade was run locally on the same system, using 2 CPU 
cores. Pangolin was tested using its online web tool; due 
to computational constraints, we classified 10 randomly 
selected subsets of 100 sequences from the test set and 
reported the average runtime and standard deviation 
(Table 4).

The runtime of the different methods varied signifi-
cantly, with FCGR being the fastest, averaging 233.92 
seconds, while RTD was the slowest, taking 1806.25 
seconds on average. Despite the differences in speed, all 
models exhibited similar peak memory usage, with RTD 
consuming the least at 9.44 GB.

Pangolin’s web tool was the slowest among all com-
pared methods by a large margin. Notably, our FCGR 
(233.92 seconds) and k-mer (384.64 seconds) models 
outperformed NextClade in speed, with FCGR running 
more than twice as fast. SWF (478.34 seconds) demon-
strated a runtime comparable to NextClade. NextClade 
also a significantly higher peak memory usage (20.33 GB) 
than all Random Forest models (13.61 GB) in order to 
process the full test set.

Conclusions
In this paper, we comprehensively evaluated the effective-
ness of alignment-free (AF) methods for the classification 
of viral sequences on a large scale, focusing on both clas-
sification performance and computational efficiency. We 
used six established AF techniques to extract feature vec-
tors from viral genomes and trained Random Forest clas-
sifiers on these features. We experimented with various 
parameters for AF techniques and evaluated the effects 
of removing versus replacing degenerate nucleotides. The 
findings from our primary dataset, consisting of 297,186 
SARS-CoV- 2 nucleotide sequences categorized into 

3,502 distinct lineages, demonstrate that AF methods can 
achieve high classification accuracy and efficiency even 
with large-scale datasets. We also evaluated class-wise 
accuracy based on the number of sublineages, training 
samples, and the depth of each class to determine the fac-
tors that influence classification difficulty.

Despite the high dimensionality, we found that word-
based AF methods could effectively represent the SARS-
CoV- 2 sequences, achieving classification accuracies 
close to 98% on the test set. Furthermore, we validated 
our models using moderately sized HIV (4,177 samples) 
and Dengue (18,970 samples) datasets to ensure their 
robustness across different viral types.

Our findings further contribute to the practical advan-
tages of AF sequence classification. AF viral sequence 
classification is considerably faster than alignment-based 
techniques. Moreover, the ability to train models and 
classify viral sequences using only modest computa-
tional resources, without reliance on cloud infrastruc-
ture, underscores the accessibility and scalability of these 
methods for researchers worldwide.

Methods
We evaluated six different AF techniques, three based on 
word frequencies, one based on chaos theory, one based 
on digital signal processing, and one based on frequency 
of word matches. We selected techniques based on 
whether they are well-established for general sequence 
comparison, that are fast enough for large-scale datasets, 
and had been previously used in machine learning clas-
sification applications. The selected AF techniques were 
also chosen for their ability to be directly implemented 
without relying on third-party software. I would add a 
single sentence in the paper. We also investigated the use 
of average common substrings (ACS) but concluded it 
computationally infeasible for computing distance matri-
ces for large-scale datasets.

Feature extraction methods
Below is a brief overview of each selected feature extrac-
tion technique. For a more detailed breakdown of the 
workings of the selected techniques, see Additional file 2.

• k-mer counting involves breaking genomic sequences 
into overlapping subsequences of length k , called 
k-mers, and constructing a feature vector by counting 
the occurrences of each possible k-mer, with larger k 
values offering greater resolution for distinguishing 
similar sequences but at higher computational costs.

• Return Time Distribution (RTD) [7] provides an 
alternative to direct k-mer frequency by measur-
ing the mean and standard deviation of the intervals 
between occurrences of each k-mer, creating a fea-

Table 4 Run time and peak memory usage of the different 
models compared to NextClade and Pangolin. *Pangolin results 
are extrapolated based on trials of 100 sequences at a time

Method Run time (s) Peak 
memory 
usage (GB)

FCGR 233.92± 7.21 13.26

k-mer 384.64± 13.20 13.61± 0.14

SWF 478.34± 12.27 13.42± 0.26

RTD 1806.25± 22.84 9.44± 0.11

MASH 666.46± 34.50 13.09± 0.17

GSP 545.12± 8.40 12.64± 0.21

NextClade 478.72± 3.05 20.33± 0.13

Pangolin* 23, 122± 62335.06 Not Reported
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ture vector twice the size of the total possible k-mers 
and offering a distinctive perspective on sequence 
structure.

• Spaced Word Frequencies (SWF) [8] refine word 
frequency analysis by using patterns that alternate 
between required matches and flexible positions, 
focusing only on matching positions to account for 
sequence variations or mutations, and reducing sta-
tistical biases from consecutive matches in contigu-
ous word approaches.

