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Abstract 

Accurately predicting cellular responses to perturbations is essential for understanding cell behaviour in both healthy 
and diseased states. While perturbation data is ideal for building such predictive models, its availability is considerably 
lower than baseline (non-perturbed) cellular data. To address this limitation, several foundation cell models have been 
developed using large-scale single-cell gene expression data. These models are fine-tuned after pre-training for spe-
cific tasks, such as predicting post-perturbation gene expression profiles, and are considered state-of-the-art for these 
problems. However, proper benchmarking of these models remains an unsolved challenge.

 In this study, we benchmarked two recently published foundation models, scGPT and scFoundation, against baseline 
models. Surprisingly, we found that even the simplest baseline model—taking the mean of training examples—
outperformed scGPT and scFoundation. Furthermore, basic machine learning models that incorporate biologically 
meaningful features outperformed scGPT by a large margin. Additionally, we identified that the current Perturb-Seq 
benchmark datasets exhibit low perturbation-specific variance, making them suboptimal for evaluating such models.

 Our results highlight important limitations in current benchmarking approaches and provide insights into more 
effectively evaluating post-perturbation gene expression prediction models.
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Introduction
Modelling cellular phenotypes is a fundamental challenge 
in computational systems biology. Accurately predicting 
cell fate can advance our understanding of both healthy 
and diseased states and facilitate the identification of 
novel therapeutic targets. Over the past few decades, 
computational models based on Boolean logic [1] and 
ordinary differential equations (ODEs) have been devel-
oped [2]. More recently, advances in deep learning meth-
odologies have reinvigorated interest in this area [3–8].

Cellular phenotypes can be described using various 
data modalities, including transcriptomics, (phospho)
proteomics, and imaging-based phenotypic assays (phe-
nomics). Among these, transcriptomics data —derived 

from techniques such as microarrays, bulk RNA sequenc-
ing, and single-cell RNA sequencing (scRNA-seq)— is 
the most used for large-scale cellular phenotype analysis 
due to its relatively low cost and well-established analy-
sis methods [9]. While gene expression profiles do not 
directly reflect protein-mediated signalling, they offer 
a proxy for the overall cellular state [10]. Notably, post-
perturbation transcriptomics data are particularly suited 
for training computational models because the causal 
relationship between known perturbations (cause) and 
the measured post-perturbation gene expression (effect) 
allows for the modelling of mechanistic processes [11]. 
However, acquiring such perturbation data is more com-
plex than obtaining baseline (non-perturbed) transcrip-
tomics data.

To address these challenges, several Transformer-
based, foundation cell models have emerged recently [4, 
6, 7]. These models are pre-trained on vast amounts (> 10 
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M examples) of unlabelled scRNA-seq data, with the aim 
that such large datasets allow the models to capture gen-
eral principles of gene regulation and signalling. These 
pre-trained models can then be fine-tuned on perturba-
tion data to predict post-perturbation phenotypes more 
effectively.

These models had shown strong performance in post-
perturbation RNA-seq prediction tasks using Perturb-
seq-based genetic perturbation benchmarks [12]. These 
models generally predict the post-perturbation RNA-seq 
profiles of perturbed single cells by using gene expression 
data from unperturbed cells, along with a representation 
of the perturbation. The primary evaluation for these 
models is their ability to predict RNA-seq profiles for 
unseen perturbations.

However, benchmarking machine learning models in 
this domain is challenging. We have previously demon-
strated that test set selection and performance metrics 
can significantly impact benchmarking outcomes in the 
related problem of post-perturbation viability prediction 
[13]. Poor test set design or inappropriate metric choice 
can result in indistinguishable performance between 
well-performing and trivial models. Furthermore, com-
putational models of cellular phenotypes have diverse 
applications, such as predicting the effects of known per-
turbations in novel cell types (Cell Exclusive, CEX setup) 
or predicting the effects of novel perturbations in familiar 
cell types (Perturbation Exclusive, PEX setup). Unfortu-
nately, current benchmarks, which predominantly rely on 
Perturb-seq datasets comprising diverse genetic pertur-
bations in a single cell line, primarily assess PEX perfor-
mance, limiting their ability to evaluate generalisation in 
a broader context.

In this study, we benchmarked two recent transformer-
based foundation models, scGPT and scFoundation, 
across four Perturb-seq datasets. We compared their 
performances to baseline models of varying complexity. 
Surprisingly, we found that foundation models generally 
underperformed compared to a simple baseline model 
that uses the mean of the training samples. Standard 
machine learning models using biological prior-knowl-
edge outperformed foundation models by a large margin. 
We further identified that the low inter-sample variance 
in commonly used datasets complicates model perfor-
mance assessment.

