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Abstract
Background Genetic and genomic selection programs require large numbers of phenotypes observed for animals 
in shared environments. Direct measurements of phenotypes like meat quality, methane emission, and disease 
susceptibility are difficult and expensive to measure at scale but are critically important to livestock production. Our 
work leans on our understanding of the “Central Dogma” of molecular genetics to leverage molecular intermediates 
as cheaply-measured proxies of organism-level phenotypes. The rapidly declining cost of next-generation sequencing 
presents opportunities for population-level molecular phenotyping. While the cost of whole transcriptome 
sequencing has declined recently, its required sequencing depth still makes it an expensive choice for wide-scale 
molecular phenotyping. We aim to optimize 3′ mRNA sequencing (3′ mRNA-Seq) approaches for collecting cost-
effective proxy molecular phenotypes for cattle from easy-to-collect tissue samples (i.e., whole blood). We used 
matched 3′ mRNA-Seq samples for 15 Holstein male calves in a heat stress trail to identify the (1) best library 
preparation kit (Takara SMART-Seq v4 3′ DE and Lexogen QuantSeq) and (2) optimal sequencing depth (0.5 to 
20 million reads/sample) to capture gene expression phenotypes most cost-effectively.

Results Takara SMART-Seq v4 3′ DE outperformed Lexogen QuantSeq libraries across all metrics: number of quality 
reads, expressed genes, informative genes, differentially expressed genes, and 3′ biased intragenic variants. Serial 
downsampling analyses identified that as few as 8.0 million reads per sample could effectively capture most of the 
between-sample variation in gene expression. However, progressively more reads did provide marginal increases in 
recall across metrics. These 3′ mRNA-Seq reads can also capture animal genotypes that could be used as the basis 
for downstream imputation. The 10 million read downsampled groups called an average of 109,700 SNPs and 11,367 
INDELs, many of which segregate at moderate minor allele frequencies in the population.

Conclusion This work demonstrates that 3′ mRNA-Seq with Takara SMART-Seq v4 3′ DE can provide an incredibly 
cost-effective (< 25 USD/sample) approach to quantifying molecular phenotypes (gene expression) while discovering 
sufficient variation for use in genotype imputation. Ongoing work is evaluating the accuracy of imputation and the 
ability of much larger datasets to predict individual animal phenotypes.
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Background
In livestock populations, selection decisions are made 
mainly based on statistical estimates of an animal’s 
genetic merit in the form of an estimated breeding value 
(EBV) [1]. Using EBV-based selection has led to remark-
able genetic gain over relatively short periods. These 
genetic evaluations rely on large numbers of pheno-
types measured on individuals in shared environments 
throughout the population [2, 3]. In most cases where 
genetic predictions do not exist for an economically-rele-
vant trait, it is due to a lack of phenotypic measurements 
[4]. Some phenotypes, such as methane emission, disease 
susceptibility, or metabolic efficiency, are exceedingly 
challenging to quantify at the scale needed for genetic 
evaluation [5, 6, 7]. Future improvements to these eco-
nomically important and sustainability-related traits will 
rely on novel approaches to collecting indicator pheno-
types [8].

One possible solution to this challenge is to use molec-
ular measurements (e.g., gene expression, protein, or 
metabolite abundance) as high-dimensional proxies for 
economically significant phenotypes [9]. These molecu-
lar measurements could be used in place of or alongside 
organismal phenotypes in genetic evaluations or in more 
complex models that predict animal phenotypes rather 
than additive genetic merit [10, 11, 12, 13]. Proxy phe-
notypes collected from milk samples via mid-infrared 
(MIR) spectroscopy are used as indicators for multiple 
efficiency and health traits in the dairy industry [14]. A 
similar proxy does not yet exist for beef cattle. As with 
any complex trait, genetic predictions that leverage inter-
mediate phenotypes will also require large numbers of 
samples to be useful. As such, tissue collection must be 
accessible, and molecular data generation must be cheap. 
At present, the cost of whole transcriptome sequenc-
ing and proteomics remains prohibitively expensive. To 

equip future analyses with population-scale molecular 
phenotype data, we propose an optimized approach to 
quantifying gene expression via 3′ mRNA sequencing (3′ 
mRNA-Seq) in whole blood.

