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Abstract
Investigating bacterial methylation profiles provides essential complementary information to the native DNA 
sequence, significantly extending our understanding of how DNA modifications influence virulence, antibiotic 
resistance, and the ability of bacteria to evade the immune system. Recent advancements in real-time Nanopore 
sequencing and basecalling algorithms have enabled the direct detection of modified bases from raw signal data, 
eliminating the need for bisulfite treatment of DNA. However, decoding methylation signals remains challenging 
due to rapid technological and methodological progress. In this study, we focus on public health-relevant bacterial 
strains to analyze their methylation profiles and identify methylation motifs. Our dataset includes samples from 
Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecium, and Klebsiella pneumoniae, sequenced on the 
Nanopore GridION platform using the latest flow cell chemistry (R10.4.1) and modification basecalling models 
(Dorado basecalling SUP model v5). We investigated distinct methylation patterns within and between species, 
focusing on heavily modified genes or genomic regions. Our results reveal distinct species-specific methylation 
profiles, with each strain exhibiting unique modification patterns. We developed a modular pipeline using Nextflow 
and the Nanopore Modkit tool to streamline the detection of methylated motifs. We compared the results with 
outputs from MicrobeMod, a recent toolkit for exploring prokaryotic methylation and base modifications in 
nanopore sequencing. Our pipeline is publicly available for further use (github.com/rki-mf1/ont-methylation). We 
identified known methylation motifs already described in the literature and novel de novo motifs, providing deeper 
insights into the diversity of bacterial DNA modifications. Furthermore, we identified genomic regions that are 
extensively methylated, which could have implications for bacterial behavior and pathogenicity. We also assess 
improvements in basecalling accuracy, specifically how methylated bases can influence neighboring basecalls. 
Recent advances in basecalling models, particularly v5 models as part of Dorado, have reduced these issues, 
improving the reliability of methylation detection in bacterial genomes. In conclusion, our study highlights the 
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Introduction
The bacterial methylome refers to the complete set of 
DNA methylation modifications present within a bacte-
rial genome. These modifications primarily involve meth-
ylation of adenine at the N6 position (6mA) and cytosine 
at either the N4 (4mC) or C5 (5mC) positions [1]. In 
eukaryotic genomes, 5mC is the predominant form of 
DNA methylation, occurring within CpG contexts 
where it is tightly regulated to influence gene expression, 
genome stability, and chromatin structure [2]. In bacte-
rial genomes, however, 5mC is less common and occurs 
alongside 6mA and 4mC, with 6mA being the most prev-
alent form. Furthermore, bacterial DNA methylation is 
motif-specific, with nearly all instances of specific motif 
sequences being methylated (e.g., the motif in Escherichia 
coli: 5’-G-6mA-TC-3’) [3, 4].

DNA methyltransferases catalyze the transfer of methyl 
groups from S-adenosyl-L-methionine to adenine or 
cytosine bases. Some bacterial DNA methyltransferases, 
such as Dam in E. coli, are conserved and active in all 
strains of a species, while others exhibit strain-specific 
variability [5]. For a long time, the most well-known and 
widely accepted function of these enzymes was thought 
to be their role in restriction-modification (RM) sys-
tems, where they protect the host genome by methylating 
specific sites to prevent cleavage by the cognate restric-
tion endonuclease [6, 7]. These protective systems are 
classified into four main groups based on their enzyme 
composition and mechanism of action, and these clas-
sifications also influence the characteristics of the target 
recognition motifs.

Type I RM systems involve a restriction endonuclease, 
a methyltransferase, and a specificity subunit (S-subunit). 
These components must assemble into a complex before 
they can cleave and methylate DNA. The target motifs in 
Type I systems are often longer and more complex with a 
characteristic bipartite structure, requiring the S-subunit 
for recognition (e.g., 5’-G-6mA-CNNNNNNGTC-3’). 
The S-subunit contains two target recognition domains 
(TRDs), each interacting with one half of the bipartite 
recognition site [8]. Type II RM systems are the most 
well-characterized, involving a restriction endonuclease 
and a separate methyltransferase that both recognize 
a short, palindromic sequence (e.g., 5’-G-6mA-TC-3’). 
Type III systems require a methyltransferase-restriction 
endonuclease complex to recognize short, non-palin-
dromic motifs and cut outside the binding site. Finally, 

Type IV systems lack a methyltransferase, targeting and 
cleaving modified DNA [5].

However, the discovery of so-called orphan methyl-
transferases challenged this traditional view [9]. These 
enzymes, which function independently of any restriction 
endonuclease, highlight that DNA methyltransferases 
may have additional, previously unrecognized roles in 
genomic regulation. Recent studies indicate that bacteria 
use methylation as a versatile signal in genome defense, 
DNA replication and repair, gene expression regulation, 
transposition control, and host-pathogen interactions [6, 
10]. In Gammaproteobacteria and Alphaproteobacteria, 
6mA plays a critical role in the timing and regulation of 
the cell cycle, with the origins of replication exhibiting 
high methylation levels [11, 12]. Similarly, cytosine meth-
ylation at 5′CCWGG3′ sites, catalyzed by the Dcm meth-
yltransferase, has been shown to repress the expression 
of ribosomal protein genes [13].

Recent advances in methylation detection technologies 
have enabled genome-wide mapping of DNA methylation 
in bacteria. For example, SMRT (PacBio) [14] sequencing 
can directly detect DNA methylation without additional 
chemical treatments or amplification. Oxford Nanopore 
Technology (ONT) sequencing also offers methylation 
detection, with lower initial costs and more flexibility 
due to compact devices like the MinION, while yielding 
sequencing data for highly contiguous bacterial genome 
reconstruction [15, 16]. In addition, ONT’s methylation 
detection has achieved a new level of accuracy with the 
introduction of the upgraded R10.4.1 flowcell [17, 18], 
the release of the Dorado basecaller, and improved meth-
ylation-aware basecalling models. Before Dorado, base-
calling was handled by the tool Guppy, with methylation 
modifications inferred later using separate tools such as 
Megalodon or other third-party software. The introduc-
tion of Remora, also developed by ONT, marked a sig-
nificant shift in this process. Unlike previous methods, 
Remora’s models are trained directly on raw sequencing 
data, and they have been integrated into Dorado, elimi-
nating the need for separate detection steps [19].