Results
Benchmarking of post‑perturbation RNA‑seq prediction 
methods
scGPT and scFoundation are large language model 
(LLM) based transformer architectures, pre-trained 
on large-scale, unlabelled single-cell RNA sequenc-
ing (scRNA-seq) data. Through pre-training, scGPT 

and scFoundation learn gene embeddings and capture 
gene–gene relationships, which can then be leveraged for 
various downstream tasks, including post-perturbation 
RNA-seq prediction. The models take as input RNA-seq 
vectors from randomly selected unperturbed cells, along 
with a perturbation representation, to predict RNA-seq 
profiles of perturbed cells. scGPT uses a perturbation 
token, which is added to the perturbed gene token to 
model perturbation effects, while scFoundation uses the 
pretrained gene embeddings as inputs for the graph neu-
ral-network based GEARS [5] model for post-perturba-
tion RNA-seq prediction. For both models, we used the 
pretrained models from the original publications, and we 
fine-tuned them on the benchmark datasets according to 
the authors description.

For benchmarking, we employed the three datasets 
from the scGPT paper and extended it with another per-
turbation RNA-seq dataset. These datasets were gener-
ated using Perturb-seq, which combines CRISPR-based 
perturbations with single-cell sequencing to capture 
post-perturbation gene expression profiles. Specifically, 
the Adamson [14] dataset comprises 68,603 single cells 
subjected to single perturbation CRISPR interference 
(CRISPRi). The Norman dataset [15] includes 91,205 sin-
gle cells subjected to single or dual CRISPRa (overexpres-
sion). Lastly, two subsets [5] of the Replogle [16] dataset 
containing 162,751 and 162,733 single cells (K562 and 
RPE1 cell lines, respectively) from a genome-wide single 
perturbation CRISPRi screen were used. We evaluated 
the Perturbation Exclusive performance of models in our 
study—assessing their ability to handle unseen perturba-
tions or, in the case of the Norman dataset, unseen com-
binatorial perturbations (Supplementary Table 1).

For evaluation, we adopted the metrics used by the 
scGPT authors (Fig.  1A). Predictions were generated at 
the single-cell level, and the predicted gene expression 
profiles for each perturbation were averaged to form 
pseudo-bulk expression profiles. These predicted profiles 
were then compared to the ground truth pseudo-bulk 
profiles using Pearson correlation coefficients. Impor-
tantly, Pearson correlations were calculated not only in 
the raw gene expression space but also in the differential 
expression space (i.e., perturbed gene expression pro-
file minus control gene expression profile). Additionally, 
we evaluated performance on the top 20 differentially 
expressed (DE) genes to emphasise the model’s ability to 
capture the most significant transcriptional changes. To 
identify DE genes, we used a t-test based approach corre-
sponding to the scGPT publication, and also a Wilcoxon 
test-based approach (Methods).

To further assess prediction performance, we intro-
duced several baseline models. The simplest model, 
Train Mean, predicted post-perturbation expression 
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by averaging the pseudo-bulk expression profiles from 
the training dataset. Consequently, all predicted gene 
expression vectors are identical and set to this aver-
age vector. We also constructed Elastic-Net Regres-
sion (EN), k-Nearest-Neighbors (kNN) Regression and 
Random Forest Regressor (RF) models. These models 

took as input different prior knowledge-based features 
of the perturbed genes, namely Gene Ontology (GO) 
vectors [17], embeddings from scGPT, scFoundation 
and scELMO [18]. scELMO is a method which cre-
ates embeddings of genes, using a text description of 
them that is generated by LLMs like GPT 3.5. For the 

Fig. 1  Benchmarking foundation and baseline models (A) Schematic representation of benchmark pipeline (B) Evaluation on the Adamson 
dataset: Pearson delta metrics (y axis) for scGPT, scFoundation, Train Mean and Random Forest Regression model with different features (x axis). Main 
groups of models a colour coded. C Evaluation on the Norman dataset (D) Evaluation on the Replogle K562 dataset (E) Evaluation on the Replogle 
RPE1 dataset
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baseline models, we used pseudo-bulked expression 
profiles on the target side (detailed in Methods).

Our results show that the scGPT models we repro-
duced achieved similar performance to those in the 
original publication (Fig.  1B-E; Supplementary Table  2). 
In the raw gene expression space, all models performed 
similarly (Pearson > 0.95, Supplementary Table 2). How-
ever, the Pearson correlation values between raw gene 
expression profiles are strongly influenced by the baseline 
expression magnitudes of different genes, so we did not 
consider these metrics meaningful.

In the differential expression space (Pearson Delta, 
Fig.  1B-E; Supplementary Table  2), even the simplest 
baseline model, Train Mean reached better correlation 
(0.711, 0.557, 0.373 and 0.628 for Adamson, Norman, 
Replogle K562 and Replogle RPE1, respectively) than 
foundation models (scGPT: 0.641, 0.554, 0.327 and 0.596, 
scFoundation: 0.552, 0.459, 0.269 and 0.471 for the four 
datasets, respectively). Random Forest Regressor with 
GO features outperformed foundation models by a large 
margin (0.739, 0.586, 0.480 and 0.648, for the four data-
sets, respectively). In the Norman dataset, where com-
binatory perturbations were used, we also analysed the 
model performance for different subgroups: where 0, 1 
or 2 perturbation of the combination was present in the 
train test, and for new single perturbations. Train Mean 
and RF with GO features also outperformed foundation 
models in this subgroup analysis (Supplementary Fig.  1 
and Supplementary Table  3). Generally, EN and kNN 
models had better performance than foundation ones, 
but weaker than RF models (Supplementary Table 2).