• Mash [6] adapts the MinHash technique to genomic 
datasets by hashing and sorting k-mers, creating 
a compact “sketch” of the smallest hash values for 
efficient similarity estimation. The Mash distance, 
derived from the Jaccard index between sketches and 
modeled as a Poisson process, quantifies sequence 
similarity based on shared hashes.

• The Frequency Chaos Game Representation (FCGR) 
[20] is a visualization technique for genomic 
sequences that maps nucleotides to positions within 
a unit square, starting from the center and iteratively 
plotting points halfway toward corners representing 
bases A, C, G, and T, producing a distinctive pat-
tern that can be analyzed as frequency distributions 
within grid regions.

• Genomic Signal Processing (GSP) [21, 22] applies 
Digital Signal Processing methods to DNA/RNA 
sequences by converting nucleotides into numeri-
cal values using predefined mappings, normalizing 
sequence lengths, and applying the Discrete Fourier 
Transform (DFT) to generate frequency domain rep-
resentations. The resulting magnitude spectra can be 
compared between sequences using Pearson correla-
tion dissimilarity.

Parameters
All of our selected AF feature extraction techniques 
incorporate parameters that influence/impact the result-
ing feature vectors. AF sequence comparison techniques 
were not originally developed as a means for feature 
extraction but as a means to calculate (dis)similarity 
between sequences. Therefore, when using AF compari-
son techniques to extract feature vectors, we can group 
these techniques into two categories. Techniques whose 
feature vectors are the direct result of a numeric trans-
formation (k-mers, spaced word frequencies, RTD and 
FCGR), and techniques whose feature vectors result from 
a derived distance measure (Mash and GSP).
k-mers, RTD, and SWF similarly derived from the 

statistical analysis of word frequencies, share a com-
mon parameter k , prescribing the length of the words 
employed. We considered values of k ranging between 

two and seven, noting diminishing performance returns 
against a backdrop of exponentially increasing computa-
tional demands for higher k values.

The key parameters for the Spaced Word Frequen-
cies method define the selected pattern. The weight 
of a pattern refers to the number of match positions in 
the pattern and corresponds to the length of the result-
ing word counts. Similarly to the work of the original 
paper [8], for each potential weighting k (the number of 
match positions), we generated 50 random patterns with 
a maximum of 30 non-match positions. We then evalu-
ated the classification performance of each pattern on the 
validation set and selected the pattern with the highest 
macro F1 score per weighting. We considered weight-
ing values ranging between two and seven, correspond-
ing to the word lengths selected for the other word-based 
techniques.

Mash also uses a word size k , but the ideal range of k 
values extends beyond those of the word-based methods. 
We investigated word sizes of 13, 19 and 21, as suggested 
in the original paper [6]. The second key parameter of 
Mash is the sketch size, for which we compared values of 
500, 1000 and 2000.

GSP comprises two key parameters, the choice of 
numeric mapping to use and the means of length normal-
ization. For this study, we evaluated the mappings “Real”, 
“PP”, and “Just-A” since these were found to be most 
promising in the original study [21]. For length normali-
zation, we utilized antisymmetric median length padding 
[21] over zero padding [22], noting that zero padding 
was more likely to result in the length of sequences over-
influencing classification.

Lastly, for the Frequency Chaos Game Representation, 
we flattened the generated images flattened into one-
dimensional feature vectors. The tuning parameter r con-
trols the image resolution. We considered r values 32, 64, 
and 128.

Table  5 provides an overview of the selected feature 
extraction techniques and their relevant parameters.

Table 5 Summary of feature extraction parameters. k refers to 
word length, s to sketch size, r  to resolution, l  to number of non-
match positions, and n to numeric mapping

Method Considered parameters

k-mer k ∈ [2, 3, . . . , 7]

Return Time Distribution (RTD) [7] k ∈ [2, 3, . . . , 7]

Spaced Word Frequency (SWF) [8] k ∈ [2, 3, . . . , 7] ; l = 30

Mash [6] s ∈ {500, 1000, 2000} ; 
k ∈ {13, 19, 21}

Frequency Chaos Game Rep. (FCGR) [20] r ∈ {32, 64, 128}

Genomic Signal Processing (GSP) [21, 22] n ∈ {"Real", "PP", "Just A"}
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Across all feature extraction techniques, an additional 
universal decision lies in the handling of degenerate/
ambiguous nucleotides. In this study, we considered two 
approaches, removing these nucleotides or randomly 
replacing them with viable bases.

Data
We applied the selected AF feature extraction techniques 
to three viral sequence datasets. For each dataset, we par-
titioned the data into three distinct sets: a training set, a 
validation set, and a testing set, with a ratio of 50:20:30, 
respectively. The sets were stratified by lineage to main-
tain relative class balance.

