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Abstract 

Background  Strong tolerance to seed aging is an important agricultural trait for sweet corn production. Previ-
ous studies have primarily focused on the QTLs for the seed vigor. However, there were few researches involving 
in the metabolome and transcriptome of artificial aging seeds.

Results  Using two inbred lines with significant differences in seed artificial aging tolerance, RNA sequencing 
and non-targeted metabolomic analysis were employed to extensively evaluate transcripts and metabolites in seeds 
that underwent artificial aging. Fourteen common transcripts and 16 common metabolites with sustained differential 
expression were identified in the two lines, suggesting their potential necessity in seed response to artificial aging. 
Enrichment analysis of differentially expressed genes (DEGs) in the transcriptome at different stages revealed signifi-
cant enrichment KEGG pathways, “Oxidative phosphorylation” was the common pathway in the 0d vs 3d comparison 
for K107 and L155. The identical enriched KEGG pathways were observed in the 3d vs 6d comparison for K107 and 0d 
vs 6d comparison for L155, indicating a slower transcriptomic response in the aging-tolerance line. DEGs at 0 days 
between the two lines had been enriched in the “Terpenoid backbone biosynthesis” and “Ribosome” pathways, 
while at 6 days, the enrichment pathway were “Sulfur metabolism”, “Linoleic acid metabolism”, and “Plant hormone 
signal transduction”. A total of 312 differentially expressed metabolites (DEMs) were found at 0, 3 and 6 days after seed 
aging treatment, and they shared enriched metabolic pathway of “ABC transporters”. The KEGG enrichment of DEGs 
and DEMs shared the common pathway, namely “Linoleic acid metabolism”. Among these, the most abundant 
metabolites were Glutathione, Adenosine, Trehalose, and 10E,12Z-Octadecadienoic acid. Focusing on the ascorbate–
glutathione pathway revealed that the difference in ROS production and the ROS scavenging capability mediated 
by glutathione S-transferase (GST) genes were important factors contributing to the differing seed aging tolerance 
in the two lines.

Conclusion  In summary, these results contribute to a deeper understanding of the overall mechanisms underly-
ing artificial aging tolerance in sweet corn seeds. The findings of this study are expected to provide valuable insights 
for the storage of sweet corn seeds.
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Background
Sweet corn (Zea mays L. Saccharata Sturt), derived from 
the mutations of one or a few relative genes regulating 
the conversion of sugar to starch within the endosperm, 
exhibits a delightful flavor and high sugar content, mak-
ing it a popular choice for cultivation worldwide [1, 2]. 
However, its mature seeds possess low starch content, 
resulting in shrunken seeds with poor storage tolerance, 
consequently impacting seed germination and seedling 
vigor [3]. Notably, South China was the primary produc-
tion region for sweet corn in China [4], where sweet corn 
seeds for field production are sown in autumn and subse-
quently introduced to the market in the following spring, 
entailing a storage period of approximately 4–6 months. 
The humid and rainy climate characteristic of South 
China accelerates the aging and deterioration of seeds, 
significantly impairing their storage capacity and thereby 
influencing the production of sweet corn. Given the cru-
cial role of high-quality seeds in sweet corn production, 
further exploration of genetic and metabolic mechanisms 
governing tolerance to aging becomes an imperative goal 
in sweet corn breeding.

Seed aging is a complex process characterized by irre-
versible decline in seed vigor during storage. Seed aging 
and deterioration involves irreversible metabolic and 
cellular changes, like reduced antioxidant capacity, cell 
membrane disruption, genetic material damage, pro-
tein degradation, and decreased energy metabolism [5]. 
Highly reactive and toxic ROS can damage cell mem-
branes, nucleic acids, proteins, carbohydrates, and 
lipids, causing irreversible cell system damage [6]. Dur-
ing seed deterioration, ROS accumulate, including sin-
glet oxygens (1O2), superoxide radicals (O2

•−), hydrogen 
peroxide (H2O2), and hydroxyl radicals (OH•) [7]. Thus, 
lipid peroxidation and cell membrane disruption caused 
by free radicals are major damages in the aging process 
[8]. Seeds contain many antioxidant enzymes to protect 
against excessive ROS. Key ones are superoxide dis-
mutase (SOD), catalase (CAT), ascorbate peroxidase 
(APX), etc. [5]. The ascorbate—glutathione cycle is cru-
cial in response to seed aging [9, 10]. The weakening of 
the antioxidant system, especially reduced enzymatic 
activities, may lead to the loss of seed vigor [9].

Seed deterioration is an inevitable process, influenced 
by both genetic and environmental factors, even in opti-
mal conditions. To date, maize seed aging research has 
predominantly centered on physiological alterations [3, 
11] and QTL mapping. Under different artificial aging 
conditions, 65 QTLs for four seed vigor traits and 18 
meta-QTLs were detected by Han et  al. [12]. Ku et  al. 
[13] identified 74 QTLs and 20 trait-related mQTLs for 
the mean germination time and other related seed vigor 
traits. In the recombinant inbred line (RIL) and IF2 

populations, Wang et  al. [14] found 49 QTLs for four 
measured seed vigor traits. From two connected RIL 
populations, Han et  al. [15] detected 74 QTLs and 20 
mQTLs for seed vigor. Employing an F2:3 population and 
a RIL population, 13 QTLs were identified to be located 
on five chromosome regions for seed artificial aging [16]. 
Currently, there have been no published reports regard-
ing the map-based cloning of seed vigor genes in maize.

The expansion of high-quality sequence data and the 
generation of large-scale omics datasets have effectively 
enhanced the comprehensive understanding of the intri-
cate process of seed aging. Transcriptome investigations 
on seed aging have been carried out in multiple plant 
such as pea [17], soybean [18], maize [19], oat [20], and 
rice [21]. For example, research has identified key genes 
associated with oxidative stress and programmed cell 
death during the aging of pea seeds [17]. Comparative 
analysis of the transcriptomes of aged and fresh soybean 
seeds has revealed that the time-dependent relationship 
between transcript fragmentation and length can be a 
useful indicator of age-related damage [18]. In maize, by 
comparing the transcriptome profiles of two chromo-
some segment substitution lines with accelerated-aged 
seeds, 13 DEGs were detected within the mapping inter-
val [19]. Through transcriptomic analysis of oat embryos 
during seed aging, changes in energy production and 
the AsA-GSH cycle were elucidated [10]. In rice, spe-
cific long-lived mRNAs related to seed longevity were 
identified [20]. Moreover, the dysfunction of antioxidant 
and glyoxalase system, and the accumulation of ROS and 
methylglyoxal definitely contribute to seed aging, and a 
putative model for aging response and self-detoxification 
mechanisms was proposed based on full-length tran-
scriptome in oat [21].