Whole transcript sequencing (mRNA-Seq) and 3′ 
mRNA-Seq are two related transcriptomic approaches, 
each offering unique representations of an individual’s 
gene expression landscape. While both approaches start 
by capturing mRNA of expressed genes, whole tran-
scriptome sequencing libraries usually involve random 
fragmentation of entire genes, followed by fragment size 
selection for sequencing (Fig. 1A). As a result, sequencing 
reads are distributed evenly across full transcripts. This 
can result in a biased overrepresentation of longer genes/
transcripts amongst reads because they result in more 
fragments-per-transcript compared to shorter genes/
transcripts [15]. This biased overrepresentation of longer 
genes can negatively affect the detection of differentially 
expressed genes (DEGs) and downstream analyses of bio-
logical functions like gene ontology (GO) enrichments 
and pathways analysis [16]. This requires that whole RNA 
sequencing analyses normalize the fragment counts per 
gene based on gene length and sequencing depth.

Comparatively, 3′ mRNA-Seq approaches do not frag-
ment the captured transcripts and sequence multiple 
fragments from the same transcript. Instead, 3′ mRNA-
Seq involves a biased library preparation approach that 
generates reads from the 3′ end of mRNA molecules and 
creates a cDNA library from only the fragment contain-
ing the poly-A tail (Fig.  1B, C). This results in an unbi-
ased representation of long and short transcripts in the 
sequencing library [15]. As a result, gene expression 
analysis of 3′ mRNA-Seq does not require normalization 
based on gene length. The most important benefit of 3′ 
mRNA-Seq is that gene expression can be quantified with 
a fraction of the reads necessary in a full transcriptome 

Fig. 1 Comparison of the library preparation approaches for whole transcriptome sequencing and 3′ mRNA-Seq. A) Library preparation for Illumina 
TruSeq RNA library preparation used for whole transcriptome sequencing. B) Library preparation protocol for Takara SMART-Seq v4 DE approach used for 
3′ biased sequencing. C) Library preparation protocol for Lexogen QuantSeq 3′ mRNA-Seq
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study due to a reduction in the number of redundant 
reads that belong to the same transcript [15]. The main 
drawback of 3′ mRNA-Seq is that reads cannot be used 
to identify novel transcripts or alternative splicing events. 
Further, it can only call 3′ biased intragenic variants in 
cases where genomic variants are of interest. Multiple 
commercial library preparation approaches are available 
for 3′ mRNA-Seq, including Tag-seq [17, 18], MustSeq 
[19], QuantSeq (Lexogen) [20], and SMART-Seq v4 3′ 
DE (Takara). The Lexogen QuantSeq library is one of the 
most widely used 3′ mRNA-Seq libraries across studies, 
used in over 1,600 publications in the past decade [21].

The literature is conflicting on whether 3′ mRNA-Seq 
or whole transcriptome sequencing approaches are better 
equipped to detect DEGs [15]. Some side-by-side com-
parisons found that full transcriptomes were more effec-
tive at detecting DEGs [15], while others have identified 
3′ mRNA-Seq as the superior approach [19, 20, 22, 23]. 
However, the majority of comparisons suggest that the 
libraries are equally capable of detecting both DEGs and 
expressed genes [17, 18, 24, 25, 26, 27]. Finally, compared 
with whole transcriptome sequencing, 3′ mRNA-Seq 
represents the major cost savings needed for widespread 
molecular phenotyping applications [15, 18].

This project aimed to identify best practices for carry-
ing out cost-effective 3′ mRNA-Seq for eventual appli-
cation in the molecular phenotyping of livestock. We 
explored how different library preparation approaches 
and sequencing depths affect the quality and amount of 
information generated. Here, we compare two popular 
library preparation approaches for 3′ mRNA-Seq: Lexo-
gen QuantSeq and Takara SMART-Seq v4 3′ DE. We also 
use an iterative downsampling approach to simulate the 
impacts of different sequencing depths. This allows us to 
identify the minimum depth needed to capture the opti-
mal amount of variation in transcript quantities. Finally, 
we explore our ability to call variants from 3′ biased 
sequencing reads. The ability to impute genotypes based 
on this reduced-representation gene expression data 
would be invaluable for many genotype-to-phenotype 
applications in plants and livestock. Coupled with devel-
opments in laboratory automation, the best practices 
identified by this work could make molecular phenotyp-
ing practical for livestock genetic evaluations.