While nanopore sequencing accuracy and modified 
base detection have significantly improved [20], meth-
ylation calling remains a challenge for the basecaller 
in some instances. These challenges affect not only the 
methylated base itself but also the surrounding bases 
[21], with strain-specific errors currently limiting ONT’s 
applicability for high-resolution bacterial genotyping and 
potentially leading to the misclassification of outbreaks 

potential of current nanopore sequencing tools for detecting DNA modifications in prokaryotes. By making our 
pipeline and results publicly available, we facilitate further research into bacterial DNA modifications and their role 
in microbial pathogenesis.
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in diagnostic and clinical settings [22–25]. Notably, 
Medaka, a popular polishing tool for nanopore data [26], 
has released a model designed explicitly for bacteria. 
Early results show that this reduces methylation-induced 
basecalling errors [27].

Another consequence of ONT’s recent updates is 
that many tools were developed for earlier flow cell ver-
sions (e.g., R9 vs. R10), and their respective models are 
now obsolete. While analysis pipelines for human and 
eukaryotic genomes are beginning to catch up, new 
software tools specifically developed to analyze 5mC in 
the context of CpG islands using the latest outputs have 
emerged [28–30]. However, equivalent tools and com-
prehensive benchmarking are still mainly lacking for bac-
terial genomes. One option is MicrobeMod [31], which 
can annotate RM genes by cross-referencing annotations 
with the REBASE [32] database and identifying methyl-
ated motifs. This gap highlights the pressing need to eval-
uate and develop more specialized tools and pipelines 
for bacterial genomes, especially in light of the impact 
DNA modifications can have on microbial pathogenesis 
[33–36].

Materials and methods
Dataset
Our dataset includes isolates from four species: Entero-
coccus faecium (EF), Klebsiella pneumoniae (KP), Listeria 
monocytogenes (LM), and Staphylococcus aureus (SA). 
These isolates were selected from a previous study assess-
ing the reproducibility of nanopore sequencing-based 
genotyping of bacterial pathogens, particularly for out-
break analysis using core genome MLST [23].

In this first study, we initially sequenced samples with 
the R10.4.1 pore at 260  bp/s (4  kHz, a now discontin-
ued translocation speed) and with Illumina technology 
for comparison. Sequencing and downstream analysis 
were performed in parallel by multiple institutes, and 
the results were compared to assess the reproducibil-
ity. The earlier results revealed highly strain-specific 
typing errors in all species, strongly associated with 
methylation-induced basecalling errors. To investi-
gate these error profiles further in the original study, 
we selected, re-sequenced, and re-analyzed three 
strains per species. One strain per species was selected 
for good nanopore sequencing performance (match-
ing typing results with the short-read data). Two other 
strains per species were selected as ‘problematic,’ exhib-
iting methylation-induced basecalling errors leading 
to high allelic differences compared to the short-read 
reference across all institutes. In the original study, we 
re-sequenced these twelve isolates by three indepen-
dent institutes (LAB1, LAB2, LAB3) with R10.4.1 flow 
cells at the current default 400  bp/s (5  kHz) transloca-
tion speed and basecalled them with the Dorado model 

res_dna_r10.4.1_e8.2_400bps_sup@2023-09-22_bacte-
rial-methylation. This allowed us to assess the impact of 
technical and bioinformatics advancements implemented 
since the initial sequencing run with 260  bp/s. In the 
original study, we found that nanopore data from the 
re-sequenced samples at 400 bp/s (5 kHz) translocation 
speed aligned more closely to the assemblies based on 
Illumina short reads, except for strains KP02 and LM4623. 
A summary of the twelve samples, including their match-
ing to short-read data based on the original study [23], 
is provided in Supplementary Table S1. Further details 
about the samples, DNA extraction, and sequencing can 
be found in the original study [23].

For this study, we used and re-analyzed the nano-
pore raw signal data from the re-sequencing runs of the 
twelve samples from the three institutes generated with 
the current default translocation speed (400 bp/s). Please 
note that in this study, we also used identical sample and 
laboratory IDs from the original study to allow for easy 
comparison.

Basecalling
We re-basecalled the raw signal data with Dorado v0.8.1 
using the model dna_r10.4.1_e8.2_400bps@v5.0.0 with 
SUP (super accuracy) mode and applying the modifica-
tion models 6mA and 4mC_5mC to basecall and detect 
modified bases.

Assembly pipeline and annotation
We filtered reads smaller than 500  bp using Filtlong 
(v0.2.1) [37]. We then used Rasusa (v2.1.0) [38] to 
achieve consistent 100X genome coverage for all sam-
ples; the read count of samples with higher coverage 
was scaled down, and samples with lower coverage were 
left untouched. The filtered and subsampled reads were 
then assembled with Flye (v2.9.5) [39], with the “--nano-
hq” option, applying the “--meta” flag in cases where it 
increased the size of the largest contig, representing the 
chromosome, or reduced the number of contigs overall. 
The resulting assemblies were polished using Medaka 
(v2.0) with the model r1041_e82_400bps_bacterial_
methylation. Table S2 provides an overview of the quality 
of the assemblies for each institute, including N50, num-
ber of contigs, read coverage, and whether the “--meta” 
flag was used. The assemblies were annotated using Bakta 
(v1.9.4) with default parameters [40].

Methylation detection using Modkit
To analyze the methylation profiles of the isolates, we 
aligned reads (re-basecalled using Dorado) to the cor-
responding genome assemblies using minimap2 (v2.28) 
[41]. This step included read manipulation with SAM-
tools (v1.21) [42], converting the BAM files to FASTQ 
format while preserving methylation-related information 
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using the parameter “-T MM, ML”. The aligned reads 
were also used as input for MicrobeMod (v1.0.5) [31] for 
motif comparison (see method details below). We used 
the Modkit pileup command (v0.4.1) [43] to aggregate 
information from the aligned reads into a reference-
based output file that included the methylation status of 
all bases. Modkit was run with the optional parameter 
--filter-threshold set to 0.75. By default, Modkit estimates 
this value with the sample-probs function using the 10th 
percentile of confidence values within the dataset. We 
found that the results of this function were close to 0.75. 
Thus, we fixed this value as an appropriate threshold for 
samples and replicates to standardize our analysis across 
the dataset.

