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Abstract
Background Influenza A virus (IAV) is a major global health threat, causing seasonal epidemics and occasional 
pandemics. Particularly, Influenza A viruses from avian species pose significant zoonotic threats, with PB2 adaptation 
serving as a critical first step in cross-species transmission. A comprehensive risk assessment framework based on 
PB2 sequences is necessary, which should encompass detailed analyses of specific residues and mutations while 
maintaining sufficient generality for application to non-PB2 segments.

Results In this study, we developed two complementary approaches: a regression-based model for accurately 
distinguishing among risk groups, and a SHAP-based risk assessment model for more meaningful risk analyses. For the 
regression-based risk models, we compared various methodologies, including tree ensemble methods, conventional 
regression models, and deep learning architectures. The optimized regression model, combined with SHAP value 
analysis, identified and ranked individual residues contributing to zoonotic potential. The SHAP-based risk model 
enabled intra-class analyses within the zoonotic risk assessment framework and quantified risk yields from specific 
mutations.

Conclusion Experimental analyses demonstrated that the Random Forest regression model outperformed other 
models in most cases, and we validated the target value settings for risk regression through ablation studies. Our 
SHAP-based analysis identified key residues (271A, 627K, 591R, 588A, 292I, 684S, 684A, 81M, 199S, and 368Q) and 
mutations (T271A, Q368R/K, E627K, Q591R, A588T/I/V, and I292V/T) critical for zoonotic risk assessment. Using the 
SHAP-based risk assessment model, we found that influenza A viruses from Phasianidae showed elevated zoonotic 
risk scores compared to those from other avian species. Additionally, mutations I292V/T, Q368R, A588T/I, V598A/I/T, 
and E/V627K were identified as significant mutations in the Phasianidae. These PB2-focused quantitative methods 
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Background
Influenza A virus (IAV) is a major global health threat, 
responsible for causing seasonal epidemics and occa-
sional pandemics. This virus, belonging to the Ortho-
myxoviridae family, possesses a segmented RNA genome 
that facilitates genetic reassortment and rapid evolution. 
Adaptive mutations in viral proteins facilitate cross-spe-
cies transmission of influenza viruses. The hemagglutinin 
(HA) glycoprotein mediates receptor binding and mem-
brane fusion, and host range shifts have been classically 
attributed to HA mutations altering sialic acid bind-
ing specificity [1]. Non-structural proteins such as NS1 
and PA-X, which antagonize host antiviral responses, 
also modulate host adaptation. Crucially, the viral RNA-
dependent RNA polymerase complex—composed of 
PB1, PB2, and PA—plays a central role in host-specific 
replication [2]. Among these, PB2 is a key determinant 
of host range, with specific residues modulating poly-
merase activity, nuclear import, and interaction with host 
cofactors in a species-dependent manner. In particular, 
PB2 interacts with host factors such as ANP32A ana-
logues ensuring efficient replication and transcription of 
the viral genome within host cells [3–6]. Adaptation of 
PB2 to a novel host is often considered a key prerequi-
site for zoonotic transmission. Numerous studies have 
demonstrated that specific amino acid substitutions in 
avian-origin PB2, such as Q591R or E627K, can enhance 
polymerase activity in mammalian cells, thereby enabling 
the virus to replicate efficiently in mammalian hosts [1, 
2]. Therefore, the acquisition of mammalian-adaptive 
mutations in PB2 is often regarded as the critical first 
step for avian-origin IAVs to overcome host-specific bar-
riers and establish infection in mammalian hosts.

To classify protein sequences of influenza viruses, vari-
ous machine learning techniques, including deep learn-
ing models, have been extensively applied. One approach 
involves embedding protein sequences into vector repre-
sentations [7–10]. This methodology aims to construct 
meaningful vector representations with respect to ele-
ments’ semantic similarities and can be utilized without 
retraining once established; however, it necessitates the 
construction of an additional machine learning model to 
perform specific tasks such as classification or prediction.

Support vector machine (SVM) [11] is a traditional 
machine learning algorithm that separates data points in 
high-dimensional space using optimal hyperplanes and 
often requires feature extraction techniques such as prin-
cipal component analysis (PCA) [12]. In predicting viral 

hosts of influenza A viruses, researchers sequentially 
applied feature extraction and selection methods to virus 
strains, and trained SVM models to predict transmission 
from avian to human hosts [13]. In another study, SVM 
was effectively constructed with position specific scor-
ing matrix (PSSM) [14], an informative feature extrac-
tion technique for protein sequences, although it showed 
slightly lower performance compared to convolutional 
neural networks (CNNs) [15].

Random Forest (RF) is an ensemble learning method 
that consists of multiple decision trees working collec-
tively [16]. For the classification of avian and human influ-
enza protein sequences, RF models were constructed and 
demonstrated high efficacy, utilizing specialized feature 
vectors that incorporated both amino acid sequences and 
their physicochemical properties [17, 18]. CatBoost rep-
resents another ensemble learning approach, specifically 
a gradient boosting algorithm [19]. As its name suggests, 
CatBoost can process categorical variables directly with-
out requiring conversion to numerical representations. In 
a study classifying SARS-CoV-2 genome sequences, Cat-
Boost outperformed other models including SVM, Ran-
dom Forest, and logistic regression, while maintaining 
competitive training speeds [20].