Metabolites, the end products of cellular pro-
cesses, serve as the final manifestations of biological 
systems’responses to genetic or environmental changes. 
Despite their significance, the metabolome of aging 
plant seeds has received relatively little research atten-
tion. In maize, it has been discovered that ZmDREB2 A 
regulates the longevity of maize seeds. This occurs by 
promoting the production of raffinose, which in turn 
regulates ZmGH3.2 and ZmRAFS, thereby redirecting 
metabolism to enhance seed aging tolerance [22]. Addi-
tionally, it has been reported that the maize alkaline 
α-galactosidase 1 protein is translationally induced and 
can hydrolyze raffinose family oligosaccharides (RFOs). 
Overexpression of ZmAGA1 in Arabidopsis has been 
shown to reduce seed aging tolerance in mature dry 
seeds [23]. Regarding soybean (Glycine max L. Merr.), 
dynamic changes in membrane lipid metabolism 
and antioxidant defense during seed aging have been 
detected [8].
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Sweet corn seeds typically possess low vigor, and their 
poor storage tolerance substantially impacts produc-
tion and marketability. A review of omics research on 
seed aging reveals that most studies have concentrated 
on transcriptome and proteome analysis, while metabo-
lomics has received relatively less attention. In this study, 
two sweet corn inbred lines with marked differences in 
seed-aging tolerance were selected for investigation. 
K107 was determined to be the seed-aging-sensitive 
line [24]. L155, derived from the RIL population of K107 
and K62, exhibited greater tolerance to seed aging com-
pared to K62 [25]. Seed samples were collected 0, 3, and 
6  days after artificial accelerated aging. RNA sequenc-
ing and widely-targeted metabolomics techniques were 
employed to comprehensively analyze transcripts and 
metabolites, respectively. This methodology aimed to 
elucidate the differences in transcripts and metabolites 
between the two lines after seed aging. The main objec-
tive of this study is to elucidate the regulatory mecha-
nisms that contribute to sweet corn’s tolerance against 
seed aging, thereby offering theoretical insights to sup-
port the advancement of long-term preservation tech-
niques for sweet corn seeds.

Results
Morphological characteristics of seeds after aging
As depicted in Fig. 1, it is evident that with an increase 
in the duration of artificial aging treatment, four seed 
vigor indicators for both lines showed a declining trend. 
Post artificial aging treatment, four seed vigor indica-
tors of L155 were significantly higher than those of K107. 
Initially, at 0 days after artificial aging treatment, the dif-
ferences in germination potential (GP) and germination 
rate (GR) between L155 and K107 did not reach the sig-
nificant level of 0.05; however, the germination index (GI) 
and vigor index (VI) of L155 were significantly higher 
than those of K107. After 3 and 6 days of artificial aging 
treatment, L155 exhibited significantly higher values 
across four seed vigor indicators compared to K107.

Evaluation of mRNA sequencing data
To comprehensively elucidate the transcriptional and 
metabolic alterations occurring in sweet corn seeds dur-
ing artificial aging, an extensive analysis was conducted 
employing widely targeted metabolomics and RNA-Seq 
on seeds subjected to artificial aging at 0, 3, and 6 days. 
For RNA-Seq, each time point comprised 3 independent 
replicates, resulting in a total of 18 sequenced libraries. 

Fig. 1  GP, GR, GI, and VI of L155 and K107 at 0, 3 and 6 days after artificial aging treatments. A GP of L155 and K107 at 0, 3, and 6 days of artificial 
aging. B GR of L155 and K107 at 0, 3, and 6 days of artificial aging. C GI of L155 and K107 at 0, 3, and 6 days of artificial aging. D VI of L155 and K107 
at 0, 3, and 6 days of artificial aging
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On average, each sample yielded 48,979,461.78 high-
quality clean reads, with an average of 33,790,087.83 
reads being successfully aligned to the maize B73 V4.0 
reference genome annotation. The average mapping rate 
of labeled reads to the B73 reference genome for L155 
and K107 samples was 82.18% and 82.74%, respectively 
(Table  S1). Principal component analysis of mRNAs 
and metabolites accurately divided all the samples into 
two different clusters, reflecting the obvious difference 
between K107 and L155 (Figure S1).

Validation of transcriptome data by qRT‑PCR
To ensure the reliability of our transcriptome data, we 
randomly selected 9 differentially expressed genes for 
qRT-PCR analysis. The results illustrated the expression 
patterns of these genes across two lines at 0, 3, and 6 days 
following artificial aging. Remarkably, the expression pat-
terns obtained through qRT-PCR closely matched those 
identified during RNA-seq analysis, thereby affirming the 
accuracy of our RNA-seq data (Figure S2).

Identification of differentially expression genes
Pairwise differential expression profile analysis (FDR 
≤ 0.05, |log2FC|≥ 1.0) was conducted across all time 
points to discern the differentially expressed genes dur-
ing artificial aging (Fig.  2A). A total of 1,035 and 1,586 
DEGs were identified in L155 and K107, respectively 
(Table S2, 3). When comparing consecutive time points, 
the majority of DEGs were observed between 0 and 6 d in 
L155, whereas in K107, most DEGs were found between 
3 and 6 d, with a limited number of DEGs between 0 and 
3 d. Notably, the 3 d vs 6 d comparison of L155 revealed 
the fewest differentially expressed genes, only one was 
detected, suggesting a slower rate of DEG expression 
change in L155 compared to K107. Moreover, there were 
118 common DEGs in L155 and K107, while 917 DEGs 
were specific to the aging-tolerant line L155 (Table  S4, 
Fig. 2C). Interestingly, both lines exhibited an increase in 
the number of up-regulated and down-regulated DEGs 
over time (Fig. 2A).