Methods
Sample collection and RNA extraction
We opportunistically collected whole blood samples from 
15 Holstein male calves housed under climate control 
rooms [28] in the East Tennessee Research and Educa-
tion Center– JRTU undergoing an acute heat stress trial 
for an unrelated project (Yu et al., under revision). We 
handled all animals according to the University of Ten-
nessee’s Institutional Animal Care and Use Committee 

Protocol 2851 − 0921. Fifteen whole blood samples were 
collected from the cattle at 6:30 before heat exposure, 
and 14 samples were collected at 18:30 immediately after 
12 h of heat exposure from the same animals (Yu et al., 
under revision). Climate in the room was obtained fol-
lowing our previous work in heat-stressed claves [28]. 
10 mL of blood was mixed with 30 mL of 1X NH4Cl red 
blood cell lysis buffer and was centrifuged at 2000 ×g 
for 10  min. The supernatant was aspirated and cell pel-
lets resuspended in 1.2 mL of Trizol. RNA was isolated 
according to the protocol detailed in Rio et al. [29]. RNA 
purification and genomic DNA removal were performed 
using the Zymo RNA Clean and Concentrator kit accord-
ing to manufacturer protocol.

Library preparation and sequencing
Sequencing libraries were prepared from isolated RNA 
using two different kits: Takara SMART-Seq v4 3′ DE 
(Takara) and Lexogen QuantSeq 3′ (Lexogen) (Supple-
mentary Table S1) as per the manufacturer’s instructions. 
Final library quality and concentrations for pooling were 
evaluated using the Agilent Tapestation 4200 system. 
For each kit, libraries for all 27 samples were pooled to 
achieve equal concentrations (Supplementary Table 1). 
For the Takara pool, each sample had 5 ng of cDNA. 
For the Lexogen pool, each sample had 3.2 ng of cDNA. 
They were sequenced on a single SP flow cell on the Illu-
mina Novaseq6000 (University of Tennessee Genomics 
Core - Knoxville, TN) with a 200-cycle v1.5 reagent kit. 
For Takara 3′ libraries, Read 1 was 150  bp, and Read 2 
consisted of 26 bp for demultiplexing. Whereas Lexogen 
3′ libraries were sequenced with single-end with 150 bp 
reads.

Sequence processing & gene expression quantification
Only forward reads were used for sequence analysis, as 
reverse reads contained only indices for demultiplex-
ing for the Takara kit. For all samples, Trimmomatic 
(v.0.39) was used for trimming and filtering with the fol-
lowing parameters: (LEADING:5 TRAILING:5 SLID-
INGWINDOW:5:20 MINLEN:30) to trim bases from 
each end of each read that has a quality ≤ 5, trim at the 
first occurrence of sliding window of size 5 with average 
quality ≤ 20, and filter out the reads that are shorter than 
30 bp after the trimming [30]. The quality of reads before 
and after trimming & filtering was visualized and evalu-
ated using FastQC (v.0.11.9) [31] and MultiQC (v.1.14) 
[32] tools. The STAR alignment software (v.2.7.10b) [33] 
was used to index the Bos taurus genome (ARS-UCD2.0; 
Jul 2023) [34] - which was obtained from NCBI - with 
sjdbOverhang of 149  bp. STAR was then used to map 
filtered reads to the indexed genome. The quantMode 
“GeneCounts” was used in STAR to quantify the number 
of reads mapped to the annotated genes.



Page 4 of 13Mohamed et al. BMC Genomics          (2025) 26:379 

Differential gene expression analysis & functional 
enrichment analysis
We evaluated the sensitivity of each test condi-
tion (library preparation method and downsampled 
read number) to detect expressed genes and differen-
tially expressed genes. The number of expressed genes 
(count > 0) and informative genes (count > 10 in 50% of 
the samples) were calculated in R (R 4.2.1 “Funny-Look-
ing Kid”) using the GeneCounts generated by the STAR 
tool. All expressed genes (i.e. genes with expression > 0 in 
at least one sample) were used for DEG analysis via the 
DESeq function from the DESeq2 R package (v.1.40.2) 
[35]. Time of sample (morning vs. night) was the only 
variable tested in the model. No genes were excluded 
before this step because DESeq function filters genes 
with low counts based on Negative Binomial Gamma-
Poisson distribution and it’s recommended not to remove 
any expressed genes. The DEGs results were extracted 
with an FDR-corrected alpha threshold of 0.05 but no log 
fold change threshold was used. DEGs were plotted using 
the Bioconductor EnhancedVolcano library [36].