Methylated motifs were identified using Modkit’s motif 
detection function and compared with those detected by 
MicrobeMod. For base-level methylation analysis, Mod-
kit provides a Fraction Modified value for each position, 
defined as: Nmod / Nvalid_cov, where Nvalid_cov  is the sum 
of reads classified as either modified or canonical (non-
modified) that passed the confidence threshold. We 
observed that Fraction Modified could lead to false posi-
tives at positions with low valid coverage. To address this, 
we introduced a new metric Percent Modified, defined 
as: Nmod / (Nvalid_cov + Nfail + Ndiff), where Nfail  are the 
reads failing Modkit’s confidence threshold, and Ndiff are 
the reads containing bases differing from the canonical 
base for the modification. This approach reduces false 
positives by counting all reads, not just those passing 
the confidence threshold. Percent Modified, as a measure 
of agreement among all reads for a given position, pro-
vides a more reliable metric for base-level methylation. 
We defined all the positions as methylated with a Per-
cent Modified value above 0.5. This threshold was deter-
mined by calculating the average Percent Modified value 
of methylated bases within motifs identified in our data-
set but already known and validated in the literature (see 
Supplementary Figure S1).

All the steps described above are integrated into a cus-
tom Nextflow [44] pipeline, publicly available on GitHub, 
which automates preprocessing, alignment, methylation 
analysis, and motif detection [45]. We ran our pipeline in 
version 0.0.2 and as described in the GitHub manual. A 
schematic overview of the pipeline can be found in Sup-
plementary Figure S2.

Integrating methylation detection and analysis with 
MicrobeMod
We used MicrobeMod on all samples, running both 
available pipelines: one extracted all RM genes along 
with their associated motifs from the literature, while the 
other used STREME46 on the Modkit output to identify 
motifs. MicrobeMod was run with default parameters for 
both cases.

For isolate LM46, we observed a higher number of 
4mC bases not associated with a known motif and a simi-
lar pattern for isolate LM41 regarding 5mC. To investi-
gate this observation further, we ran MicrobeMod with 
a lower percent_methylation_cutoff, which adjusts the 
fraction of methylated reads required to classify a site 
as methylated. This analysis identified two additional 
motifs: 5’-TGG-4mC-CA-3’ and 5’-T-5mC-GA-3’. These 
motifs were also confirmed using Modkit’s motif evalu-
ation function, which allows for assessing specific motifs 
after the refinement of thresholds for the fraction of 
modified bases.

Results
Detected methylation motifs and sites using MicrobeMod 
and Modkit
We applied MicrobeMod and Modkit (implemented 
in our Nextflow pipeline) on the re-basecalled and re-
assembled data of the twelve bacterial species (see 
Methods). Next, we summarized the detected motifs by 
combining the results from both tools (Table 1). In most 
cases, both tools detected the same motifs (see Supple-
mentary Table S3 for a comparison of motifs individu-
ally identified by each tool). However, we detected a 
few discrepancies worth mentioning: (1) SA67 motifs: 
Modkit detected two motifs, CCAYNNNNNNRTC and 
CCAYNNNNNNTTYG, while MicrobeMod identified a 
broader, less specific motif, CCAYNNNNNNDTY. This 
motif spans the two detected by Modkit but with less 
consistency, suggesting some limitations in Microbe-
Mod’s ability to distinguish between closely related 
patterns. (2) MicrobeMod did not detect the motifs 
GAAANNNNNNGGG in KP13 and GAAGAC in LM46, 
and Modkit did not detect the motif GAAGNNNNNTAC 
in SA67. (3) CAGDAC vs. CAGNAC in EF35: Microbe-
Mod identified CAGNAC, treating the “D” (A or G or T) 
as an “N” (any base), resulting in a less specific motif with 
a lower methylation percentage. Modkit identified CAG-
DAC, which is likely the more accurate representation of 
the motif.

Overall, Modkit provides more comprehensive results 
(e.g., detecting more motifs or identifying them with 
higher specificity, such as CAGDAC), although the tool 
did not detect the motif GAAGNNNNNTAC in SA67. 
This is likely due to its low occurrence frequency in the 
genome (only 200 instances).

Supplementary Table S3 also includes motifs identified 
using MicrobeMod’s annotation pipeline, which predicts 
motifs based on methyltransferase genes annotated in 
the reference genome using the REBASE database. These 
motifs are thus directly associated with detected methyl-
transferases in the dataset.

Overall, the annotation pipeline results were broadly 
consistent with the detected motifs. Still, there were 
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exceptions: (1) EF35: The motif CYAANNNNNNGRTY 
was absent in the detected data and replaced by the 
motif CAGDAC. (2) KP13: An additional motif, 
GAAANNNNNNGGG, was detected de novo but not 
predicted by the annotation pipeline. (3) SA67: The anno-
tation pipeline predicted the motif CCAYNNNNNNT-
TYG, which was confirmed as methylated. However, 
another similar motif, CCAYNNNNNNRTC, was 
detected but not found by the annotation pipeline.

These findings highlight the growing capability of new 
tools and models to confirm previously known motifs 
and detect de novo motifs that were previously underrep-
resented or undescribed while also highlighting potential 
differences.

Motif detection accuracy and reproducibility
Our results were consistent across the three replicates 
from the different labs since both Modkit and Microbe-
Mod identified the same motifs. Most motifs were meth-
ylated in nearly all occurrences (95–100%, see Fig. 1). A 
few exceptions were observed in replicates with lower 
sequencing coverage (e.g., EF22 from LAB3 and SA62 
from LAB2), which showed a higher percentage of 
unmethylated occurrences. Additionally, some motifs 
with two distinct methylation bases displayed lower 
methylation levels at one site, with approximately 10% of 
occurrences remaining unmethylated. At the same time, 
the other position was methylated in 95–100% of occur-
rences in the three replicates.