Identification and enrichment analysis of core DEGs
Remarkably, there exists an overlap of 118 DEGs com-
mon to both inbred lines, as portrayed in Fig.  2C 

(Table  S4). We considered these shared DEGs as"core 
DEGs"pivotal for the artificial aging tolerance of sweet 
corn seeds, possibly essential for their response to arti-
ficially induced accelerated aging. Of the 118 core DEGs, 
there were 9 mitochondrial genes and 12 transcription 
factors. To gain further insights into the functions and 
pathways associated with these core DEGs throughout 
seed aging, we performed GO and KEGG enrichment 
analyses for the 118 common DEGs, respectively (Fig-
ure S3a, b). Given the limited number of core DEGs, no 
significant KEGG pathway enrichment was observed. 
The GO analysis revealed that 118 DEGs were enriched 
in terms such as purine ribonucleoside monophosphate 
metabolic process, ribonucleoside triphosphate meta-
bolic process, purine ribonucleoside triphosphate meta-
bolic process and ATP metabolic process, encompassing 
a total of 45 terms, and most of which were related to 
energy metabolism (Figure S4).

Identification of continuously DEGs in K107 and L155
Since not all core genes responsive to artificial aging 
exhibit differential expression at all three time points, 
we focused on genes with continuously differential 
expression across all three time points (0 vs 3  days, 0 
vs 6  days, and 3 vs 6  days). No common continuously 
DEGs were detected in L155 and K107. We then con-
centrated on the commonly DEGs in the 0 vs 3  days 
and 0 vs 6  days comparisons. Only 14 genes over-
lapped between the two datasets (Fig. 3A, B, C). Among 
these, Aquaporin PIP1 - 5 (Zm00001 d051872) and 
Farnesylated protein 2 (Zm00001 d034978) showed 
higher expression levels in L155.

Transcriptomic changes of DEGs at different time points
As depicted in Fig. 1, following 3 and 6 days of artificial 
aging, the seed vigor indices of both lines decreased. To 
comprehensively grasp the global transcriptomic altera-
tions during artificial aging, MapMan software [26] was 
utilized to identify metabolic pathways and biological 
processes at these two time-points, thereby visualiz-
ing the overall transcriptomic changes. During the early 
phase of artificial aging (0–3 days), K107 exhibited only 
a limited number of transcriptional changes. Specifically, 
there was upregulation in cell wall metabolism, aldehyde 
detoxification, the tricarboxylic acid (TCA) cycle, and 
photorepiration (Fig. 4A). In contrast, in the comparison 

Fig. 2  Summary of changes in transcriptome and metabolite abundance in sweet corn seeds under artificial accelerated aging. A, B Summary 
of significant changes in the number of transcripts and metabolites between different time points. C, D Venn diagrams depicting Differentially 
Expressed Genes (DEGs) and Differentially Expressed Metabolites (DEMs) in L155 and K107. E Proportional representation of 100 core metabolites 
out of the total metabolites. F Detailed enumeration of the quantity and proportion of 100 core metabolites among various metabolites and their 
derivatives. G Classification of 536 metabolites

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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of 0 d vs 3 d, L155 showed upregulation solely in the phe-
nylpropanoid and phenolics metabolic pathways (Figure 
S5a). Notably, when comparing 3 d vs 6 d in K107 and 
0 d vs 6 d in L155, similar transcriptional changes were 
observed. These included upregulation in multiple cate-
gories such as cell wall, lipid metabolism, minor carbohy-
drate (CHO) metabolism, the TCA cycle, the Ascorbate/
Glutathione cycle, fermentation, light-dependent reac-
tions, photorepiration, and tetrapyrrole synthesis 
(Fig. 4B; S5b). Nevertheless, in the 3 d vs 6 d comparison 
for K107, the DEGs associated with the amino-acid meta-
bolic pathway were only slightly up-regulated (Fig. 4B).

Enrichment of DEGs at different time points
To further clarify the transcriptomic changes at differ-
ent time points, we carried out KEGG enrichment anal-
yses on the DEGs in pairwise comparisons across three 
time points for two sweet corn lines (Fig. 5). All enrich-
ment analyses were performed with a false discovery 
rate (FDR) threshold set at less than 0.05. The KEGG 
analysis results indicated that in the K107 line, a total of 
13 enriched terms were detected across the three com-
parison groups. The 3 d vs 6 d comparison group had the 
largest number of KEGG pathways. In the L155 line, 14 
enriched pathways were identified across the three com-
parison groups, with the 0 d vs 6 d comparison group, 
related to artificial aging, showing the highest number of 
KEGG pathways (Fig. 5).

In the 0 d vs 3 d comparison group, the DEGs in both 
K107 and L155 were significantly enriched in five path-
ways: Tryptophan metabolism, Benzoxazinoid biosynthe-
sis, Oxidative phosphorylation, Glutathione metabolism, 
and Plant hormone signal transduction. Among these, 
Oxidative phosphorylation was the only common meta-
bolic pathway shared by the two lines. For the 3 d vs 
6 d comparison group, both lines exhibited significant 
enrichment in 10 metabolic pathways, yet no common 
pathway was found between them. Regarding the 0 d vs 
6 d comparison group, both lines demonstrated signifi-
cant enrichment in 13 pathways, with three common 
enriched pathways: Butanoate metabolism, Pyruvate 
metabolism, and Starch and sucrose metabolism. Nota-
bly, the 3 d vs 6 d comparison group for K107 and the 0 d 
vs 6 d comparison group for L155 had exactly the same 
enriched KEGG pathway.

Furthermore, GO enrichment analysis was conducted 
for the DEGs between different time points (Table  S5, 

6). In the K107 line, the DEGs from the 0 d vs 3 d, 0 d vs 
6 d, and 3 d vs 6 d comparison groups were enriched in 
141, 126, and 59 GO terms respectively (Table S6). In the 
L155 line, the corresponding DEGs were enriched in 63, 
220, and 102 GO terms respectively (Table  S6). In the 
0 d vs 3 d comparison group for K107 and L155, a total 
of 34 common GO terms were enriched. Among them, 
GO:0055114 (oxidation–reduction process) was associ-
ated with ROS reduction. For the 0 d vs 6 d comparison 
group, six common GO terms were enriched, including 
GO:0043169 (cation binding), GO:0009266 (response to 
temperature stimulus), GO:0046872 (metal ion binding), 
GO:0009628 (response to abiotic stimulus), GO:0035251 
(UDP-glucosyltransferase activity), and GO:0009408 
(response to heat), suggesting their involvement in the 
response to artificial seed aging. Finally, in the 3 d vs 
6 d comparison group, only two common enriched GO 
terms were observed, specifically related to cation bind-
ing (GO:0043169) and metal ion binding (GO:0046872).