Logistic regression is a fundamental statistical method 
suitable for binary classification problems where the 
goal is to predict one of two possible outcomes [21]. It is 
widely implemented across various fields, particularly in 
medicine for disease diagnosis. Notably, a comprehen-
sive review found no significant performance advantages 
of complex machine learning models, including Random 
Forest and SVM, over logistic regression (including its 
regularized variants such as LASSO and ridge regres-
sion) for clinical prediction models [22]. Several studies 
have employed logistic regression to evaluate risk fac-
tors associated with influenza viruses [23, 24]. k-Nearest 
Neighbors (KNN) algorithm is used for classification and 
regression tasks, and known to be asymptotically Bayes-
optimal as the dataset size increases [25, 26]. This model 
operates without a learning phase since it relies on pair-
wise metric comparisons against stored data samples and 
requires storing the entire dataset in memory. Due to this 
property, it naturally accepts additional data points while 
its prediction phase demands relatively long computation 
time for point-by-point comparisons. For the host clas-
sification of avian influenza viruses, KNN outperformed 
Naïve Bayes, decision trees, and SVM classifiers in F1 
score evaluation [27].

provide a robust and generalizable framework for both rapid screening of avians’ zoonotic potential and analytical 
quantification of risks associated with specific residues or mutations.
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analysis
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CNNs, by contrast, represent one of the most promi-
nent deep learning approaches [28]. The inductive biases 
of CNNs are particularly well-suited for tasks involving 
translation-invariant signals with local structures, such 
as image recognition. However, CNNs have limited appli-
cation in direct protein sequence-based risk assessment, 
as the positional information of proteins is more critical 
than local sequence structures, despite some successful 
attempts in predicting local structures such as protein 
folding [29, 30].

Recurrent Neural Networks (RNNs), which specialize 
in processing sequential data, have been widely imple-
mented in time-series predictions and natural language 
processing [31–33]. While RNNs such as Long Short-
Term Memory (LSTM) excel at detecting latent patterns 
within sequences, they do not explicitly incorporate posi-
tional information, which is crucial in protein sequence 
analysis. Nevertheless, RNNs have demonstrated signifi-
cant success in various protein analysis applications [34, 
35].

Transformer architectures, characterized by their self-
attention mechanisms and parallel processing capabili-
ties, have been successfully implemented across diverse 
domains, including text generation and image recogni-
tion [36]. These models incorporate positional encoding 
to preserve the sequential information of input tokens. 
Transformers have been successfully applied to pro-
tein sequence representations [37]. Another notable 
example is AlphaFold 3, a transformer-based model that 
has achieved unprecedented accuracy in protein struc-
ture prediction from amino acid sequences, which was 
awarded the Nobel Prize in Chemistry in 2024 [38].

Explainable AI is one of the critical topics in the 
machine learning field, particularly essential for sensi-
tive domains such as medical applications. In line with 
this need, analysis based on SHAP (SHapley Additive 
exPlanation) values provides consistent and theoretically 
grounded feature attribution for predicted outputs, based 
on Shapley value estimation from game theory [39]. Spe-
cifically, Tree SHAP was proposed for tree ensembles like 
CatBoost [19] and Random Forest [16]. Tree SHAP is an 
efficient algorithm for estimating SHAP values for tree 
ensembles, and it maintains consistency whereas existing 
attribution methods for tree ensembles are considered 
inconsistent [40].

In this study, we collected PB2 amino acid sequences 
from both avian and human influenza A viruses to assess 
the zoonotic potential of avian strains. We developed 
two risk assessment models. Initially, we defined the 
risk assessment as a regression problem with three ordi-
nal risk groups consisting of low-risk (avian), mid-risk 
(cross), and high-risk (human) samples. For the regres-
sion-based approach, we compared various regression 
methods, including tree ensemble methods (CatBoost 

and Random Forest), conventional regression models, 
and deep learning architectures [41]. Then, we validated 
the target value of the mid-risk group for risk modeling 
through an ablation study. The second approach was a 
risk model based on SHAP value analyses. Using SHAP 
values, we ranked residues based on their contribution 
to risk assessment, and we assessed risk for samples 
and quantified the effects of mutations using aggregated 
SHAP values. Furthermore, we analyzed avian virus 
samples by examining the distribution of quantized risk 
groups within the avian population.

Methods
Regression-based risk modelling
To assess the zoonotic infection risk of influenza 
A viruses of avian origin, we analyzed PB2 protein 
sequences from three distinct sources: avian influenza 
viruses, human cases of avian influenza, and human 
influenza viruses. We categorized these sequences 
into three risk groups based on their host origin: PB2 
sequences from avian influenza viruses, human cases of 
avian influenza, and human influenza viruses were clas-
sified as low-, mid-, and high-risk groups, respectively. 
Since the values of each group are not rigorously defined 
but the risks should maintain a relative order among 
groups, risk modeling in the three groups can be formal-
ized as an ordinal regression problem. Let Ri represent 
the risk value of the i-th d-dimensional sequence vector 
xi, and let Φ : Rd → R be a function that measures the 
risk for a given xi:

 Ri = Φ (xi) ; i = 1, ?, N, (1)

with N being the total number of samples, Ri ∈ R, 
xi ∈ Rd, and d denoting the length of the sequence. The 
ideal function Φ  should satisfy the condition:

 Φ (xl) < Φ (xm) < Φ (xh) ; ∀ (xl, xm, xh) ∈ Gl × Gm × Gh (2)

,
where Gl, Gm, and Gh represent low-, mid-, and high-

risk groups, respectively. If we construct a regres-
sion model with sequences Gl, Gm, and Gh, and 
corresponding target values tl, tm, and th satisfying such 
that tl < tm < th, a resulting regression model Φ ′  
implementing the following equation will also solve the 
ordinal regression in Eq. 2:

 

Φ ′ (xi) = R′ i =

{
tl ∀ xi ∈ Gl
tm ∀ xi ∈ Gm
th ∀ xi ∈ Gh

,

s.t. tl < tm < th.

 (3)
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In this study, we assign categorical status values tl, tm, and 
th as proxy target values 0, 0.5, and 1, respectively, for risk 
regression. With this configuration, we can apply various 
machine learning models and ordinary regression tech-
niques. Table 1 summarizes categories of sequences and 
their risk levels.