We further verified whether our results were consis-
tent across replicates at the single-base level by repeat-
ing the analysis, this time aligning the reads to the same 
reference (assemblies from LAB1), to assess whether 
the exact same bases were detected as methylated (see 
Supplementary Figure S3 and Figure S4). In most cases, 

6mA-modified bases were consistently identified across 
replicates. However, LM54 was the only sample with-
out any detected motifs and showed high disagreement 
among the few 6mA bases detected. Additionally, isolate 
EF22 exhibited higher disagreement in 6mA detection, 
likely due to its low sequencing depth in LAB3.

Methylated cytosine (5mC and 4mC) was mostly 
found in K. pneumoniae: 5mC positions showed high 
agreement across replicates, except for LAB3 in isolate 
KP02. In contrast, 4mC methylation exhibited greater 
variability.

The Percent Modified value measures the agreement 
among reads for a given genome position (see Meth-
ods), and we found that the methylated bases within the 
detected 6mA motifs generally exhibited an average Per-
cent Modified value ranging from 70 to 90% (see Figure 
S1). The motif GAAGAC from LM46, where the Percent 
Modified value for both 6mA and 4mC was lower than 
for all other samples and motifs and only ranged from 55 
to 60%. Similar Percent Modified values were observed 
for 4mC in the motif GAAANNNNNNGGG from KP13. 
These two motifs, with lower average Percent Modified, 
tend to have a higher portion of occurrences where the 
base is < 0.5 (less than 50% of the reads supporting the 
methylation signal), causing them not to be detected as 
methylated with our default threshold. As a result, they 
appear to have a higher number of unmethylated occur-
rences (see Fig. 1), as well as lower agreements between 
replicates at a base level (see Figures S3 and S4). How-
ever, when using a lower threshold (0.3), these motifs 
show more than 95% methylation.

The motif CCWGG, detected across all three K. pneu-
moniae isolates, exhibited even higher Percent Modi-
fied values, ranging from 85 to 95% in all isolates and 
replicates, except for KP02 from LAB3, which showed 

Table 1 List of motifs detected using Modkit and MicrobeMod the table combines results from both tools and categorizes motifs by 
the type of methylated base detected: 6mA, 5mC, or 4mC. the methylated base is highlighted in bold. An asterisk is appended if the 
base is methylated on the complementary strand (e.g., T* and G*). Two motifs, GAAANNNNNNGGG in KP13 and GAAGAC in LM46, 
present methylation with both 6mA and 4mC. Please note that the sample IDs are the same as those used in the original study23

Sample ID Species Detected motifs with 6mA Detected motifs 
with 5mC

Detected motifs 
with 4mC

KP04 Klebsiella pneumoniae GAT*C CCWG*G
KP02 Klebsiella pneumoniae GAT*C, GACNNNNNNGT*C CCWG*G
KP13 Klebsiella pneumoniae GAT*C, AGCNNNNNCT*TC, GAAANNNNNNGGG CCWG*G GAAANNNNNNGG*G
LM46 Listeria monocytogenes GAAGAC GAAG*AC, TGG*CCA
LM41 Listeria monocytogenes GAAYNNNNNGT*C TCG*A
LM54 Listeria monocytogenes
EF35 Enterococcus faecium CAGDAC
EF26 Enterococcus faecium CYAANNNNNNGRT*Y
EF22 Enterococcus faecium CYAANNNNNNGRT*Y
SA63 Staphylococcus aureus GWAGNNNNNGAT*, CGANNNNNNNT*CC
SA67 Staphylococcus aureus GAAGNNNNNT*AC, CCAYNNNNNNRT*C, 

CCAYNNNNNNT*TYG
SA62 Staphylococcus aureus CCAYNNNNNNT*GT, AGGNNNNNGAT*
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a notably lower value of 65%. This lower value could be 
attributed to the reduced coverage of this isolate from 
LAB3, which may have led to a lower Percent Modified 
value and an increased number of unmethylated occur-
rences (see Fig.  1), which were not confirmed by other 
replicates with higher coverage (see STab 1 for coverage 
information). Additionally, the motifs TCGA (5mC) and 
TGGCCA (4mC), which reported lower percentages of 
methylated occurrences across the genome, also exhib-
ited much lower Percent Modified value, around 30%.

Overall, using our approach, up to 95% of 6mA bases 
(with Percent Modified > 0.5) were found within a motif 
(see Figure S1). The only exception is one isolate from 
Listeria where no motifs were detected (LM54). In this 

isolate, almost no mutations with a high Percent Modified 
base were detected (> 0.7).

By applying less stringent parameters in MicrobeMod 
(see Methods for details) to analyze samples LM41 and 
LM46, which appeared to have higher levels of 5mC and 
4mC, respectively, we identified two additional motifs: 
TCGA (5mC) and TGGCCA (4mC). As a result, the 5mC 
and 4mC modifications were explained in up to 90% of 
the bases within the motifs. However, we detected more 
4mC bases in Klebsiella isolates, but these were not asso-
ciated with a specific motif. We further observed that 
these modified bases clustered near GATC or CCWGG 
motifs, raising the possibility that these are either genu-
ine modified bases or technical artifacts that still need 
further clarification.

Fig. 1 Heatmap of Methylation Frequency Across Motifs. The heatmap shows the percentage of methylated occurrences for each detected motif, where 
a modified base is defined using a Percent Modified > 0.5 threshold (more than 50% of the aligned reads support the methylation). The number of occur-
rences for each motif (shown in the column next to the motif ) is averaged across the three replicates, as there is only minimal fluctuation between them. 
Non-palindromic motifs with two methylated positions (on the plus and minus strands) are represented by two separate rows in the heatmap. Motifs 
with a lower average Percent Modified (~ 60%), such as GAAANNNNNNGGG and GAAGAC, appear partially methylated but reach 95–100% methylation 
when the threshold (default 0.5) is lowered. In contrast, motifs TGGCCA and TCGA exhibit only a few methylated occurrences. Different methylated bases 
are color-coded in the motifs for clarity
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Analysis of hypermethylated genes and motifs in 
regulatory regions
We found certain regions of the genomes to be enriched 
in methylation. Using the genome annotation obtained 
with Bakta, we calculated the methylation density for 
each gene by dividing the number of methylated bases 
(Percent Modified > 0.5) by the gene size. Only the LAB3 
dataset results are shown for this analysis, as the results 
were consistent between the three replicates. The results 
are presented as violin plots, illustrating the distribution 
of methylation density for each gene, grouped by COG 
(clusters of orthologous groups) category based on the 
Bakta annotation (see Fig. 2, Figures S5 and S6).