Identification and enrichment of DEGs between K107 
and L155
The seed vigor indexes of K107 and L155 exhibit substan-
tial differences. Consequently, we centered our focus on 
the transcriptional patterns between K107 and L155 dur-
ing artificial aging to probe into the underlying reasons 
for seed artificial aging. In the context of the transcrip-
tome, we detected the highest number of DEGs on day 
0, with a total of 2300 DEGs identified. The numbers of 
DEGs on day 3 and day 6 were 1668 and 2123, respec-
tively (Fig. 6A). A greater proportion of DEGs displayed 
down-regulated expression. This indicates that, on the 
3rd and 6 th days after artificial aging, the expression of 
DEGs in L155 was significantly higher compared to that 
in K107 (Fig. 6A, B).

We conducted KEGG enrichment analysis for the 
DEGs at 0, 3, and 6 days after artificial aging. The anal-
ysis revealed 5 enriched pathways at 0 th and 6 th day, 
with no significantly enriched pathway detected at 3 th 
day (Fig. 6C). On day 0, the DEGs between the two lines 
were enriched in Terpenoid backbone biosynthesis and 
Ribosome pathways. Meanwhile, the DEGs on day 6 were 
enriched in Sulfur metabolism, Linoleic acid metabolism, 
and Plant hormone signal transduction pathways. These 
results imply that these 5 pathways might play a role in 
contributing to the differences in artificial aging tolerance 
observed between K107 and L155.

(See figure on next page.)
Fig. 3  Identification of consecutive differentially expressed genes (DEGs) and metabolites (DEMs). A Venn diagram of DEGs at three time points 
for K107. B Venn diagram of DEGs at three time points for L155. C Heatmap depicting 14 consecutive DEGs, with gene expression standardized 
using z-score method; red represents high expression, while blue represents low expression. D Venn diagram of DEMs at three time points for K107. 
E Venn diagram of DEMs at three time points for L155. F Classification and content analysis of corresponding metabolites, two shared metabolites 
highlighted in red
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Fig. 3  (See legend on previous page.)
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Fig. 4  The MapMan metabolic overview portrays the transcriptional differences during the rtificial aging process of K107 seeds. A 0 vs 3 days. B 3 vs 
6 days. The Log2 FoldChange were based on three replicates. The color scale for Log2 FoldChange ranges from − 4.5 to 4.5, where blue represents 
downregulated transcripts and red represents upregulated transcripts
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Identification of differentially expressed metabolites
In the metabolite profiling analysis, 5 replicates were con-
ducted at each time point, resulting in a total of 30 sam-
ples. A total of 536 metabolites were identified, including 
57 compounds and their derivatives (Fig. 2E, g, Table S7). 
As with the transcriptome, pairwise analyses were con-
ducted for all time points. Specifically, 222 and 192 dif-
ferentially expressed metabolites (DEMs) were identified 
in K107 and L155, respectively (Table S8, 9). Over time, 
the number of up-regulated DEMs in K107 displayed a 
declining trend, while the number of down-regulated 
DEMs exhibited an increasing trend. Additionally, in 
the comparison group of 0 d vs 6 d in L155, both up and 
down-regulated DEMs were observed at their highest 
levels (Fig. 2B).

Identification and enrichment analysis of core DEMs
There is also an overlap of 100 DEMs in two lines, as 
shown in Fig. 2D (Table S10). We regarded these shared 
DEMs as"core DEMs"crucial for the artificial aging toler-
ance of sweet corn seeds. The 100 core metabolites con-
stituted 18.66% of the total metabolites, encompassing 
27 out of 57 identified classifications (Table  S10). This 
subset comprised predominantly of Carboxylic acids and 
derivatives, Fatty Acyls, and Organooxygen compounds, 
with 16, 15, and 11 occurrences respectively, forming 
the majority among core metabolites (Fig. 2F, Table S10). 
KEGG analysis of 100 common metabolites identified 

enrichment in a single term-Linoleic acid metabolism 
(Table S11).

Identification of continuously DEMs in the two lines
Similarly, for metabolites, we focused on those with con-
tinuously differential expression across the three time 
points. We identified 10 and 8 continuously DEMs in 
L155 and K107, respectively (Fig.  3D, E, F). A total of 
16 continuously DEMs belonging to 10 classifications 
(Fig.  3F), with the highest representation found in the 
class of Carboxylic acids and derivatives, including Cit-
ric acid, 4,5-Dihydroorotic acid, 2-O-(α-D-Mannosyl)-
D-glycerate, and (2E)-Decenoyl-ACP. A total of 7 
metabolites were observed with continuously increas-
ing abundance in both lines, with two shared metabo-
lites highlighted in red: Citric acid and Uridine (Fig. 3F). 
These metabolites exhibited sustained differential expres-
sion in both lines and may be crucial in response to arti-
ficial aging.

Identification and enrichment of DEMs between K107 
and L155
A total of 312 DEMs were detected in this study. Spe-
cifically, 201, 184, and 174 DEMs were identified at 0, 
3, and 6 days after artificial aging, respectively (Fig. 7A, 
B). Among the metabolites, the most abundant ones 
included glutathione, adenosine, trehalose, and 10e,12z-
octadecadienoic acid. KEGG enrichment analysis was 

Fig. 5  KEGG enrichment analysis of DEGs in K107 and L155 (0 vs 3 days, 0 vs 6 days, 3 vs 6 days). Various colors represent FDR values, while blanks 
indicate no significant pathways during this period
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conducted and the results revealed that two significant 
pathways were enriched. No significantly enriched path-
ways were detected at 0  day after treatment. At 3  days 
after treatment, the DEMs were enriched in the ABC 
transporters and linoleic acid metabolism pathways. At 
6  days after treatment, the DEMs were enriched in the 
ABC transporters pathway. Notably, the ABC transport-
ers pathway was the common enriched pathway. Com-
paring the KEGG enrichment analysis of DEMs with that 
of DEGs, a common enriched metabolic pathway, Lin-
oleic acid metabolism, was detected.