Variant calling
We utilized the GATK best practices for calling variants 
from RNA-sequencing data to identify genomic variation 
in areas covered by 3′ mRNA-Seq reads [37, 38]. STAR 
was used to remap the reads with a per-sample 2-pass 
mapping step. Samples from the same animal (from 
before and after heat exposure) were merged using SAM-
tools (v.1.20) [39]. We used the GATK tool (v.4.3.0.0) [38] 
and picard tools (v.2.27.4-0) [40] to: (1) Assign all reads 
from each animal to a single read group identified by the 
animal ID using the AddOrReplaceReadGroup tool, (2) 
mark duplicated reads in each of the merged samples, (3) 
split the reads that contain Ns in their cigar string using 
SplitNCigarReads tool, (4) Call variants within each of 
the merged samples using HaplotypeCaller with a confi-
dence threshold of 20, (5) combine the variants from all 
samples across all chromosomes and known scaffolds in 
the genome using GenomicsDBImport, (6) perform joint 
variant calling from all samples using GenotypeGVCFs, 
(7) Separate SNPs and INDELs using SelectVariants, and 
(8) Hard-filter SNPs and INDELs, separately, with Vari-
antFiltration tool with the following parameters for SNPs 
and INDELS (QD < 20.0, FS > 20.0, MQRankSum < -12.5, 
ReadPosRankSum < -8.0, and SOR > 5.0). Even though the 
GATK recommends variant recalibration before calling 
variants with HaplotypeCaller tool rather than using hard 
filters, this step requires having one or more databases of 
known polymorphic sites from the population of inter-
est. At the time of the analysis, reference polymorphic 
sites databases were not available for Holstein dairy cattle 
compared to the reference Hereford genome assembly 
(ARS-UCD2.0). The information fields of VCF files for 

SNPs and INDELs were imported into R environment (R 
version 4.2.1 (2022-06-23)) and filtered based on either 
(1) total depth across samples and alleles and the number 
of reads supporting an alternate allele [DP_total > = 10 
and ALT_AD_total > 0] or (2) only on the depth of alter-
native allele (AD) or alternative allele ratio (AR) per allele 
per sample followed by a filter on re-calculated depth 
from all samples [((AD > = 2) or (AR > = 0.1 and DP > 10)) 
and DP_total_recalculated > = 5]. The second filtering 
method is more stringent and filtered out more SNPs. 
To validate the variant calling results, we compared the 
called variants with known species variants (i.e. popula-
tion variants) obtained from the ENSEMBL database (as 
of August 29, 2024).

Downsampling for sequencing-depth benchmarking
We used the Seqtk tool (v.1.4) [41] to generate ten ran-
dom replicates of downsampled read sets simulating 
seven ascending sequencing depths from raw FASTQ 
files for each sample. We simulated this downsampling 
using ten random seeds (127, 2, 5, 7, 9, 11, 12, 81, 21, 47) 
at each of seven different sequencing depths: 0.5 M, 1 M, 
2 M, 5 M, 7.5 M, 10 M, and 12 M reads/sample. Higher 
sequencing depth downsampling past 12 M reads was not 
possible for all samples. We performed the same analysis 
described above (alignment, gene expression counting, 
DEG analysis, and variant calling) to quantify the relative 
performance of each sequencing depth across replicates. 
The downsampling efficacy of the variant calling was also 
explored using the more stringent filtering criteria (based 
on depth per alternative allele per sample).

The results of the downsampling were quantified using 
precision, recall, and F-score where the whole dataset’s 
results were considered the true positive set. Precision is 
the measure of the positive predicted value (PPV), recall 
is the measure of sensitivity, and F-score is the harmonic 
mean of precision and recall [42]. The three metrics were 
calculated using the following equations:

 
Precision = TP

TP + FP

 
Recall = TP

TP + FN

 
F.score = TP

TP + 1
2 × (FP + FN)

Where.

  • True positive (TP) is the number of genes present in 
both the subsample and the full dataset.

  • False positive (FP) is the number of genes present 
only in the subsample.
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  • False negative (FN) is the number of genes present 
only in the full dataset but not the subsample.

The plateau value, indicating the point where addi-
tional reads failed to uncover additional genes for each 
metric, was estimated by fitting the downsampling 
results from all ten replicates to a Self-Starting Nls 
Asymptotic Regression Model (SSasymp function from 
the stats package in R) with the following equation: 
y = ymax + (y0 − ymax) . e−explrc . x) , Where

  • ymax is the asymptote value on the y-axis,
  • y0 is the response when x = 0, and
  • lrc is the natural logarithm of the rate constant.