Risk modelling with SHAP values
Although regression method is a natural approach for risk 
modeling, it alone cannot quantify and analyze detailed 
contributions to risk scores. SHAP values provide con-
sistent and theoretically grounded feature attribution 
based on Shapley value estimation from game theory. In 
this study, SHAP values were employed to quantify the 
contribution of residues and effects of mutations to the 
risk value. While SHAP values explain local predictions 
limited to each sequence, properly aggregated SHAP val-
ues can be derived to quantify the expected risk values 
related to each feature or mutation. Although mean abso-
lute values of SHAP values are widely accepted as feature 
importance measures, they do not provide the expected 
risk for each feature’s values. This subsection investi-
gates how aggregated SHAP values can reconstruct risk 
values without relying on regression models. To develop 
risk scores, we calculated the expectation of SHAP val-
ues. The risk score with aggregating SHAP values for j-th 
one-hot-encoded sequence, Φ ′

shap (xj), can be modeled 
as Eqs. 4 and 5:

 
w+

i =
∑

N
j=1vij× xij∑

N
j=1xij

, w−
i =

∑
N
j=1vij× (1−xij)∑

N
j=1(1−xij)  (4)

.

 Φ ′
shap (xj) = xj • w+ + (1 − xj) • w− + b (5)

.
These equations formulate the risk scoring mechanism, 

where wi
+ and wi

− represent the expected SHAP values 
for the presence and absence of the i-th feature, respec-
tively. Here, vij denotes the SHAP value of the i-th fea-
ture for the j-th sample, N represents the total number 
of samples, and b is the baseline prediction value. Nota-
bly, the separate aggregation of SHAP values for feature 

presence and absence is essential to prevent mutual can-
cellation effects.

While the regression performance of SHAP-based 
risk modeling may be inferior to conventional regres-
sion models (as SHAP values are derived from a regres-
sion model), it offers several distinct advantages. First, 
although we defined three risk groups with correspond-
ing target values, this classification does not account 
for relative risks within groups, as the regression model 
attempts to map each group’s distribution to a single tar-
get value. In contrast, risk modeling with SHAP values 
provides aggregated risk values comprising multiple risk 
components, rather than mapping risks to discrete target 
points. This approach effectively distinguishes high-risk 
samples from low-risk samples within the same group, 
enabling detailed intra-group analyses. Second, once 
risk terms are established, we can evaluate the risk for 
any given sample without requiring additional predic-
tions from the regression model structure. Finally, risk 
contributions can be immediately decomposed without 
recalculating SHAP values, thus providing enhanced 
interpretability for the risk assessment.

Assessment of mutation-related risks
Mammalian Pathogenicity-related Mutations (MPMs) 
are represented using the commonly used colloquial 
nomenclature, such as T271A [42]. In this notation, 
T271A indicates that the mutation has changed the 
amino acid residue threonine (T) at position 271 to ala-
nine (A). We calculate the quantitative measure of muta-
tion risk changes using Eq. 6.

 ξ p (rs, rd) = w+
(p,d) − w−

(p,d) − w+
(p,s) + w−

(p, s) (6)

In this formulation, the position-specific mutation risk 
score ξ p (rs, rd) quantifies the impact of amino acid 
substitution at position p, where rs and rd represent the 
source and the destination residues, respectively. This 
score is calculated as the difference between the positive 
and negative interactions of both the destination (d) and 
source (s) residues. Specifically, w(p, d)

+ and w(p, d)
− rep-

resent the expected SHAP values for the presence and 
absence of the destination residue at position p, and vice 
versa for the source residue (w(p, s)

+ and w(p, s)
−). Note 

that subscript i in Eq. (4) represents the index in one-hot 
encoded feature dimensions, where each pair (p, s) and 
(p, d) determines its corresponding index i based on the 
position p of a residue in the sequence. This scoring func-
tion enables the evaluation of residue mutations by quan-
tifying the differential impact of residue presence versus 
absence through SHAP analysis.

Table 1 Definition of sequence groups and their risk levels
Source Type Abbreviation Risk Group Tar-

get 
Value

Avian Influenza Viruses Avian Low-risk (Gl) 0.0
Avian Influenza Viruses from 
Human

Cross Mid-risk (Gm) 0.5

Human Influenza Viruses Human High-risk (Gh) 1.0
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Data collection and Preparation
A total of 185,530 full-length PB2 amino acid sequences 
were obtained from GISAID (Global Initiative on Shar-
ing Avian Influenza Data) [43]. PB2 sequences from 
human seasonal IAVs, including H1N1(59.8%) and H3N2 
(40.2%), were classified as ‘human’ and high-risk. PB2 
sequences from avian IAVs, including H5N1 (28.3%) and 
H9N2 (12.4%) were classified as ‘avian’ and low-risk. For 
a more robust assessment, PB2 sequences from human 
influenza viruses excluding seasonal IAVs were classi-
fied as ‘cross’ and mid-risk, including H7N9 (64.7%) and 
H5N1 (23.0%). Subtypes representing less than 10% of 
their respective categories are detailed in Supplementary 
Table S1.

Collected PB2 sequences have a length of 759 amino 
acids, represented by 20 standard single-letter amino 
acid codes (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, 
V, W, Y) and X, where X denotes unknown or ambiguous 
amino acids.

Table  2 shows the number of samples and unique 
sequences in each category. As this study relies exclu-
sively on sequence information, we created a dataset 
containing only unique sequences rather than using all 
samples with their duplicate sequences.

Preprocessing and regression models
For regression modeling of the risk, we used linear 
regression, LASSO regression, ridge regression, KNN 
regression, Multi-Layer Perceptron (MLP), Stacked Bi-
directional Long Short-Term Memory (Bi-LSTM) with 
Fully Connected Network (FCN), Random Forest, Cat-
Boost and TabNet. We utilized pre-implemented mod-
els from scikit-learn (v1.5.2) [44] for most experiments, 
implemented the Stacked Bi-LSTM with FCN using Ten-
sorFlow 2 (2.18.0), and employed CatBoost through the 
catboost package (v1.2.7) and TabNet through pytorch-
tabnet (v4.1). To evaluate the generalization perfor-
mance, 5-fold stratified cross-validation was performed 
with random initialization and the same folds were used 
across all models for fair comparison. Full details of 
model hyper-parameters can be found in the supplemen-
tary materials.