AsA‑GSH cycle unraveling the seed aging tolerance in K107 
and L155
In the plant antioxidant system, the AsA-GSH cycle 
plays a fundamental and pivotal role in scavenging ROS. 
KEGG enrichment analysis indicated that the glutathione 
metabolism pathway likely mediates the differences in 
seed aging tolerance between K107 and L155. Therefore, 

we focused on the changes in AsA-GSH cycle-related 
genes and metabolites (Fig. 8).

The DEGs within the glutathione pathway were 
screened out in this study. These DEGs include 14 GST 
genes, 3 glutathione peroxidase (GPX) genes, 3 dehy-
droascorbate reductase (DHAR) genes, and 3 ascorbate 
peroxidase (APX) genes (Fig. 8A, B, C, D, E, F, G). A total 
of 11 GST genes, except Zm00001 d029707, Zm00001 
d034937, and Zm00001 d043795, showed higher expres-
sion in L155 than in K107. Among the 3 GPX genes and 
3 APX genes, Zm00001 d026154 and Zm00001 d016802 
had higher expression in L155, while Zm00001 d051392 
and Zm00001 d003643 were highly expressed in K107. 
Additionally, Zm00001 d002704 showed high expression 
in L155 at 0  day after artificial aging treatment and in 
K107 at 6 days after treatment, while Zm00001 d028709 
exhibited high expression in K107 at 6  days after treat-
ment. The DEGs for both DHAR and monodehydroascor-
bate reductase (MDHAR) were highly expressed in K107.

Fig. 6  The number of DEGs and KEGG enrichment analysis of K107 and L155 at 0, 3 and 6 days after artificial aging. A Upregulated 
and downregulated genes detected between K107 and L155. B Venn diagram showing the DEGs between K107 and L155 at 0, 3 and 6 days 
after artificial aging. C KEGG enrichment analysis of DEGs in K107 and L155 at 0, 3 and 6 days after artificial aging
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We further investigated 6 DEGs within NADPH oxi-
dase gene family, all of which showed higher expression 
in K107 (Fig.  8G). Based on these findings, we propose 
that ROS production occurs early during artificial aging, 
with higher ROS production in K107, while superior ROS 
scavenging capabilities in L155.

In this study, our metabolite profiling detected both 
GSH and GSSG. The GSH content in K107 increased rap-
idly from 0 to 3 days and then decreased from 3 to 6 days, 
while in L155, the change was more gradual (Fig.  8H). 
These findings suggest that GSH content are affected by 
seed aging. The changes in GSH and GSSG content in 
K107 were significantly faster than those in L155. Thus, 
we hypothesize that the ROS-scavenging capacity of 
L155 is superior to that of K107, which is consistent with 
the differences in seed vigor observed after artificial aging 
treatment. In summary, the variation in ROS production 
and scavenging capacity is considered as a crucial fac-
tor contributing to the contrasting seed aging tolerance 
observed in K107 and L155.

Discussion
This study conducted a comprehensive analysis of the 
transcriptome and metabolome during the aging process 
of sweet corn seeds. In our study, the maximum change 
in transcriptional level in K107 occurred in the 3 d vs 6 d 
comparison group, while in L155, it occurred in the 0 d 
vs 6 d comparison group. In L155, the transcript response 
is delayed as compared to K107. In contrast, the differ-
ences in metabolite abundance for both inbred lines 
occurred in the 0 d vs 6 d comparison group, differing 
from the changes in transcriptional data. Howell et  al. 
[27] investigated the changes in embryonic transcript and 
metabolite abundance within 48 h after imbibition of rice 
seeds. In their research, they suggested that early changes 
in metabolites derive from the activity of pre-existing 
enzymes and the late changes in metabolites are driven 
by transcription and translation. Our results indicate that 
changes in metabolites ensue subsequent to the changes 
in transcripts, consistent with previous research.

Fig. 7  The number of DEMs and KEGG enrichment analysis of K107 and L155 at 0, 3 and 6 days after artificial aging. A Upregulated 
and downregulated metabolites detected between K107 and L155. B Venn diagram showing the DEMs between K107 and L155 at 0, 3 and 6 days 
after artificial aging. C KEGG enrichment analysis of DEMs in K107 and L155 at 0, 3 and 6 days after artificial aging.



Page 12 of 18Zhang et al. BMC Genomics          (2025) 26:375 

A total of 118 core DEGs were identified in this study, 
consisting of 9 mitochondrial genes and 12 transcrip-
tion factors. These core DEGs are highly likely to form 
the core of the response mechanism of sweet corn 
seeds to artificial aging stress, which are key genes for 
seeds to maintain their viability. Mitochondria, the 

energy-producing factories of cells, are of great signifi-
cance in the physiological activities of seed germina-
tion [28]. It is believed that ROS-related mitochondrial 
dysfunction plays a crucial role in seed deterioration 
[29]. Additionally, transcription factors can regulate the 
expression of other genes. The differential expression of 

Fig. 8  Changes in AsA-GSH cycle-related genes and metabolites. A AsA-GSH pathway model. Red arrows indicate upregulated expression, 
while blue arrows indicate downregulated expression. B, C, D, E, F, G Log2FC of 6 DEGs at day 0, 3, and 6 including GST, GPX, APX, DHAR 
and MDHAR. H Changes in reduced glutathione (GSH) content in K107 and L155. I Changes in reduced glutathione (GSH) content in K107 and L155
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transcription factors implies that there may be a series of 
changes in the expression of downstream genes. These 
changes may involve multiple physiological processes, 
such as stress responses and metabolic regulation, 
thereby affecting the seeds’tolerance to artificial aging 
[30]. GO analysis shows that these 118 DEGs are signifi-
cantly enriched in 45 terms related to energy metabo-
lism. During seed deterioration, the respiratory pattern 
is complex and varied, and the deterioration rate of 
embryo and endosperm is different [31]. In conclusion, 
these core DEGs provide important clues for further 
understanding the tolerance mechanism of sweet corn 
seeds to artificial aging.

In the germination process of rice seeds, a large num-
ber of transcripts are involved in cell wall metabolism, 
lipid metabolism, nucleotide degradation, amino acid 
synthesis, TCA cycle, and jasmonic acid biosynthesis 
[27]. Yang et al. [32] also observed several other upregu-
lated pathways, such as light reaction, photorespiration, 
mitochondrial electron transport, tetrapyrrole synthesis, 
and amino acid synthesis. Our MapMan analysis revealed 
that early DEGs during artificial aging were only enriched 
in a few metabolic pathways including cell wall metabo-
lism, lipid metabolism, nucleotide degradation etc. 
(Fig. 4, S5), which were part of previous studies. In pre-
vious study, a lipoprotein gene (GRMZ2G044627) and 
ZmLOX1 within QTLs for seed vigor involved in lipid 
metabolism [13, 15]. We also identified variances in the 
transcriptomic alterations between K107 and L155, nota-
bly observing a more pronounced delayed transcriptional 
response in the aging-tolerant line.