The plateau’s initial point (i.e., saturation sequencing 
depth) was calculated by setting the derivative of this 
model to 0.0001, which represents an increase of one 
gene from adding 10,000 extra raw reads per sample (i.e., 
marginal information gain).

 
xplateau = −

ln
(

−0.0001
y0−ymax

)
− lrc

elrc

Results
Comparing Takara and Lexogen libraries
Sequencing depth was similar for both library prepa-
ration kits (p-value 0.9761; Welch two-sample t-test) 

with a median of 18.6  million (range: 12.5  M − 35.6  M) 
and 16.4  million (range: 7.3  M − 95.7  M) raw reads per 
sample for the Takara and Lexogen libraries, respectively 
(Supplementary Figure S1). One sample sequenced with 
the Lexogen library had significantly more reads than all 
other samples (> 5 standard deviations from the mean) 
because it was inadvertently loaded to a higher concen-
tration. On average, quality control filters dropped sig-
nificantly fewer reads for the Takara library (1.94% of the 
raw reads) compared with the Lexogen library (2.39% 
of the raw reads) (p-value < 0.0001; Welch two-sample 
t-test) (Fig.  2A). When mapped to the cattle reference 
genome, the reads from Lexogen libraries had a signifi-
cantly higher mapping rate on average, with 87.95% of 
the raw reads (90.1% of the filtered reads) where uniquely 
mapped compared to Takara libraries with 75.56% of 
the raw reads (77.05% of the filtered reads) uniquely 
mapped reads (p-value < 0.0001; Welch two-sample 
t-test) (Fig.  2B, C). The low mapping rate was mainly 
driven by more reads in the Takara data being unmapped 
because they were too short (5–15% of filtered reads). 
More stringent filtering criteria would decrease the rate 
of unmapped reads from both sequencing libraries but at 
the cost of possible information loss.

Despite Lexogen libraries having a higher mapping rate, 
Takara libraries captured significantly more expressed 
genes than Lexogen libraries (p-value < 0.0001; Welch 
two-sample t-test). We considered “expressed genes” 
as genes to which at least a single read aligned. Takara 

Fig. 2 Comparison of Takara and Lexogen filtering outcomes and mapping rates. (A) Boxplots represent the percentage of the raw reads that survived 
filtering from both sequencing libraries. (B) Boxplots representing the percentage of the raw reads that survived filtering and were uniquely mapped to 
the cattle reference genome. (C) Boxplots represent the percentage of the filtered genes that were uniquely mapped to the reference genome from both 
sequencing libraries. (****: p < = 0.0001)
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libraries detected an average of 16,957 expressed genes 
per sample (minimum = 15,921; maximum = 18,532), 
while Lexogen libraries averaged only 13,417 (mini-
mum = 9,273; maximum = 16,033) (Fig.  3A). Using both 
libraries, the number of expressed genes from all ani-
mals (Fig.  3A black stars) is greater than the number 

of expressed genes from any individual, with a total of 
24,607 expressed genes from Takara libraries and 21,730 
expressed genes from Lexogen libraries. Our definition of 
an expressed gene was quite liberal, meaning that many 
were captured only in one or a handful of individuals, 
which could mean they would not be as informative as 

Fig. 3 Comparison of expressed and informative genes detected by Takara and Lexogen library preparation kits. (A) Boxplots representing the numbers 
of expressed genes (genes with at least one read mapped) for Takara and Lexogen libraries. Each dot represents a sample, and the black star represents 
the number of expressed genes identified in the full dataset for each library preparation method. (B) Boxplots representing the number of informative 
genes (genes with at least ten mapped reads in 50% of the samples) for Takara and Lexogen libraries. Each dot represents a sample, and the black star 
represents the number of informative genes present in at least 50% of the samples identified in the full dataset. (C, D) Distribution of the number of 
expressed genes and informative genes captured by Takara libraries (C) and Lexogen libraries (D) as a function of the number of individuals in which these 
genes were identified. (****: p < = 0.0001). The colors in subfigures (A) and (B) match the colors in subfigures (C) and (D), respectively
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molecular phenotypes (Fig.  3C, D). We defined a more 
conservative set of “informative genes” as genes where 
at least ten reads mapped to the gene in at least 50% of 
the samples. Takara libraries captured significantly more 
informative genes per sample (mean = 11,824) than Lexo-
gen libraries (mean = 9,904) (p-value < 0.0001; Welch two-
sample t-test) (Fig. 3B). Takara libraries captured 12,351 
informative genes from all samples, whereas Lexogen 
libraries captured only 10,997 informative genes (Fig. 3B 
black stars).