Since amino acid sequences consist of categorical let-
ters rather than numerical data, we encoded them as 
one-hot vectors for all models except CatBoost and 
Stacked Bi-LSTM with FCN. Given that elements in one-
hot encoding are binary (0 or 1), no additional scaling 
was performed on the input vectors. The resulting feature 

vectors have a dimension of 15,939 (21 × 759), where each 
sequence contains exactly 759 ones with the remaining 
elements being zeros. For CatBoost regression, since the 
model can directly handle categorical features without 
numerical embedding, the amino acid sequences were 
used as input without transformation, maintaining the 
original sequence length of 759. For Stacked Bi-LSTM 
with FCN, we applied an embedding layer for amino 
acids at the bottom layer of the model, which can be 
constructed via end-to-end training, instead of encoding 
input sequences as one-hot vectors.

Results
Performance comparison of regression models
We evaluated the performance of the constructed mod-
els using Mean Squared Error (MSE) across 5-fold 
cross-validation. While MSE was not originally designed 
specifically for ordinal targets, previous research has 
demonstrated its effectiveness as a meaningful metric 
for ordinal regression with imbalanced datasets [45]. 
Since the target risk values are constrained to {0, 0.5, 1}, 
we clipped the predicted values to the range [0, 1] before 
calculating MSE (hereafter referred to as MSE-clipped). 
This clipping operation is justified as any prediction 
outside this range would be meaningless in our context, 
where the risk values are naturally bounded. Addition-
ally, this approach prevents the MSE from being domi-
nated by extreme predictions that fall outside the valid 
range, thereby providing a more interpretable measure 
of model performance. For instance, while linear regres-
sion showed extremely high MSE values (> 10,000) 
before clipping, the clipped MSE provided more mean-
ingful and interpretable results that better reflected the 
model’s practical performance. The performance results 
of all models are presented in Table 3. The results show 
that the Random Forest-based model achieved the best 
performance, followed by CatBoost in second place. As 
mentioned in the Background section, tree ensemble 
models demonstrated superior performance compared 
to other methods. KNN regression showed slightly worse 
performance than CatBoost, but better than MLP.

Table 2 Number of samples and unique sequences by risk 
group

Low-risk Mid-risk High-risk Total
Samples 34,896 1751 148,883 185,530
Unique Sequences 16,312 1011 25,144 42,467

Table 3 Regression performances
Method MSE MSE-clipped
Linear regression > 10,000 0.0225 ± 0.0018
LASSO regression 0.0056 ± 0.0004 0.0056 ± 0.0004
Ridge regression 0.0043 ± 0.0003 0.0038 ± 0.0003
KNN regression 0.0033 ± 0.0004 0.0033 ± 0.0004
MLP 0.0042 ± 0.0005 0.0036 ± 0.0004
Stacked Bi-LSTM w/ FCN 0.0197 ± 0.0043 0.0196 ± 0.0043
Random Forest 0.0027 ± 0.0004 0.0027 ± 0.0004
CatBoost 0.0032 ± 0.0004 0.0032 ± 0.0004
TabNet 0.0123 ± 0.0010 0.0122 ± 0.0010
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Classification performances can be evaluated by testing 
risk group membership, which is determined by assign-
ing samples to their closest representative group value. 
For instance, a sample with a risk value of 0.4 would be 
allocated to the mid-risk group, as its representative 
value (0.5) is the nearest to the measured risk value.

Table  4 presents the performance metrics for each 
model in terms of accuracy, weighted Cohen’s Kappa [46], 
Macro F1 [47], and Custom-weighted F1. While all mod-
els achieve nearly perfect accuracy scores (> 0.95), this 
metric alone is insufficient due to significant class imbal-
ance in our dataset, where the mid-risk group constitutes 
only 2.4% of the total samples. To address this limita-
tion and ensure rigorous evaluation, we employed three 
complementary metrics, each serving a distinct analyti-
cal purpose. Weighted Cohen’s Kappa was selected as a 
evaluation metric for its sensitivity to ordinal relation-
ships between risk groups. The metric incorporates linear 
weighting where weights are assigned based on the abso-
lute difference between category indices. These weights 
quantify the importance of agreements and disagree-
ments at different ordinal distances, with larger weights 
given to disagreements between more distant categories. 
The metric ranges from ≤ 0 (chance-level agreement) to 
1.0 (perfect agreement). To capture class-specific perfor-
mance variations, we utilized macro F1, which averages 
F1 scores across all classes with equal weights regardless 
of their sample sizes. This provides insights into model 
performance on minority classes that might be obscured 
by accuracy or micro-averaged metrics. Additionally, 
we introduced a custom-weighted F1 score that assigns 
weights of 0.5 to the mid-risk group and 0.25 to other 
groups, motivated by both clinical and technical con-
siderations: (1) mid-risk cases require the most nuanced 
intervention planning, (2) they are underrepresented in 
the training data, and (3) their feature distributions show 
substantial overlap with neighboring risk groups, making 
classification particularly challenging.

As shown in Tables 3 and 4, the Random Forest-based 
regression model again achieved the highest performance 
across all metrics, while deep learning models exhibited 
substantially lower predictive power in this task. Two 
possible explanations for the limited performance of 
deep learning models are: (1) insufficient data samples to 
train the deep architectures effectively, and (2) the classi-
fication of PB2 sequences in this task may not necessitate 
modeling of complex feature interactions, which is one 
of the key advantages of deep learning models. Interest-
ingly, the shallow neural network (MLP) demonstrated 
better performance than the deep learning models in this 
case, supporting the aforementioned explanations. Since 
TabNet is capable of unsupervised pretraining, there is 
potential for improving the model’s performance if such 
pretraining becomes feasible. Stacked Bi-LSTM with 

FCN showed significantly lower performance in distin-
guishing the minor category (mid-risk group), as shown 
in F1 and Weighted F1 scores. This underperformance 
highlights the crucial role of positional information in 
protein sequence modeling. MLP, furthermore, despite 
showing worse regression performance than KNN, it 
demonstrated higher performance across all classifica-
tion performance measures than KNN.