A total of 14 continuously DEGs were identified, and 
among these 14 continuously expressed DEGs, two 
genes, Aquaporin PIP1 - 5 (Zm00001 d051872) and 
Farnesylated protein 2 (Zm00001 d034978), showed 
higher expression levels in L155. Aquaporin OsPIP1 
has been demonstrated to promote salt resistance and 
seed germination in rice [33], while ZmRAFS has been 
associated with seed aging tolerance in maize [22]. 
KEGG and GO enrichment analyses were carried out 
on all DEGs in pairwise-comparison groups at three 
time points. The K107 3 d vs 6 d comparison group 
had identical enriched KEGG pathways as the L155 0 d 
vs 6 d comparison group. These pathways are associ-
ated with carbohydrate metabolism, lipid metabolism, 
and signal transduction. The findings suggest that the 
transcriptional alterations caused by artificial aging are 
consistent, although not synchronized, across different 
materials. Furthermore, carbohydrate and lipid metab-
olism may play a role in the tolerance to seed aging. 
In rice, the enrichment of DEGs in the seed embryos 
of two species varied at different aging time points 
under accelerated aging [34]. In this study, the common 

enriched KEGG term of the 0 d vs 3 d group was oxida-
tive phosphorylation. During seed deterioration, oxida-
tive phosphorylation serves as an important source of 
ROS within cells [7]. The accumulation of ROS in the 
mitochondria reduces the activity of the antioxidant 
system.

The KEGG enrichment results offer valuable insights 
into the potential molecular mechanism of tolerance to 
artificial aging between K107 and L155. At 0 day after 
treatment, the DEGs were enriched in the terpenoid 
backbone biosynthesis and ribosome pathways (Fig. 6). 
Terpenoids are involved in diverse biological functions, 
including plant defense and stress response [35]. The 
enrichment of the Ribosome pathway might suggest 
differences in the basal translation machinery or the 
capacity to rapidly synthesize proteins, which could 
be essential for cells to adapt to the stress of artificial 
aging. The ribosome and peroxisome pathways were 
enriched in response to seed aging in sweet corn [24].

At 6  days after treatment, the enrichment of DEGs 
were sulfur metabolism, linoleic acid metabolism, and 
plant hormone signal transduction. Sulfur metabo-
lism is involved in the synthesis of crucial molecules 
like glutathione, a key antioxidant [36–38]. In cotton, 
the linoleic acid content in the RNAi-mediated trans-
genic strain of two genes, GhFAD2 - 1 and GhFATB, 
decreased by 33.92%, leading to a decline in seed 
germination potential and vigor, especially under 
cold stress conditions [39]. Linoleic acid metabolism 
is associated with enhanced seed vigor in chia seeds 
[40]. Plant hormone signal transduction pathways play 
a vital role in regulating plant growth, development, 
and stress responses. Hormones such as abscisic acid, 
ethylene, and auxin can modulate various physiologi-
cal processes in response to stress [41, 42]. Overall, 
these five pathways (terpenoid backbone biosynthesis, 
ribosome, sulfur metabolism, linoleic acid metabo-
lism, and plant hormone signal transduction) likely 
interact intricately to contribute to the observed dif-
ferences in artificial aging tolerance between K107 
and L155. Further exploration of the specific genes 
and molecular mechanisms within these pathways is 
necessary to fully comprehend the molecular mecha-
nism of aging-tolerance in sweet corn.

A total of 16 consecutive DEMs were identified in K107 
and L155. Among the 16 consecutive DEMs, one iso-
flavone, Formononetin, exhibited an increase in abun-
dance during artificial aging treatment in both lines, 
with a more obvious increase in the seed aging-tolerant 
line L155. Dong et al. [43] found that there were 10 fla-
vonoid compounds with higher contents in germinating 
seeds than in grains, suggesting an increased synthesis of 
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flavonoids during seed germination. These results sug-
gest that isoflavone may also be involved in seed aging 
tolerance.

The increase of 2’-Deoxyguanosine content was also 
detected following artificial aging treatment in this study. 
The accumulation of DNA damage during seed aging is 
a major cause of chromosomal aberrations [44]. Gener-
ally, ROS are the main triggers for DNA strand breaks, 
either by directly causing deoxygenation of the deoxyri-
bose unit or possibly through covalent modification of 
bases [45]. One primary modification is hydroxylation 
at the C- 8 position of guanine, leading to the genera-
tion of 8-hydroxy- 2′-deoxyguanosine (8-OHdG) [5, 45]. 
The increase of 2’-eoxyguanosine content meant that the 
genetic material of the seeds was damaged.

Due to the varying genetic backgrounds, the DEGs and 
DEMs we screened may potentially be false positives. 
However, it is also noteworthy that because of the differ-
ences in the genetic background, we were able to identify 
more valuable target genes and metabolites [32, 39, 46, 
47]. Based on our results, it is believed that the screened 
DEGs and DEMs are quite reliable, as they have identified 
key genes and metabolites related to seed vigor reported 
by previous studies. In summary, these 14 consecutive 
DEGs and 16 DEMs serve as ideal candidate biomarkers 
during the seed aging process in sweet corn.