When we modeled the heat stress response between 
samples, Takara enabled us to identify more DEGs than 
Lexogen. Takara libraries identified 4,821 DEGs (3,142 
up-regulated genes (13% of the expressed genes) and 
1,679 down-regulated genes (6.8% of the expressed 
genes)), whereas Lexogen libraries captured only 1,285 
DEGs (1,025 up-regulated genes (4.9% of the expressed 
genes) and 260 down-regulated genes (1.2% of the 
expressed genes)) (Fig.  4). Only 1,095 DEGs were con-
sistently detected using both libraries (964 up-regulated 
genes and 131 down-regulated). Most of these DEGs had 
a small effect size as only 179 of the up-regulated genes 
had |LFC| ≥ 1 from the Takara libraries and only 47 
up-regulated genes and 2 down-regulated genes from 
Lexogen libraries had |LFC| ≥ 1 (not shown). 94% of 
the upregulated genes and 50% of the downregulated 
genes captured by Lexogen were also captured by Takara 
libraries (Fig. 4C).

We called more genetic variants using reads from the 
Takara libraries than from Lexogen libraries. Also, the 
more stringent filtering criteria results in less variants, 
both SNPs and INDELs, compared to the less strin-
gent criteria from both libraries. After variant filtration, 
we obtained 183,475 and 234,140 SNPs and 19,692 and 
34,882 INDELs from Takara libraries using the stringent 
and less stringent filtering criteria, respectively. By com-
parison, Lexogen libraries identified 113,762 and 138,380 
SNPs and 11,193 and 20,705 INDELs using the two fil-
tering approaches (Fig.  5A). For Takara libraries using 
the more stringent filtering criteria, 147,643 SNPs (80.5% 
of the called Takara SNPs) were intragenic (overlapping 
with 14,953 annotated genes), with the majority (69.3%) 
of the SNPs overlapping with informative genes (Fig. 5A). 
This compares with 104,742 SNPs (92.1% of the called 
Lexogen SNPs) intragenic SNPs (overlapping with 9,842 
annotated genes) from Lexogen libraries with the major-
ity (85.2%) of the SNPs overlapping with informative 
genes (Fig.  5A). For the less stringent filtering criteria, 
198,103 SNPs called from Takara libraries (84.6% of the 
SNPs) were intragenic (overlapping with 15,641 anno-
tated genes), with the majority (75.6%) of the SNPs over-
lapping with informative genes (Fig. 5A). Compared with 
127,085 SNPs (91.8% of the called Lexogen SNPs) intra-
genic SNPs (overlapping with 10,846 annotated genes) 

from Lexogen libraries with the majority (84.9%) of the 
SNPs overlapping with informative genes (Fig. 5A).

When we compared the called variants with known 
population variants, 131,835 and 144,992 SNPs (61.9 and 
71.9% of total SNPs) called from Takara libraries were 
known true population variants using the more and less 
stringent filtering, respectively(Fig.  5B). Lexogen librar-
ies called far fewer known variants. These variants rep-
resented only 31.5 and 35% of the total number of called 
SNPs using more and less, stringent filtering (Fig.  5B). 
This makes Takara libraries much better suited for down-
stream imputation applications.

From both sequencing libraries, less than 0.5% of the 
INDELs were known true population variants in the 
ENSEMBL database. Interestingly, there is minimal 
overlap in the true population variants called by both 
sequencing libraries (12.3%), as the majority of known 
variants are called by Takara libraries (76%). From both 
libraries, a higher density of SNPs was called near the 
3′ end of the gene body, as we would expect given the 
library preparation approaches (Fig.  5C). However, the 
location of the reads from both libraries does not exactly 
match for all expressed genes which explains the incom-
plete overlap in the true variants called.

Identifying an optimal read depth for 3′ mRNA-Seq in 
molecular phenotyping applications
After identifying Takara as the superior library prepa-
ration approach, we performed a series of read num-
ber-downsampling iterations to determine the optimal 
sequencing depth that balanced capturing expression 
variability while minimizing costs. The unique mapping 
rate and filtering rate were the same across all downsam-
pling iterations, as it is driven by sample quality rather 
than read number. (Supplementary Figure S2 A, B). How-
ever, the number of expressed and informative genes per 
sample increased with sequencing depth (Supplemen-
tary Figure S2 C, D). The number of expressed genes and 
informative genes captured by all replicates increased 
exponentially as the sequencing depth increased (Fig. 6A, 
B). For expressed genes, asymptotic regression models 
plateau at 7,993,318 reads per sample, capturing 23,605 
predicted expressed genes (turquoise dot in Fig.  6A). 
For informative genes, the model starts to plateau at 
8,357,463 reads per sample, capturing 11,137 predicted 
informative genes (turquoise dot in Fig. 6B). The model 
begins to plateau at 6,565,915 reads per sample for DEGs, 
capturing 4,297 DEGs (turquoise dot in Fig.  6C) out of 
4,821 DEGs captured by the whole dataset. The model 
predicted that using the full number of reads generated 
(12,601,460) would only capture an additional 235 DEGs.