The aggregated confusion matrix across five cross-val-
idation folds (out-of-folds) from Random Forest for the 
three groups is shown in Fig. 1. As shown in the results 
above, classification accuracies for low-risk (avian) and 

Table 4 Classification performances
Method Accuracy Weighted 

Cohen’s 
Kappa

Macro F1 Weighted F1

Linear 
regres-
sion

0.965 ± 0.002 0.944 ± 0.004 0.856 ± 0.011 0.800 ± 0.016

LASSO 
regres-
sion

0.976 ± 0.004 0.974 ± 0.004 0.811 ± 0.017 0.724 ± 0.025

Ridge 
regres-
sion

0.984 ± 0.001 0.983 ± 0.002 0.875 ± 0.013 0.817 ± 0.018

KNN 
regres-
sion

0.986 ± 0.002 0.984 ± 0.002 0.887 ± 0.015 0.835 ± 0.022

MLP 0.987 ± 0.001 0.986 ± 0.001 0.894 ± 0.014 0.845 ± 0.021
Stacked 
Bi-LSTM 
w/ FCN

0.925 ± 0.015 0.920 ± 0.017 0.728 ± 0.018 0.617 ± 0.026

Ran-
dom 
Forest

0.989 ± 0.001 0.988 ± 0.001 0.918 ± 0.008 0.880 ± 0.012

Cat-
Boost

0.987 ± 0.001 0.986 ± 0.002 0.897 ± 0.012 0.850 ± 0.017

TabNet 0.960 ± 0.003 0.968 ± 0.002 0.837 ± 0.007 0.766 ± 0.010

Fig. 1 Confusion matrix of random forest
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high-risk (human) groups are nearly perfect, while the 
model has relatively more difficulty in distinguishing 
mid-risk (cross) group samples from the low-risk group. 
Table 5 illustrates the precision, recall, and F1 score for 
each group.

The Receiver Operating Characteristic (ROC) curve 
is typically used to represent detection performance. 
While it can be applied to binary classification by defin-
ing a positive class, its direct application to multi-cate-
gory classification is challenging. Although ROC curves 
for multi-category classification can be drawn in par-
allel, using a one-vs-rest approach, this method was 
not applicable in our study because our categories (risk 
groups) have ordinal relationships. To address this issue, 
we designed two separate ROC curve plots: one for low-
risk vs. mid-risk and another for mid-risk vs. high-risk. 
Since our categories are ordinal and risk values are one-
dimensional, the threshold distinguishing mid-risk and 
high-risk groups is independent of the decision threshold 
between low-risk and mid-risk groups, and vice versa. 
Let θ1, and θ2 be the decision thresholds determining 
the boundaries between low-risk and mid-risk, and mid-
risk and high-risk categories, respectively. For classifi-
cation metrics shown in Table 5, we simply set θ1 = 0.25 
and θ2 = 0.75, as these values halve the ranges between 
[tl, tm] and [tm, th]. The values θ1 and θ2 can be selected 
independently, since they should satisfy the inequality 
tl < θ1 < tm < θ2 < th, in general. In other words, changes 
in θ1 cannot affect decisions for values between [tm, th] 
because θ1 is bounded above by tm. Based on this prop-
erty, we constructed separate ROC curves for low-risk 
vs. mid-risk and mid-risk vs. high-risk classifications. 

Figure 2 shows the ROC curves and their corresponding 
AUROC (Area Under the Receiver Operating Character-
istic) scores for the five models with the highest macro 
F1 scores. The lines represent the mean values across 
cross-validation folds, and the colored bands indicate the 
variability (± standard deviation). In Fig.  2A and B, the 
positive class was designated as the cross (mid-risk) and 
human (high-risk) groups, respectively. While Random 
Forest showed the best performance in aforementioned 
regression and classification metrics, CatBoost, MLP 
and ridge regression models achieved higher AUROC 
scores than Random Forest. Figure 2A reveals that these 
three models particularly outperformed Random For-
est in regions with high true-positive rates. In Fig. 2B, all 
models achieved nearly perfect scores for discriminating 
between cross and human groups.

Ablation study on target values of the mid-risk group
Since risk target values are currently assigned as cardinal 
numbers without rigorous theory or practical heuristics, 
an ablation study on the mid-risk group’s target values is 
required to gain insights into their effects and validate 
the designations. Based on the comprehensive ablation 
experiments conducted on various target values for the 
mid-risk group (detailed analysis provided in Supplemen-
tary Materials with Fig. S1 and Fig. S2), we found that 

Table 5 Precision, recall and F1-score for each group
Group Precision Recall F1 score
Low-risk 0.98 0.99 0.99
Mid-risk 0.83 0.72 0.77
High-risk 1.00 1.00 1.00

Fig. 2 ROC Curves for Binary Classifications; (A) Avian versus Cross; (B) Cross versus Human
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selecting a mid-risk target value of 0.5 appears to be a 
reasonable initial benchmark, particularly from the per-
spective of numerical optimization. Random Forest mod-
els demonstrated notably robust and stable performance 
across different target values compared to other models. 
However, we observed that higher target values for the 
mid-risk group tend to result in larger regression errors, 
primarily due to the challenging nature of discriminating 
between avian and cross categories. This phenomenon 
causes models to focus disproportionately on this dif-
ficult boundary region at the expense of optimizing the 
relatively simpler task of distinguishing between cross 
and human categories. Further theoretical and experi-
mental investigation may be needed for a more rigorous 
justification of the target value selection.