ROS are inevitable by-products of aerobic metabo-
lism. An increasing body of evidence [5, 7, 28] points to 
the crucial role of ROS in the processes of seed aging. 
The accumulation of ROS during seed deterioration has 
been reported in diverse plant species [10, 21, 48]. Glu-
tathione has the capacity to scavenge ROS either directly 
or indirectly. This fact brought our interest in further 
exploring the ascorbate–glutathione pathway. In our 
study, the alterations in GSH and GSSG levels indicated 
that both lines suffered oxidative stress (Fig. 8H). Moreo-
ver, we probed deep into the key genes involved in ROS 
production and the AsA-GSH cycle. Six differentially 
expressed NADPH genes were highly expressed in K107. 
In contrast, the majority of GST genes showed higher 
expression levels in L155. Yang et al. [32] investigated the 
ROS-scavenging ability mediated by certain APX, GPX, 
and GST genes, which were associated with the germi-
nation and seedling growth rates between indica and 
japonica rice. As reported in oat seed aging, the AsA-
GSH cycle initially alleviates H₂O₂ but its inactivity later 
limits scavenging of ROS, spotlighting its crucial role in 
seed vigor [10]. In our findings, the lower expression of 
NADPH genes in L155 led to reduced ROS production. 
Additionally, the differential expression level of GST 
genes was the main cause of the difference in ROS scav-
enging capabilities. These genes, which are differentially 
expressed in ROS production and scavenging processes, 

ultimately influenced the difference in seed aging toler-
ance in sweet corn.

Conclusions
This study represents the first to investigate the global 
transcriptional and metabolic profiles of sweet corn sub-
jected to artificial aging. We identified fourteen common 
transcripts and sixteen shared metabolites with sustained 
differential expression across both lines, which may play 
a critical role in the seed aging response. Enrichment 
analysis of DEGs revealed a complete overlap in KEGG 
pathways between the 3 d vs 6 d comparison of K107 and 
the 0 d vs 6 d comparison of L155, suggesting a delayed 
response in the sensitive line. Additionally, we explored 
transcriptomic and metabolomic differences under 
artificial aging treatment, identifying five significantly 
enriched KEGG pathways at 0, 3, and 6  days between 
K107 and L155, namely tryptophan metabolism, ben-
zoxazinoid biosynthesis, oxidative phosphorylation, 
glutathione metabolism, and plant hormone signal trans-
duction. A total of 312 DEMs at 0, 3, and 6  days after 
seed aging treatment were enriched in ABC transporters 
and linoleic acid metabolism pathways. The co-enriched 
pathway of DEGs and DEMs was linoleic acid metabo-
lism. Moreover, a detailed AsA-GSH pathway examina-
tion revealed that ROS production mediated by NADPH 
and the scavenging capacity facilitated by GST are vital 
for seed aging tolerance.

Methods
Plant materials and treatment conditions
K107 and L155 were sh2sh2 genotypes and obtained from 
South China Agricultural University. Previous research 
has identified K107 as a line sensitive to seed aging [24]. 
In contrast, L155, which was selected from the RIL pop-
ulation of K107 and K62, exhibited great tolerance to 
seed aging compared to K62 [25]. These lines were cul-
tivated at the teaching and research base of South China 
Agricultural University in Guangzhou, China (113°E, 
23°N) during the autumn of 2020. Seeds were harvested 
at physiological maturity, 45 days post-pollination, and 
were allowed to dry naturally. For the purpose of artificial 
accelerated aging, the seeds were placed in a seed aging 
chamber (LH- 150S, Shanghai Qixin, Shanghai, China) 
set at a temperature of 41 °C and 100% relative humidity 
[24]. Seeds were collected at 0, 3, and 6 days after artifi-
cial accelerated aging treatment for RNA sequencing and 
metabolomic analysis.

The seed vigor of aged seeds was evaluated using the 
methodology outlined by Wang et  al. [3] in a growth 
chamber maintained at 25 °C with a photoperiod of 16 
h light and 8  h dark (Laifu, Ningbo, China). A total of 
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twenty-five seeds were placed in a germination box filled 
with 4 cm of moist quartz sand, which was then covered 
with an additional 2 cm of moist sand. Each experiment 
was replicated three times. The parameters assessed 
included GP, GR, GI and VI, calculated according to the 
procedures described by Guan et al. [49]. GP was deter-
mined as the germination rate on the fourth day. The 
GR was calculated using the formula: Germination rate 
= n/N × 100%, where n denotes the total number of seeds 
that germinated and N represents the total number of 
seeds assessed on the eighth day. The GI was computed 
with the formula: GI = ∑Gt/Dt, where Dt indicates the 
day of germination and Gt signifies the number of seeds 
that germinated on that day. The VI was determined 
using the equation: VI = GI × SW, where SW refers to the 
fresh weight of seedlings measured on the eighth day.

RNA extraction, library preparation, and sequencing
RNA sequencing services were conducted by Personal 
Biotechnology Co., Ltd., located in Shanghai, China. 
Total RNA from each sample was homogenized in liquid 
nitrogen and extracted using the Trizol reagent kit (Inv-
itrogen, Carlsbad, CA, USA) following the manufactur-
er’s instructions. The quality of the RNA was evaluated 
using an Agilent 2100 Bioanalyzer (Agilent Technologies, 
Palo Alto, CA, USA) and further verified for integrity 
through RNase-free agarose gel electrophoresis (Figure 
S6). Each sample consisted of three biological replicates. 
Seeds collected at 0, 3, and 6  days after artificial aging 
treatment were utilized for total RNA extraction, library 
preparation, and quantitative real-time PCR analysis. 
The sequencing libraries were constructed following the 
methodology outlined by Wang et al. [24], resulting in a 
total of 18 mRNA-Seq libraries, which were sequenced 
on the Illumina HiSeqTM 4000 platform.

RNA sequencing data analysis
The quality assessment of clean reads was carried out using 
FastQC V0.11.9 (Illumina;https://​www.​bioin​forma​tics.​
babra​ham.​ac.​uk/​proje​cts/​fastqc/). High-quality reads with 
Q > 20 were aligned to the reference genome (Zea_mays.
B73_RefGen_v4.dna.toplevel.fa), which was retrieved from 
the Plants Ensembl database (http://​www.​Ensem​bl.​org/). 
To facilitate the alignment, the reference genome index was 
generated using Bowtie2 software [50]. Reads were then 
filtered with Tophat2 [51], and compared against the refer-
ence index. Gene function annotation was conducted based 
on multiple databases, including the Nucleotide Database 
(NT), Gene Ontology (GO), Enzyme Commission (EC), 
Kyoto Encyclopaedia of Genes and Genomes (KEGG), and 
Swiss-Prot. The read count for each gene was determined 
using HTSeq [52]. Expression levels were normalized to 

reads per kilo bases per million reads (RPKM), with genes 
having RPKM values > 1 being considered as expressed 
[53]. After calculating the expression levels of transcripts 
and genes, the DESeq2 method (version 1.34.0) [54] was 
utilized for differential expression analysis. For statistical 
significance, a false discovery rate (FDR) threshold of ≤ 0.05 
and |log2 FC|≥ 1.0 were applied to identify differentially 
expressed genes. For the DEGs, GO analysis was performed 
using topGO [55], while KEGG pathway analysis was car-
ried out using KAAS [56]. Additionally, the transcriptome 
data was further analyzed using MapMan software (ver. 
3.6.0RC1) [26] to map functional categories, perform time-
course analyses, and identify significantly over-represented 
functional groups.