For Klebsiella pneumoniae, we conducted this analysis 
for both 6mA and 5mC modifications since both bases 
were extensively present in the data. This is consistent 
with the methylated motifs GATC and CCWGG, respec-
tively, which are short, palindromic, and persistently dis-
tributed across the genome. Figure 2 exemplarily shows 
the methylation density of the genes of the isolate KP04 
for 6mA and 5mC. In addition to COG categories, we 
included methylation levels for the origin of replication 
(ori), given the well-established role of the GATC motif 
in initiating the cell cycle and its high abundance in this 
region [47, 48]. We also included rRNA and tRNA genes 

in the analysis, as an initial rapid inspection of the data 
suggested increased methylation levels in these regions.

Our analysis confirmed that the ori region of KP04 is 
enriched in 6mA bases (Fig.  2), with no other category 
standing out, except for a few genes displaying simi-
lar methylation levels to the ori. These standout genes 
encode proteins involved in diverse functions, including 
the lipid asymmetry maintenance protein MlaB (COG: 
M), Phenylpyruvate tautomerase PptA (COG: Q), F0F1 
ATP synthase subunit C (COG: C), and cobalt ECF trans-
porter S component CbiM (COG: P). Additionally, we 
found methylation in tRNA-SeC, a tRNA gene involved 
in selenocysteine biosynthesis, with GATC motifs flank-
ing both extremities of the gene. It is also worth mention-
ing that many genes fall under the COG classification 
S = Function unknown.

The plot for 5mC (Fig.  2, center) revealed that rRNA 
and tRNA genes are enriched in 5mC bases, whereas 
most other categories did not exhibit significant enrich-
ment. To further investigate, we visualized these pat-
terns using IGV [49], confirming that these regions were 
indeed enriched with either GATC or CCWGG motifs 
(bottom part of Fig.  2). In some cases, such as for 5S 
rRNA and 16S rRNA, the motifs flanked the genes at 
both the 5’ start and 3’ end. However, this pattern was 
inconsistent across all rRNA genes; for instance, 23S 

Fig. 2 Methylation density of the genes of the KP04 isolate for 6mA (top left) and 5mC (top center). The top 5% of genes with the highest methylation 
density are highlighted with a star. On the bottom left, the hypermethylated genes are shown on the genome of KP04. COG - clusters of orthologous 
groups derived from the Bakta annotation
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rRNA displayed a CCWGG motif only at the 5’ start of 
the gene. Despite their small size, tRNA genes often con-
tained one occurrence of the CCWGG motif, with two 
occurrences found specifically in glutamine tRNA genes. 
The same patterns were observed in the other two iso-
lates of Klebsiella pneumoniae (see Figure S5). For the 
other species, only 6mA methylation was analyzed (see 
Figure S6), but similar trends emerged. These included 
rRNA and tRNA genes exhibiting high methylation den-
sity and genes in the COG category J = Translation, Ribo-
somal Structure, and Biogenesis.

We further explored methylation patterns by directly 
examining the Percent Modified values for each base 
rather than applying a threshold to define bases as meth-
ylated. We computed a methylation density by averaging 
these raw Percent Modified values in windows of 1000 
bases, and we aligned these values with genome anno-
tations. In Staphylococcus aureus, this analysis revealed 
higher methylation values associated with rRNA genes 
(Fig. 3).

When plotting the distribution of Percent Modified 
values (ranging from 0.1 to 1), rRNA genes in S. aureus 
showed a higher proportion of bases falling in the range 
of 0.2 to 0.4. Unlike K. pneumoniae, where the CCWGG 
motif was enriched in these regions, no specific motif 
was associated with methylation in S. aureus. Instead, the 
data highlighted a broader pattern of mid-to-low meth-
ylation levels (< 0.5) across rRNA genes.

We investigated whether specific motifs were enriched 
in the promoter regions of genes or at their start/end 
positions. For this analysis, we defined the promoter 
region as the 40 bases upstream of the gene, the start of 
the gene as the first 40 bases following the transcription 

start site, and the end of the gene as the last 40 bases. 
The choice of 40 bases was made to capture the bacte-
rial core promoter, including the − 10 and − 35 elements 
[50], and was applied equally to the start and end regions. 
For each motif, we calculated the percentage of occur-
rences within these three regions (Fig.  4). Based on the 
annotation from Bakta, we estimated that 10.5 − 11% of 
the genome falls within one of these categories, and our 
results suggest that only a few motifs are more concen-
trated in these regions than expected. Examples include 
the motif AGGNNNNNGAT from SA62, the motif CAG-
DAC from EF35, and the motif GAAANNNNNNGGG 
from KP13, which were more frequently found in these 
regions than expected. The motif CCAYNNNNNNRTC 
in SA67 is also more frequent in the promoter regions. 
In contrast, the motif TGGCCA was least frequently 
observed in promoter regions.

Assessment of potentially methylation-induced 
basecalling errors
In nanopore sequencing, the raw signal is generated 
by overlapping k-mers of nucleotides passing through 
the nanopore rather than by individual bases. This pro-
cess can sometimes lead to inaccurate basecalling, par-
ticularly in regions surrounding modifications [21, 24]. 
However, the introduction of newer basecalling models 
has potentially mitigated this issue. To evaluate the cur-
rent extent of these improvements, we compared reads 
basecalled with 2023-09-22_bacterial-methylation [51] 
to those basecalled with the latest tool + model combina-
tion: Dorado v0.8.1 and basecalling model SUP v5.0.0.