Impact of retaining sequences with ambiguous residues on 
model performance
In our dataset preparation process, we made a deliber-
ate decision to retain sequences containing ambiguous 
residues (‘X’), contrary to some conventional approaches 
that exclude such sequences [15, 17]. This decision was 
supported by our experimental validation, which dem-
onstrated that the inclusion of these sequences consis-
tently enhances model performance in F1 and weighted 
F1 scores while several models showed slightly (about 1% 
point) enhanced performances in metrics not considering 
class-imbalance. Although ambiguous residues are tradi-
tionally considered indicators of poor sequence quality, 
our analysis revealed that the non-ambiguous portions 
of these sequences contribute valuable contextual infor-
mation to the model. This phenomenon aligns with prin-
ciples observed in transfer learning paradigms [48–50], 
where partial data can still provide meaningful signals for 
model training. The value of these contributions is par-
ticularly evident in our study, where the limited sample 
size in cross category examples creates a scenario that 
benefits from leveraging all available information, even if 
incomplete. Performance metrics of experiments without 
sequences containing ambiguous residues are provided 
in Supplementary Table S2.

Impact of subtype hold-outs on model performance
While our initial 5-fold cross-validation demonstrated 
promising generalization capabilities across randomly 
partitioned data, we recognized the importance of evalu-
ating our models under conditions that more closely sim-
ulate real-world applications. In influenza surveillance 
and risk assessment, models are frequently required to 
make predictions on emerging viral subtypes with genetic 
compositions that may differ from those in the training 
data. To address this challenge and to further assess the 
robustness of our models against potential overfitting, we 
implemented an evaluation strategy based on influenza 

subtype hold-outs. In this approach, we systematically 
excluded all PB2 sequences from particular influenza 
subtypes from the training set of Random Forest and 
used them exclusively for validation. In this scenario, if 
a subtype has samples less than ten in a risk group, it is 
considered as a novel viral subtype and included in the 
hold-out set. This evaluation method provides a more 
realistic assessment of model performance in scenarios 
where predictions must be made on novel viral subtypes 
not represented in the training data, thereby offering 
deeper insights into the practical utility of our approach 
for influenza surveillance systems.

Our analysis encompassed 39 distinct subtypes, yield-
ing MSE, accuracy, macro F1, and weighted F1 scores of 
0.001, 0.995, 0.832, and 0.583, respectively. The substan-
tial difference between macro F1 and weighted F1 scores 
indicates a performance discrepancy across classes. Spe-
cifically, the cross category was severely impacted by the 
subtype constraining approach, while the well-repre-
sented class avian received favorable classification bias, 
contributing to an overall accuracy score higher than in 
the cross-validation cases.

The model’s ability to maintain low MSE (0.001) and 
high accuracy (0.995) when tested on previously unseen 
subtypes suggests resistance to severe overfitting. How-
ever, the considerably lower weighted F1 score (0.583) 
reveals that despite successfully classifying most samples, 
the model struggles with underrepresented classes when 
confronted with novel subtypes. These results align with 
our previous findings regarding the beneficial impact of 
incorporating incomplete data, including sequences with 
ambiguous residues, particularly for the minority cat-
egory cross. While our approach demonstrates robust 
generalization capabilities overall, these findings high-
light the ongoing challenge of addressing class imbalance 
when developing predictive models for emerging viral 
subtypes.

Distribution of regression-based risk assessments
As shown above, Random Forest outperforms other 
methods in both risk value regression and risk group 
classification tasks, although this advantage diminishes in 
regions of high true positive rates in the ROC curve. Risk 
measurements from the Random Forest models, evalu-
ated on cross-validation test sets, are shown in Fig.  3. 
Note that the bars represent probability density rather 
than histogram counts to account for the significant class 
imbalance among risk groups. As expected, samples in 
the cross category are frequently misclassified as belong-
ing to the avian category, since these samples are avian 
influenza viruses that have acquired virulence in human 
hosts. While a small proportion of the cross category’s 
risk scores are spread across a wide range, most samples 
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from all three categories are concentrated within their 
corresponding narrow value bands.

Feature attribution with SHAP values
The effectiveness of SHAP values relies on the perfor-
mance of the regression model. Throughout previous 
experiments, Random Forest demonstrated superior 
results compared to other models, and we subsequently 
calculated SHAP values using this Random Forest model. 
Fig. S3 in the supplementary materials shows the means 
and standard deviations of mean absolute SHAP values 
across cross-validation. Figure  4 presents the ten most 
important residues in the risk model, which was trained 
on the complete dataset without a validation set holdout 
for more accurate analyses. The importance of residues 
was quantified using mean absolute SHAP values. Nota-
bly, the ranking of these top ten residues remained con-
sistent between the cross-validation SHAP analysis and 
the SHAP analysis conducted on the complete dataset. 
The amino acid residues identified as the top ten most 
significant features were 271A, 627K, 591R, 588A, 292I, 

684S, 684A, 81M, 199S, and 368Q. Notably, five of these 
residues– 271A, 627K, 591R, 588A, and 199S– have 
been previously characterized as critical determinants 
of viral host specificity through conventional experimen-
tal approaches [51]. Figure  5 shows the distributions of 
SHAP values for all samples, avian, cross, and human 
groups, with each panel highlighting the ten most impor-
tant residues for its corresponding category. SHAP val-
ues represent the contributions of features to the output, 
where positive values indicate increased risk values, 
while negative SHAP values indicate decreased risk. In 
this Random Forest model, input features were binary 
(one-hot encoded) vectors, input feature values are col-
ored as blue (0) or red (1). For instance, in Fig.  5A, the 
presence of 271A (amino acid A at position 271) is shown 
in red on the positive side, while its absence is blue and 
located on the negative side. This indicates that the pres-
ence or absence of 271A significantly affects the risk 
value in numerous cases, establishing it as an important 
risk factor. As shown in Fig. 5B and C, and 5D, the order 
of feature importance varies among groups, although fea-
ture 271A consistently ranks as the most important fea-
ture in all cases. The complete ranking of the 100 most 
important features and their corresponding mean abso-
lute SHAP values is provided in Supplementary Table 
S3. In Table S4, using the top-ranked 100 features, com-
pact models of Random Forest, MLP, and ridge regres-
sion were constructed and evaluated to validate feature 
importances. Despite the feature dimensionality being 
reduced from 15,939 to 100 (less than 0.7%), the regres-
sion and classification performances of the compact 
Random Forest were very close to the models with full 
features. This suggests that the selected top 100 features 
successfully capture the most essential information for 
prediction, confirming the effectiveness of our feature 
importance ranking approach.