Metabolomic analysis
Metabolite profiling analysis was conducted by Suzhou 
PANOMIX Biomedical Tech Co., LTD (Suzhou, China) 
(https://​www.​panom​ix.​com/) using a widely targeted 
metabolomics approach. The reagents and methods for 
metabolite extraction followed as described by Tan et al. 
[57]. All samples were analyzed using an ACQUITY 
UPLC system (Waters, Milford, MA, USA) equipped 
with an ACQUITY UPLC HSS T3 (150 mm × 2.1 mm, 
1.8 μm, Waters) column, maintained at 40 °C. Flow 
rate and injection volume were set at 0.40 mL/min and 
2 μL, respectively. Analysis of samples was performed 
using both positive and negative ion modes. For positive 
mode, the mobile phase consisted of a solution of 0.1% 
formic acid in acetonitrile (v/v) (C) and 0.1% formic acid 
in water (v/v) (D). The following gradient was used: 0–1 
min, 2% C; 1–9 min, 2–50% C; 9–12 min, 50–98% C; 
12–13.5 min, 98% C; 13.5–14 min, 98–2% C; 14–20 min, 
2% C. For negative mode, the mobile phase consisted of 
acetonitrile (A) and ammonium formate (B) (5 mmol 
L–1). The following gradient was used: 0–1 min, 2% A; 
1–9 min, 2–50% A; 9–12 min, 50–98% A; 12–13.5 min, 
98% A; 13.5–14 min, 98–2% A; 14–17 min, 2% A. Quality 
control (QC) samples were run at the beginning, middle, 
and end of each batch.

Metabolite mass spectrometry detection was per-
formed on a Q Exactive instrument (Thermo Fisher Sci-
entific, USA) equipped with an ESI ion source. The spray 
voltages were set at 3.8 kV and − 2.5 kV for positive and 
negative modes, respectively. Both MS1 and MS/MS 
(full-scan MS-ddMS2 mode, data-dependent MS/MS) 
were acquired. Sheath gas and auxiliary gas were set at 
45 and 15 arbitrary units, and the capillary temperature 
was set to 325℃. Orbitrap analyzer conducted full scans 
in the mass range of 81–1000 m/z (mass-to-charge ratio) 
at a mass resolving power of 70,000. High-energy colli-
sion-induced dissociation (HCD) scan was utilized for 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.Ensembl.org/
https://www.panomix.com/
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data-dependent MS/MS experiments. Normalized colli-
sion energy was set at 30 eV, with a resolution of 70,000 
full width at half maximum (FWHM) for MS1 and 17,500 
FWHM for MS/MS. Dynamic exclusion was imple-
mented to remove unnecessary information from the 
MS/MS spectra.

Mass spectrum data processing
The raw data were converted to the mzXML format using 
the MSConvert tool within the ProteoWizard software 
package (V3.0.8789), and subsequent peak identification, 
filtering, and alignment were conducted using the XCMS 
package. Default settings of XCMS included the follow-
ing parameters: bw = 2, ppm = 15, peak width = c(5, 30), 
mzwidd = 0.015, mzdiff = 0.01, and method ="centWave". 
Metabolites were identified based on accurate mass (molec-
ular weight error < 30 ppm) and matching MS/MS data 
against several databases including HMDB (http://​www.​
hmdb.​ca), MassBank (http://​www.​massb​ank.​jp/), Lipid-
Maps (http://​www.​lipid​maps.​org), mzCloud (https://​www.​
mzclo​ud.​org), Metlin (http://​Metlin.​screp​ps.​edu), as well 
as proprietary databases established by Suzhou PANO-
MIX Biomedical Tech Co., LTD (Suzhou, China). Follow-
ing standardization, only ion peaks with a relative standard 
deviation (RSD) below 30% in QC samples were used for 
metabolite annotation.

The principal component analysis and orthogonal projec-
tion to latent structures discriminant analysis (OPLS-DA) 
were conducted for detecting significant differences in rela-
tive metabolite levels using the Ropls package (Analysis of 
the human adult urinary metabolome variations with age, 
body mass index, and gender by implementing a compre-
hensive workflow for univariate and OPLS statistical analy-
ses). The variable importance in projection (VIP) value from 
the PLS-DA model was used as the discrimination param-
eter for the analysis of metabolites, aiding in the selection of 
indicative metabolites. MetaboAnalyst (https://​www.​metab​
oanal​yst.​ca/) was utilized for enrichment analysis and path-
ways analysis of the selected differentially expressed metab-
olites (Using MetaboAnalyst 5.0 for LC–HRMS spectra 
processing, multi-omics integration and covariate adjust-
ment of global metabolomics data). When P value < 0.05 
and VIP > 1, the metabolites were considered to have statis-
tical significance.

Quantitative real‑time PCR
Nine DEGs were randomly selected for validation of 
the sequencing data through qRT-PCR analysis. Prim-
ers (Table  S12) were designed using reference gene 
sequences with Primer 5.0 software. The internal refer-
ence gene for mRNA was UBQ7 [58]. Reverse transcrip-
tion of mRNA was conducted using the FastKing gDNA 
Dispelling RT SuperMix (Generay Biotech Co., Ltd.) 

according to the manufacturer’s instructions. The first 
strand was synthesized using the miR-X miRNA First-
Strand Synthesis Kit (Generay Biotech Co., Ltd.), and 
reverse transcription was performed using the cDNA 
Synthesis kit (TaKaRa, China). Quantitative PCR for 
mRNA was carried out using SYBR Green fluorescent 
dye (Beijing Qingke Biological Technology Co., Ltd.) and 
the miRcute Plus miRNA Fluorescence Quantitation Kit 
(Generay Biotech Co., Ltd.) on a fluorescence quantita-
tive PCR instrument. Each sample was replicated three 
times, and the relative expression of DEGs was calculated 
using the 2−ΔΔCt method [59].
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