Fig. 3 Average methylation density in SA63 alongside rRNA and tRNA genes (A) and distribution of Percent Modified in SA63 for coding DNA sequences 
(CDS) and rRNA genes (B). On the left, a 200 kbp section of the genome assembly of SA63 from LAB3 is shown (grey bar). The methylation density was 
calculated using 1000-nucleotide windows and aligned with the annotation from Bakta. We observed a higher methylation density corresponding to 
the rRNA and tRNA genes (annotation track on top of the genome bar with blue and green bars, respectively) for both 6mA and 5mC. On the right, we 
found that rRNA genes have a higher number of bases with a Percent Modified between 0.2 and 0.4, which may contribute to the observed increase in 
methylation density
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Analysis of R and Y methylation-induced ambiguous 
positions
Previous studies have found that it was a particular chal-
lenge for the basecaller to distinguish between G and A 
(producing ambiguous bases denoted as R in the IUPAC 
system) or between C and T (Y in the IUPAC system) 
[23, 52]. Our results confirm these findings. By compar-
ing ambiguous positions with methylated data obtained 
from Modkit, we found that these ambiguities are linked 
to a methylated adenine located at the position following 
the error in the 5’ direction. More specifically, an ambig-
uous position R (G or A) is found immediately before a 
methylated adenine, while an ambiguous position Y (C or 
T) corresponds to a G on the reverse strand preceding a 
methylated adenine. Thus, these two scenarios are equiv-
alent, differing only in strand orientation.

We then used the pipeline MPOA [24], which identi-
fies and masks ambiguous positions independently of any 
methylation calling, to evaluate whether the frequency of 
R and Y bases was reduced in reads basecalled using the 
new Dorado model. We observed a noticeable reduction 
in ambiguous R and Y bases using the SUP v5.0.0 base-
calling model in samples previously classified as ‘prob-
lematic’ based on a comparison to short-read data [23] 
(Figure S7). As expected, two samples, LM54 and EF35, 

classified as not problematic in the original study (see list 
of the original problematic isolates in Table S1), showed 
no or virtually no ambiguous bases with the old and new 
models. Meanwhile, two previously non-problematic 
isolates, KP13 and SA62, now had ambiguous bases, but 
without a clear bias toward R and Y bases, as usually 
observed in problematic strains. Interestingly, KP04, clas-
sified initially as problematic and still after re-sequencing 
with the latest translocation speed of 400 bp/s (see Sup-
plementary Table S1), did not exhibit a bias for R and Y 
bases, suggesting that these ambiguous bases were not 
methylation-induced. Lastly, KP02 and LM46 showed no 
reduction in the number of R and Y bases, indicating that 
the basecaller still struggles with these samples despite 
improvements in the new models.

Repurposing hammerhead to evaluate strand-specific 
basecalling errors
Many ambiguous positions observed result from strand-
specific error patterns near the modification sites. Spe-
cifically, the strand carrying the modification tends to 
be less accurate, and basecalling can result in a different 
base than the non-modified strand [24] (in our case, an 
A instead of a G preceding 6mA). The tool Hammerhead 
[52] leverages this error pattern to detect modifications 

Fig. 4 The proportion of methylated bases in promoter regions, gene start, and gene end for each detected motif. The promoter region is defined as the 
40 bases upstream of the gene, the gene start as the first 40 bases following the transcription start site, and the gene end as the last 40 bases of the gene. 
The total number of motif occurrences per genome can be found in Fig. 1
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directly from the FASTQ. We repurposed Hammerhead 
to assess whether improvements in the basecalling mod-
els would reduce the number of “potential modification 
sites” identified by this method.

As expected, due to the improved accuracy of the 
v5 basecalling models, our results show a remarkable 
decrease in modification sites identified by the Hammer-
head approach for most samples (see Figure S8). In many 
cases, Hammerhead detected only a few sites, except for 
KP02, LM46, and SA67, which still presented identifiable 
sites.

DNA logo visualization
MPOA allows visualization of the regions surrounding 
ambiguous positions as a DNA logo. We collected all 
logos for R and Y bases, showing how these ambiguous 
positions align with our identified DNA motifs (see Fig-
ure S9). In most cases, one detected motif is present in 
the DNA logo. Figure 5 compares previous [23] and new 
(v5 model) basecalling results from MPOA, Hammer-
head, and the DNA logos for the isolates most affected by 
strain-specific methylation-induced errors.

Discussion
Nanopore sequencing and associated methods allow the 
comprehensive detection of bacteria methylation motifs 
and sites
In this study, we comprehensively analyzed the methyla-
tion profiles of four public health-relevant bacterial spe-
cies using nanopore sequencing and currently available 
software tools. We re-analyzed raw signal data from a 
previous study and presented robust results using trip-
licates, the latest nanopore chemistry, and R10.4.1 flow 
cells. Our results revealed distinct species-specific DNA 
modification patterns reproducible between replicates, 
including methylated motifs and heavily methylated 
genomic regions, especially at the oriC and rRNA/tRNA 
genes, as well as for the COG category Translation, Ribo-
somal Structure, and Biogenesis.

A key question addressed in our work was whether 
current computational tools enable reliable detection of 
known and de novo methylation motifs. Using the tool 
MicrobeMod and our custom Nextflow pipeline, which 
incorporates ONT’s Modkit tool, we identified known 
motifs validated through cross-referencing with the 
REBASE restriction-modification database.

By applying a threshold of 50% for the Percent Modified 
score to classify a base as methylated, we could explain 
up to 95% of the modified bases through motifs. We 
observed an exception to this trend in the 4mC bases of 
Klebsiella pneumoniae, which were not directly located 
within specific motifs, but were consistently clustered 
near GATC and CCWGG sequences in all KP strains and 
their replicates. This observation raises the question of 

whether these C-bases are really 4mC-modified or just 
wrongly classified as 4mC, since the signal actually origi-
nates from 6mA (GATC motif ) or 5mC (CCWGG) bases.

Based on our results, we conclude that state-of-the-art 
nanopore sequencing enables the reliable identification 
of motifs that are consistently methylated throughout the 
bacteria genome. This includes short motifs, such as pal-
indromic sequences from Type II RM systems, short non-
palindromic motifs associated with Type III RM systems, 
and longer, more complex motifs characteristic of Type 
I RM systems. However, challenges persist in identifying 
motifs that exhibit inconsistent methylation or occur at 
lower frequencies. In one case (GWAGNNNNNGAT in 
SA67), for instance, Modkit failed to recognize a motif 
with low frequency (around 200 occurrences throughout 
the genome). Overall, the results from Modkit appeared 
more complete than those from MicrobeMod; combining 
data from both methods yielded the most reliable results.