The depth of sequencing also affected the number of 
variants that we were able to call from 3′ mRNA-Seq 
reads. Unlike gene expression, the number of filtered 
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variants did not plateau at any sequencing depth, includ-
ing at the full 12.5 M reads per sample (Fig. 6D, E). We 
could not call variants at higher sequencing depth as only 
nine samples had a sequencing depth ≥ 20  M, and only 
two samples had ≥ 30  M reads. As expected, our analy-
sis showed that the number of samples is as important 
as the number of reads in accurately calling variants. 
Using our limited dataset, the asymptotic regression 

model extrapolates the plateau to be around 83,685,731 
reads per sample for calling SNPs and 45,168,229 reads 
per sample for calling INDELs; however, extrapola-
tion of regression models beyond the range of observed 
data should be approached with caution, as the reliabil-
ity of predictions in these regions is often questionable. 
Using the optimal sequencing depth identified for iden-
tifying expressed and informative genes 8  million reads 

Fig. 4 Volcano plots representing the differentially expressed genes of heat-stressed calves using (A) Takara libraries and (B) Lexogen libraries. The hori-
zontal dashed line represents the adjusted p-value threshold of 0.05; all genes above the line are statistically significant. The vertical dashed lines represent 
|LF C| ≥ 1; all genes beyond the vertical lines have moderate-to-high effect size as a response to heat stress. Differentially expressed genes (red dots) 
are both statically significant and have moderate-to-high effect sizes. (C) Number of DEGs detected by both library kits
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per sample), we called 93,915SNPs and 9,725 INDEL in 
the dataset. This represented 51.2% and 49.5% of total 
SNP and INDELs called with the complete dataset, 
respectively.

Discussion
Our study demonstrates the potential of using 3′ mRNA 
sequencing (3′ mRNA-Seq) as a cost-effective method 
for molecular phenotyping in cattle. We primarily focus 
on identifying superior library preparation kits and opti-
mizing sequencing depth to balance information content 
and cost. Our findings indicate that the Takara SMART-
Seq v4 3′ DE library preparation kit outperforms the 

Fig. 5 Variant calling results from Takara and Lexogen libraries. (A) Bar chart depicting differences in the number and location of variant sites. (B) Venn 
diagrams show the number and percentage of the variants called from the reads of each library preparation approach that are true population variants 
based on the ENSEMBL known variants GVF file. The two Venn diagrams on the left are when the variants are filtered more stringently (Alternate Allele 
Depth > = 10), and the two Venn diagrams on the right are when SNPs are filtered less stringently (Depth > 10 and Alternate Allele Depth > = 1). (C) A 
histogram representing the distribution of called intragenic SNPs across the gene body from 5′ → 3′ of the gene
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Fig. 6 (See legend on next page.)
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Lexogen QuantSeq kit across various metrics, including 
the number of quality reads, expressed genes detected, 
informative genes detected, DEGs identified, and intra-
genic variants called. The lone area where the Lexogen 
approach outperformed Takara was in the proportion of 
uniquely mapped reads that survived filtering. There was 
a wider range of mapping rates in the Takara samples, 
which was mostly caused by a high percentage of reads 
too short to be mapped (5–15% of total filtered reads). 
We could not rule out the effect of different cDNA con-
centration pooled for sequencing on the quality and 
amount of the sequenced reads as Takara and Lexo-
gen libraries were pooled with slightly different cDNA 
concentrations.

Overall, this cost-effective 3′-biased approach to 
sequencing can both increase sample sizes in differen-
tial gene expression analysis & eQTL studies and enable 
population-level molecular phenotyping. We anticipate 
that gene expression phenotypes may be useful as high-
dimensional indicators for other hard-to-measure traits 
in cattle, such as methane emissions, metabolic effi-
ciency, reproductive predisposition, or disease suscepti-
bility. However, these 3` mRNA-Seq technologies have 
limitations such as the inability to capture alternative 
splicing events. Similar to total mRNA-Seq, 3` mRNA-
Seq is also incapable of capturing intergenic polymor-
phic sites which reduces its power in eQTL analysis and 
similar analyses in the absence of truth set of population 
haplotypes.