Risk model with SHAP values
Individual SHAP values provide local explanations lim-
ited to single predictions and offer a theoretical frame-
work for measuring features’ contribution to the output. 
In the above subsections, SHAP values were aggregated 
to measure feature importances across samples. This sub-
section, however, focuses on distribution of aggregated 
SHAP values to understand their ability to reconstruct 
output values. Figure 6 illustrates the distribution of risk 
values derived from the aggregation of SHAP values as 
defined in Eq. 5.

Interestingly, while SHAP values were primarily devel-
oped as a framework for interpretability and explain-
able AI, their careful aggregation also enabled effective 
modeling of zoonotic risk. Consistent with our previous 
results, distinguishing between avian and cross groups 
proved more challenging than identifying human group. 

Fig. 4 Ten most important residues identified by SHAP values

 

Fig. 3 Risk score distribution by risk group

 



Page 10 of 14Kim et al. BMC Genomics          (2025) 26:395 

The AUROC scores were 0.826 for avian versus cross 
classification and 0.997 for cross versus human classifi-
cation. Although the classification performance across 
risk categories is comparatively suboptimal compared to 
high-performing regression-based risk assessment mod-
els, this risk model enables both the analysis of relative 

significance within each risk category and the assessment 
of sample similarities between groups. This approach 
facilitates intra-class analyses such as species-specific 
and family-specific risk assessments within a group, as 
it does not constrain the risk scores and corresponding 
SHAP value weightings within each risk group to single 
target values.

Quantitative analysis of mutation effects
In this experiment, we quantified the risk yield of muta-
tions according to Eq. 6. We specifically focused on mis-
sense mutations, excluding other mutation types such as 
nonsense mutations (e.g., T271X). To ensure statistical 
reliability, we analyzed only residues that appeared in at 
least 1% of the total samples (n ≥ 426) as either source or 
destination residues. The highest scoring mutations were: 
T271A, Q368K/R, Q591R, E627K, A588T/I/V, I292V/T. 
Although D701N is one of the key factors in surpassing 
the host barrier [51, 52] and had a higher mutation score 
than I292V/T, it has not been listed because the count of 
D701N in our dataset was 169, less than 1% of the total 
samples. Supplementary Table S5 presents the 20 most 

Fig. 6 Distribution of aggregated risk scores derived from SHAP values

 

Fig. 5 SHAP values on features; (A) All groups; (B) Avian; (C) Cross; (D) Human
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significant mutations identified in this study, including 
their mutation scores and occurrence counts.

Distribution of risk scores for avian sequences
To analyze the distribution of risk scores by avian catego-
ries, we assigned a scientific family name for each sample 
of avian category data. If a sample contains insufficient 
information such as ‘wildbird’, ‘avian’, ‘bird’, ‘seabird’ and 
so on, the sample is categorized into ‘unknown’ family. 
Typos like ‘chichen’ (for ‘chicken’) were manually cor-
rected. Our categorization was conducted based on The 
eBird/Clements checklist of Birds of the World, version of 
2024-October [53]. Figure 7 presents the avian family dis-
tribution based on risk scores derived from SHAP analy-
ses, and we can observe that Phasianidae occupies a large 
proportion of high-risk deciles compared to other avian 
families. Based on this observation, we hypothesized that 
poultry has an important role in zoonotic infections.

Based on our observations, we evaluated risk-asso-
ciated mutations in Phasianidae as given in Eq. 6. Only 
residues present in at least 1% of Phasianidae were con-
sidered in the analysis. The mutations identified with the 
highest risk were I292V/T, Q368R, A588T/I, V598A/I/T, 
and E/V627K.

Structural modeling of PB2 protein
A consensus PB2 amino acid sequence was generated 
from avian PB2 sequences and used for protein structure 
prediction with AlphaFold 2 [54], implemented through 
ColabFold v1.5.5 [55]. The resulting predicted structure 
was subsequently visualized and analyzed using UCSF 
ChimeraX [56]. Key residues identified with SHAP anal-
ysis are shown on the predicted structure of the PB2 
sequence in Fig. S4. As shown in the figure, all residues 
are surface-exposed and distributed across the protein, 

although 588A, 591R, and 627K are spatially clustered. 
This suggests that multiple mechanisms may underlie 
their contribution to zoonotic potential.

Discussion
This study evaluated the zoonotic risk of avian influenza 
viruses through analysis of PB2 sequences from avian, 
human, and cross-species strains. However, the current 
model’s predictive capacity is limited when confronted 
with influenza sequences from other hosts, such as swine, 
potentially leading to unreliable outcomes. Moreover, our 
current analyses only examined the PB2 segment inde-
pendently, without considering the potential synergis-
tic effects between multiple genomic segments. These 
inter-segment interactions likely play crucial roles in 
determining viral fitness, host adaptation, and zoonotic 
potential. Future research should expand the scope to 
encompass influenza viruses from diverse animal hosts, 
incorporating all eight genomic segments (PB2, PB1, PA, 
HA, NP, NA, M, and NS). This comprehensive approach 
will inherently increase the complexity of the analysis, 
as a single-dimensional risk regression model may prove 
inadequate for characterizing more heterogeneous viral 
populations. Additionally, such research should not only 
analyze individual segments in isolation but also investi-
gate how mutations across different segments collectively 
influence viral phenotypes through cooperative or com-
pensatory mechanisms.