Additionally, we identified several novel motifs that 
were not present in the REBASE dataset. These motifs 
were detected with high confidence, characterized by 
widespread methylation in nearly all motif occurrences 
and consistent methylation across reads, as indicated by 
high Percent Modified scores (ranging from 70 to 90%). 
However, two motifs (TGGCCA and TCGA) showed 
a higher proportion of unmethylated occurrences and 
lower Percent Modified scores, around 30%. These cases 
require further investigation to determine whether the 
bases are truly modified and, if so, to understand why 
some instances remain unmethylated.

Detection of methylation patterns on both strands
An interesting feature observed in our motifs table is 
that all motifs, except CAGDAC in EF35, were meth-
ylated on both strands. This was expected for palin-
dromic sequences since the sequence is identical on both 
strands, resulting in the same position being methyl-
ated both on the reverse and forward strands. However, 
we also observed this for longer Type I bipartite motifs, 
where different parts of the motif were methylated on 
opposite strands. In the case of GAAANNNNNNGGG 
in KP13, the adenine at position 4 is methylated, while 
the guanine at position 12 corresponds to a methylated 
cytosine (4mC) on the reverse strand. We also observed 
this combination of distinct methylation types (6mA and 
4mC) in GAAGAC in LM46, where the methylated bases 
were adjacent: position 4 (4mC on the reverse strand) 
and position 5 (6mA on the forward strand).

Given these results, a potential idea for a future tool 
could involve implementing an algorithm that scans for 
motifs by simultaneously detecting methylation on both 
strands rather than analyzing each modification individu-
ally. Such an approach could enhance the accuracy of 
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Fig. 5 Comparison of Dorado models 2023-09-22_bacterial-methylation (2023) and v5.0.0 using MPOA and Hammerhead for isolates KP02, LM46, and 
SA63. The number of ambiguous positions (R and Y) is substantially lower in SA63, while KP02 and LM46 show similar values (left column). We use Ham-
merhead to identify and compare the number of potentially methylated sites between the new and the old model (center column). On the right, DNA 
motif logos for the positions surrounding R and Y are obtained from MPOA using the older model based on the LAB3 dataset, clearly showing that the 
ambiguous positions R and Y correspond to methylation motifs found to be active in these isolates
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motif identification, especially in cases where one modifi-
cation exhibits a lower percentage of methylation.

The role of hypermethylated DNA regions in gene regulation 
and cellular function
Our analysis of hypermethylated regions and genes 
revealed that the methylation levels of certain genes are 
comparable to the heavily methylated oriC, which is 
known to be densely methylated with GATC motifs. We 
identified a small subset of heavily methylated genes, 
including those encoding for MlaB, PptA, ATP synthase 
subunit C, and CbiM, along with tRNA-SeC. These genes 
exhibited similar methylation levels to oriC, suggesting 
that DNA modifications may regulate key cellular func-
tions like membrane maintenance, energy production, 
and nutrient transport. Additionally, we found that rRNA 
genes are enriched in CCWGG motifs, consistent with 
previous findings [13, 53]. Additionally, we detected one 
or two occurrences of CCWGG motifs in many tRNA 
genes, which has also been noticed previously [54]. Fur-
thermore, we noted an overall higher density of CCWGG 
in genes associated with the COG category “Transla-
tion, Ribosomal Structure, and Biogenesis”. Interestingly, 
in rRNA genes from other species, particularly Staphy-
lococcus aureus, we noted an increase in positions with 
a low Percent Modified score for 5mC (> 0.2 and < 0.5), 
indicative of incomplete methylation of reads, despite the 
absence of specific detectable motifs. These bases with 
low modification levels require further investigation, as 
the low Percent Modified score could be due to technical 
issues.

We conclude that bacterial DNA methylation influ-
ences the regulation of ribosomal function and protein 
synthesis, potentially impacting cellular processes such 
as growth and proliferation. Thus, we provide further 
evidence that methylation is essential not only in restric-
tion-modification systems but also plays a broader role in 
the epigenetics of the cell. Our analysis supported these 
findings by identifying a subset of motifs that are more 
present than expected in promoter regions and/or at the 
beginning or end of genes.

Reproducibility of methylation detection across replicates 
is consistent, with some limitations from low coverage and 
partial methylation patterns
Our analysis is based on a dataset including three repli-
cates from different institutes. This setup allowed us to 
compare results from three independent sequencing runs 
and evaluate the reproducibility of methylation analysis 
using the latest nanopore technologies.

To verify the consistency and reproducibility of our 
results, we ran the analysis using the same references 
(assemblies from LAB1) to determine whether the 
exact same bases were detected as methylated across 

replicates. The analysis revealed that most of the methyl-
ated bases were consistently identified across replicates. 
However, some discrepancies were observed, particu-
larly in more challenging isolates where methylated bases 
were detected, but no corresponding motifs were found. 
This suggests that these bases could either be technical 
artifacts or represent partially methylated sites, where 
the methylation status varies across reads. For example, 
LM54, which lacked any detected motifs, still showed 
some 6mA bases, but with partial disagreement between 
labs, and a higher proportion of 6mA was detected in 
LAB1. Similarly, the 4mC methylated bases identified 
in K. pneumoniae isolates, which lacked motifs, did not 
show complete agreement across replicates.

Overall, our analysis demonstrates consistent identi-
fication of motifs among replicates by both Modkit and 
MicrobeMod. However, a few isolates showed more 
unmethylated occurrences for specific motifs. These dis-
crepancies could be due to lower sequencing coverage 
and reduced accuracy for these isolates, as in the case of 
CCWGG in KP02 from LAB3, where about 25% of the 
occurrences were unmethylated. Similarly, we observed 
slight increases in unmethylated occurrences in other 
low-coverage isolates (e.g., EF22 from LAB3 and SA62 
in LAB2). At the same time, the motifs were almost fully 
methylated in the other two labs where a higher sequenc-
ing depth was achieved. These results indicate that a 
high sequencing coverage is required to reliably detect 
all occurrences of a methylated motif (> 50X, preferably 
100X).