In this work, we primarily evaluated 3` mRNA-Seq 
library preparation approaches and optimal sequenc-
ing depth by the number of informative genes detected. 
We defined informative genes as those with at least ten 
mapped counts that were detected in at least 50% of the 
samples. While detecting all expressed genes is impor-
tant, this core set of genes will be necessary for extrap-
olating latent phenotypes across the wider population. 
We found that Takara libraries captured a significantly 
greater number of informative genes compared to Lexo-
gen libraries. In the DEGs analysis, Takara libraries iden-
tified 74% more DEGs compared to Lexogen libraries. 
Of the total number of DEGs identified by both meth-
ods, the Lexogen libraries identified only 14% of DEGs 
that were not also identified by Takara. In addition to 
the comparative performance of the library preparation 
kits, our analysis of the sequencing depth revealed that 
the Takara SMART-Seq v4 3′ DE library preparation kit’s 

sensitivity to capture expressed genes and informative 
genes from cattle whole blood saturates at a sequencing 
depth of around 8 million reads per sample. We observed 
that increasing the read depth beyond 8  million reads 
provided only marginal gains in the recall of gene expres-
sion metrics, suggesting a point of diminishing returns in 
terms of cost versus data richness. In contrast, Xiong et 
al. found that the sensitivity of the 3′ mRNA-Seq library 
to detect expressed genes saturates at 2–3 million reads 
per sample from human primary cardiomyocyte cell 
lines [24]. That said, the optimal sequencing depth is 
likely species- and tissue-specific, reflecting transcription 
activity in different types of cells and organisms.

The ability to call variants from 3′ mRNA-Seq reads 
also demonstrated a strong dependence on library prepa-
ration method, filtering stringency, sequencing depth, 
and number of samples. Reads from these samples would 
certainly be adequate for assigning parentage, and likely 
for performing accurate genotype imputation for inter-
genic regions when adequate reference panels are avail-
able. Further work that directly evaluates the impacts of 
these variables on imputation accuracy is forthcoming, 
but outside the scope of this paper. Our results in a small 
set of animals showed that while gene expression met-
rics plateaued at lower read depths, variant identification 
continued to benefit from increased sequencing depth 
without reaching an apparent plateau within the range 
tested. Further sequencing would likely result in greater 
proportions of gene bodies to be sequenced, resulting in 
more variants.

Our study highlights the importance of carefully opti-
mizing sequencing protocols to balance cost and data 
quality. Using 3′ mRNA-Seq with the Takara SMART-
Seq v4 3′ DE kit offers a promising approach for large-
scale molecular phenotyping in livestock, providing 
sufficient data quality at a substantially lower cost than 
whole transcriptome sequencing. Using fractional quan-
tities of reagents for library preparations could provide 
even further reductions in cost. This approach enables 
the capture of large-scale gene expression data and may 
also facilitate genotype imputation, thereby enhancing 
the utility of molecular data in genetic evaluations and 
breeding programs.

(See figure on previous page.)
Fig. 6 The effect of sequencing depth on capturing expressed genes, informative genes, DEGs, and variants. Each sequencing depth downsample con-
sisted of ten repetitions (a cluster of 10 points from the downsampling subsets). Lilac lines are non-linear asymptotic regression models; each parameter 
was fit to a regression model independently. Turquoise dots represent the start of the plateau, defined by a slope of 0.0001, representing a gain of 1 
gene/variant when increasing the sequencing depth by 10,000 reads per sample. (A) Number of expressed genes as a function of sequencing depth per 
sample. (B) Number of informative genes (expressed genes with at least 10 reads mapped to in at least 50% of the samples) as a function of sequencing 
depth per sample. (C) Number of differentially expressed genes (DEGs) as a function of sequencing depth per sample. (D) Number of SNPs called as a 
function of sequencing depth per sample. (E) Number of INDELs called as a function of sequencing depth per sample
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Conclusion
In conclusion, we show that 3′ mRNA-Seq is a cost-
efficient (<$25/sample) approach to studying and repre-
senting complex traits in cattle through phenotyping by 
gene expression. In our samples, the Takara SMART-seq 
v4 library was superior to the Lexogen QuantSeq library 
in capturing expressed, informative, and DEGs, as well 
as calling sequence variants. We have also shown that 
8 million reads per sample effectively capture most of the 
inter-sample variation in gene expression with a marginal 
increase in the number of expressed genes with increas-
ing read depth.
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