From a methodological perspective, our comparative 
analysis of machine learning and statistical approaches 
revealed that tree ensembles like Random Forest and 
CatBoost consistently outperformed other methods 
across multiple metrics, while deep learning models 
exhibited notably inferior performance. Tree ensem-
ble models have demonstrated superior efficiency on 

Fig. 7 Distribution of avian families by risk deciles
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tabular datasets compared to neural networks such as 
multi-layer perceptrons or Transformer networks [57], 
although certain studies suggest that MLP variants or tai-
lored Transformer models can be competitive with tree 
ensemble models for tabular datasets [58, 59]. Amino 
acid sequences differ from typical tabular data in their 
fundamental structure: sequences maintain a critical 
ordering of elements, while tabular data are generally 
permutation-invariant. Despite this distinction, we opted 
for tree ensemble models in our analysis. This choice 
reflects the established importance of positional infor-
mation in protein sequence analysis. Notably, many deep 
learning models exhibit translation-invariance properties 
that may not effectively capture these positional depen-
dencies, potentially limiting their effectiveness for viral 
host range risk assessment.

The limitations of deep learning in our context mir-
ror their known constraints in processing tabular data, 
which closely resembles our residue sequence format. 
To address these limitations, deep learning models could 
be enhanced through architectural modifications such 
as attention mechanisms or positional encodings, as 
demonstrated by specialized models like TabNet. This 
approach is particularly relevant given the critical impor-
tance of residue position information in sequence analy-
sis. Furthermore, deep learning models typically require 
larger training datasets due to their extensive parameter 
space, a challenge that could be addressed through pre-
training approaches, including semi-supervised/unsu-
pervised learning or transfer learning methodologies.

Beyond performance considerations, tree ensemble 
models like Random Forest offer superior explainability, 
providing an additional advantage for our analysis. Their 
decision rules are directly interpretable without requiring 
sophisticated post-hoc analyses, contrasting with neural 
networks’ black-box nature that often demands complex 
interpretation techniques [39, 40]. Regarding analytical 
methods, while SHAP analysis provided interpretable, 
additive assessments of residue-level risk and effects of 
mutations, it had limited capability as a direct means of 
capturing complex non-linear interactions. Specifically, 
the current methodology cannot systematically detect 
cases where specific residues modulate the effects of resi-
dues at other positions. Development of analytical tools 
capable of elucidating such compositional or conditional 
effects represents a crucial direction for future research.

Our SHAP-based analysis identified key residues 
including 81M, 199S, 271A, 292I, 368Q, 588A, 591R, 
684A/S, and 627K, and mutations (T271A, I292V/T, 
Q368R/K, A588T/I/V, Q591R, and E627K) critical for 
zoonotic risk assessment. While some of these residues 
form a cluster, many are distributed throughout the PB2 
protein, suggesting that multiple mechanisms may con-
tribute to zoonotic potential. Many of these residues and 

mutations have been previously reported as critical for 
mammalian adaptation. Among these, E627K and Q591R 
mutations in PB2 are the most well-documented muta-
tions facilitating human adaptation of animal IAVs [1, 
2]. These mutations raise the degree of positive charge 
in the region, which affects the interaction with sev-
eral host factors [1, 60]. Additionally, mutations such as 
A199S, T271A, I292V, A588T/I/V, and A684S are known 
to increase viral polymerase activity [61–64]. Although 
residues such as 81M and 368Q were among the top ten 
identified in our SHAP-based analysis, these residues 
remain underexplored. The N-terminus of PB2 inter-
acts with PB1, and 81M may modulate this interaction. 
Meanwhile, residue 368Q is located within the cap-bind-
ing domain of PB2, and charge alteration resulting from 
the R368Q mutation may interfere with binding to host 
pre-mRNA caps. Future studies employing in vitro poly-
merase activity assays may help elucidate the functional 
consequences of these mutations and their potential role 
in host adaptation.

Phasianidae family, which includes chickens and tur-
keys, has historically served as a major source of human 
infections by avian IAVs. Nevertheless, their role as 
bridge hosts facilitating viral transmission to mammalian 
hosts remains poorly understood. Our analysis of risk 
score distribution from the SHAP-based model across 
avian categories revealed that IAVs from the Phasiani-
dae family tend to exhibit higher risk scores compared 
to those from other avian species. Additionally, we iden-
tified mutations, including I292V/T, Q368R, A588T/I, 
V598I/A/T, and E/V627K as important risk factors in 
Phasianidae compared to other avian families, warrant-
ing further investigation. These findings suggest that the 
transmission of avian IAVs to Phasianidae may be associ-
ated with frequent spillovers into humans through spe-
cies in this family, such as chickens, turkeys, and quails 
[65–67]. However, the contributions of other genomic 
segments remain unclear and require further investiga-
tion. These results underscore the importance of evalu-
ating the role of Phasianidae family as a bridge host for 
IAV transmission to mammalian hosts.

Conclusions
In this study, we developed two complementary 
approaches for modeling the zoonotic potential of influ-
enza PB2 sequences. We defined regression-based risk 
models and evaluated various methods, including deep 
learning models, through cross-validation. The selec-
tion of target values for the mid-risk group was vali-
dated through a comprehensive ablation study. Using the 
optimized regression model, we conducted SHAP value 
analysis and constructed a SHAP-based risk assessment 
model by aggregating SHAP values. Individual residues 
based on their contribution to zoonotic risk prediction, 
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were calculated and yielded 81M, 199S, 271A, 292I, 
368Q, 588A, 591R, 627K, and 684A/S as important resi-
dues. Furthermore, we developed a SHAP-based metric 
for quantifying mutational effects on zoonotic risk. Based 
on our risk assessment, we identified T271A, I292V/T, 
Q368R/K, A588T/I/V, Q591R, and E627K as the muta-
tions with the highest zoonotic potential. Through these 
in silico analyses, we identified the Phasianidae family as 
having elevated human infection risk and characterized 
specific mutations associated with risk.
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