A hypothesis that needs further verification regards the 
methylation status of certain motifs, such as GAAGAC 
and GAAANNNNNNGGG, that were consistently meth-
ylated but exhibited a lower Percent Modified across 
replicates, suggesting that these bases may be partially 
modified in some reads. Additionally, the variabil-
ity observed in the CCWGG motif from LAB3, which 
showed a much lower average Percent Modified value 
(from ~ 0.9 to 0.65) and a higher number of unmethylated 
positions, indicates that methylation status could also 
change within colonies or under different growth condi-
tions. Partial methylation of CCWGG has already been 
investigated [55], and seems to be particularly observed 
during the mid-exponential growth phase [56]. Further 
analyses are required to establish whether these results 
are due to technical issues with the Dorado models or 
actual fluctuations in methylation status.

Recent basecalling models reduce strand-specific 
ambiguity, but errors still persist in certain motifs, 
affecting reproducibility
Many bioinformatics tools are available for extracting 
methylation levels from bacterial genomes [28, 57–59]. 
For our analysis, we chose to compare and integrate 
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results from MicrobeMod, specialized for bacteria, and a 
custom pipeline that includes ONT’s Modkit tool, as both 
are compatible with the latest flowcell version (R10.4.1) 
and the recently released POD5 format for raw Nanopore 
signal data. Many previous tools were developed for the 
outdated R9 flowcells and not updated accordingly, or are 
more specifically focused on eukaryotic (mainly human) 
DNA methylations.

Recent advancements in methylation detection using 
nanopore sequencing have significantly improved the 
accuracy of detecting methylated bases and the base-
calling of nearby positions. The latest v5 models, with 
SUP and HAC modes, allow for directly detecting 6mA, 
5mC, and 4mC bases. Despite this progress, challenges 
with basecalling near methylated sites remain. Specifi-
cally, we observed that the basecaller often misclassi-
fied a guanine preceding a methylated adenine as an 
adenine. This led to ambiguous sites where reads were 
inconsistent, with some indicating a guanine and others 
an adenine, resulting in R (mixed bases) according to the 
IUPAC code. These errors are particularly evident for a 
subset of motifs (see Figures S7 and S9). For example, 
in Biggel et al. [22], the GAAGAC motif was associated 
with erroneous sites in a subset of Listeria monocytogenes 
isolates with this actively methylated motif. We detected 
this motif also in isolate LM46, and, along with the motif 
GACNNNNNNGTC in KP02, it remains problematic in 
our dataset regarding wrong basecalls. The reasons why 
specific motifs are more difficult for the basecaller are 
still unclear. One possible explanation lies in the underly-
ing data used to train the models, which might be geared 
towards certain types of bacteria.

In our dataset, the issue seems to be sequence con-
text-specific: sequence logos of these problematic posi-
tions (Figure S9) reveal that a cytosine often precedes 
the ambiguous sites, and the methylated adenine is fre-
quently followed by either a cytosine or a thymine, result-
ing in the error-prone motif CRAY (where Y is either C 
or T). In the case of GAAGAC, it may also play a role that 
the ambiguously basecalled G at position 4 is methylated 
on the opposite strand (4mC).

These basecalling errors can be directly linked to meth-
ylation, as the issues occur only on the methylated strand. 
The non-methylated strand, in contrast, remains accurate 
in comparison to short-read data. One potential solution 
is to focus on positions with high differences between the 
two strands and use information from the non-methyl-
ated strand for better accuracy. However, this requires 
previous knowledge regarding which strand is methyl-
ated or which motifs are actively present in the genome. 
Another way to investigate the interaction between 
methylation and base calling errors is to perform addi-
tional PCR amplification before nanopore sequencing to 
obtain a purer signal without interfering modifications.

Hammerhead is a tool that uses these strand differ-
ences to infer potential methylation sites and is particu-
larly valuable for users who only have FASTQ files rather 
than raw signal data. However, our results show that such 
errors occur less frequently with the newer v5 models, 
such errors are becoming less common. Using Hammer-
head with standard pipeline settings, we found very few 
cases of potential modification in multiple isolates, sug-
gesting that this approach may not be as successful when 
basecalling accuracy for modified bases improves.

However, Hammerhead could still be useful for detect-
ing unknown, rare, or less-characterized motifs contrib-
uting to basecall errors, especially in underrepresented 
bacterial species with limited or no training data inte-
grated into the basecalling model. These errors may serve 
as valuable features for identifying potential modifica-
tions in such cases.

We have made our pipeline publicly available, enabling 
users to run Modkit efficiently on raw signal POD5 data 
and extract subsets of bases identified as methylated. We 
plan to extend this work in the future by incorporating 
new features, such as a more comprehensive overview of 
the results and improved comparison with genome anno-
tations. By that, we also aim to scan for antibiotic resis-
tance genes and measure their methylation levels.

Conclusions
Our study represents a genome-wide investigation of the 
methylation profiles of four bacterial species relevant to 
public health, using three isolates each. We compared 
raw signal data from three independent sequencing runs 
by combining the DNA sequencing results from three 
laboratories. To address the need for a comprehensive 
benchmark of the latest methylation tools available for 
microbial nanopore data, we evaluated the reproduc-
ibility of methylome profiling in selected bacteria. While 
our study provides valuable insights, it is still necessary to 
continuously benchmark the latest tools and sequencing 
advancements. However, the lack of available nanopore 
raw signal data also challenges comprehensive bench-
marks and further developments. Due to their size, the 
frequently changing specifications of the file format, and 
the lack of supporting online repositories and guidelines, 
they cannot be exchanged as straightforwardly as FASTQ 
files. Nevertheless, the recent advancements in nanopore 
technology, which is especially well-suited for bacterial 
genome sequencing and reconstruction, are opening new 
opportunities for in-depth analysis of the bacterial meth-
ylome, ultimately helping to decipher the mechanisms 
underlying the epigenetics of bacteria.
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