Dengue
The dengue dataset, sourced from The Global Initiative 
on Sharing All Influenza Data (GISAID) [32], included all 
available sequences as of June 2024, classified into four 
serotypes, each comprising multiple genotypes. Although 
related studies typically focus solely on classifying the 
four serotypes [5, 21], our study performed classification 
at the genotypic level.

During dataset construction, we filtered out sequences 
labeled as low-coverage, defined as those with more than 
five percent ambiguous nucleotides. To maintain statisti-
cal validity, we discarded genotypes with fewer than ten 
observations. One significant challenge of using machine 
learning for viral classification is the need for an adequate 
sample size for training and robust evaluation. Conse-
quently, this filtering process led to the exclusion of two 
genotypes, DENV4 - III and DENV3 - IV. The remaining 
dataset consisted of 17,424 samples, divided into 16 dif-
ferent genotypic classes.

HIV
Our HIV dataset was sourced from the Los Alamos 
National Lab (LANL) [33] HIV sequence database. We 
selected all complete genome sequences with coverage 
greater than 95%. Similarly to the dengue dataset, we fil-
tered out all lineages with fewer than ten total samples. 
To mitigate potential bias towards common lineages, 
we performed random undersampling, ensuring that 
no single lineage had more than 300 samples. The final 
HIV dataset comprised 4,177 samples, divided into 53 
lineages.

SARS‑CoV‑ 2
Our large scale SARS-CoV- 2 dataset was sourced from 
GISAID. Unlike most approaches that focus solely on 
dominant variants, our study expanded the classifica-
tion to encompass almost all SARS-CoV- 2 lineages 
(3,502/3,565), as defined by the Pango lineage classifica-
tion nomenclature at the time of this analysis [30].

Similarly to our approach with the dengue dataset, we 
removed sequences labeled as low coverage, retaining 
those with coverage exceeding 95%. In particular, our 
criteria for the tolerance of ambiguous nucleotides (95 
percent coverage) are less stringent compared to similar 
studies, which often require more than 99 percent cover-
age [27, 28].

Consistent with our methodology for all datasets, we 
excluded classes with fewer than ten total observations 
from our analysis. In the case of SARS-CoV- 2, this led 
to the elimination of 63 classes. However, the remaining 
classes exhibited significant class imbalance. To mitigate 
this bias, we used random undersampling, limiting each 
class to a maximum of 100 training observations. This 
approach ensured a balanced training set, and no class 
showed a disproportionate representation that exceeded 
a 1:10 ratio compared to any other class. The final dataset 
comprises 297,186 samples distributed across 3,502 dis-
tinct classes.

Model selection and validation
Following the construction of various feature sets, we 
performed model selection and validation. We limited 
our scope to models that would be feasible for implemen-
tation across all datasets, and thus needed to align with 
the computational demands of the SARS-CoV- 2 dataset. 
Traditional classifiers like Logistic Regression and Sup-
port Vector Machines, whilst demonstrating notable per-
formance in similar studies, were not considered for this 
analysis owing to their computational demands, neces-
sitating the use of One-vs-Rest classification strategies. 
We also assessed the suitability of K-Nearest Neighbours 
(KNN) classifiers, but found that their performance was 
consistently poor, likely due to the high dimensionality of 
the feature sets.

Deep learning approaches for genomic sequence clas-
sification, such as DeePaC [34] and BERTax [35], have 
demonstrated promising results. However, these meth-
ods typically require large amounts of training data to 
perform effectively. Given the severe class imbalance 
in our dataset, where some lineages have as few as five 
available training samples, we opted not to include deep 
learning approaches in this study.

Considering the scale of the SARS-CoV- 2 dataset 
and its large number of lineages, our approach naturally 
gravitated toward the use of tree-based algorithms, 
known for their favorable performance-efficiency bal-
ance on tabular datasets. We preliminarily assessed 
several options, including Random Forests, XGBoost, 
LightGBM, and CatBoost, ultimately concluding that 
Random Forests consistently yielded higher classifica-
tion performance whilst simultaneously being most 
computationally efficient. Consequently, we focused 
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our investigation on the use of Random Forests. Ran-
dom Forests further benefit from built-in feature 
selection, allowing the models to cope with the high 
dimensionality of the viral feature sets. We treated each 
model as a flat classifier, opting to overlook the hierar-
chical class structure inherent within the dataset and 
treat all classes as independent.

We used the validation set to tune the hyperparam-
eters of each model and feature extraction technique 
using a grid search methodology. For each Random 
Forest, we investigated the use of both unweighted 
and balanced class weighting schemes, as well as the 
use of gini and entropy splitting criteria. Furthermore, 
we allowed the forests to grow to an unlimited maxi-
mum depth, noting that this improved performance 
universally. All Random Forests were constructed with 
100 decision tree members, noting that in all cases, we 
observed diminishing returns before this point.
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