As RF model with GO features outperformed founda-
tion models, we were interested whether this low per-
formance of foundation models is a consequence of their 
general inability to learn biological meaningful represen-
tation (i.e., embeddings) of perturbations. To test this, 
we used the pretrained foundation model embeddings 
as features of the RF model (Fig.  1B-E, Supplementary 
Table  1). We found that RF model using the pretrained 
embeddings had better performance, than the finetuned 
models itself, especially in case of scGPT (Pearson Delta 
metrics: 0.727, 0.583, 0.421 and 0.635 for Adamson, Nor-
man, Replogle K562 and Replogle RPE1, respectively), 
however still had weaker performance than RF with GO 
features. We also explored the performance of recent nat-
ural language processing-based gene embeddings from 
scELMO. RF models using scELMO features had similar 
performance (0.706, 0.663, 0.471 and 0.651, for the four 
datasets respectively) as GO based RF models. To further 
analyse the differences between embeddings, we com-
pared the mean similarity (Pearson correlation between 
embedding vectors, Methods) of gene embeddings shar-
ing biological pathways (KEGG [19], REACTOME [20]) 

or gene regulatory networks (CollecTRI [21]). We found 
that GO feature similarity had the highest intra-pathway 
similarity, followed by scELMO and scGPT, except in 
case of the CollecTRI gene regulatory network database, 
where scGPT outperformed scELMO (Supplementary 
Fig. 2).

We also analysed the model performance at the level of 
the top 20 differentially expressed (DE) genes, according 
to the original scGPT publication. Using the correlation 
between the top 20 differentially expressed genes (Pear-
son Delta DE, Supplementary Table  1), scGPT had bet-
ter performance than Train Mean. However, in the Top20 
DE genes the CRISPR target gene of the perturbation was 
frequently present. Since the target genes’ expression 
significantly decreased in CRISPRi experiments (Adam-
son, Replogle) and increased in the CRISPRa experi-
ment (Norman), and scGPT used a perturbation token 
directly associated with gene tokens, predicting target 
gene expression can be considered trivial. Removing the 
target genes from the Top20 DE gene list resulted in a 
decrease in scGPT’s performance in the Top20 DE space 
(Supplementary Table 1). Using Wilcoxon test instead of 
t-test for DE calculation did not affect these results (Sup-
plementary Table 2).

In summary we found that even the simplest predictor, 
the Train Mean model achieved better performance than 
foundation models regarding predicting the post-treat-
ment RNA-seq vectors of perturbed cells, and the simple 
Random Forest Regressor model outperformed founda-
tion models by a large margin.

Limited perturbation diversity biases benchmarking 
outcomes
To explore the unexpected strong performance of the 
simple Train Mean model, we examined the composi-
tion of the benchmark datasets in more detail (Fig. 2A). 
Although the four Perturb-seq datasets contain a large 
number of single cells (ranging from ~ 70,000 in the 
Adamson dataset to ~ 160,000 in the Replogle datasets), 
the number of distinct perturbations is comparatively 
much smaller —87 in Adamson, 284 in Norman, 1,093 in 
Replogle K562 and 1,544 in the Replogle RPE1 (Fig. 2B). 
While having multiple single cells per perturbation can 
be beneficial for model training (i.e., fine-tuning) as it 
provides insights into perturbation-specific gene expres-
sion variability, it would be surprising that large-scale 
models could efficiently learn and generalise from such a 
limited number of distinct perturbations.

To further investigate the characteristics of the 
benchmark datasets, we analysed the pairwise similari-
ties between pseudo-bulk differential expression pro-
files—computed as the difference between perturbed 
and control log-transformed gene expression vectors. 
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Fig. 2  Composition of standard benchmark datasets (A) Number of single cells (control/perturbed, colour code) in the four benchmark datasets. 
y axis is log10 scaled (B) Number of distinct perturbations in the four benchmark datasets (C) Correlation heatmaps for pseudo-bulk differential 
expression signatures for Adamson (left), and Replogle K562 (right) datasets. The black lines indicate the separation between training and test sets. 
Some samples (perturbations) are labelled on the x and y axes. D Distribution of pairwise Pearson correlations (y axis) of differential expression 
profiles for the benchmark datasets (x axis). E Comparison between median intra-dataset correlations (x axis) and Pearson Delta metrics difference 
between best and Train Mean models (y axis), colour coded by the benchmark dataset
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Specifically, we calculated Pearson correlations between 
these differential profiles for all perturbation pairs within 
each dataset (Fig.  2C, Supplementary Fig.  3). We rea-
soned that the distribution of these correlation values 
(Fig.  2D) reflects the heterogeneity of a dataset: a high 
median correlation indicates that perturbations elicit 
similar transcriptional responses (i.e., low heterogeneity), 
while a lower median correlation suggests more diverse 
responses across perturbations (i.e., high heterogene-
ity). In the Adamson dataset, we observed high similarity 
between the perturbation profiles, with a median Pearson 
correlation of 0.662, suggesting a low heterogeneity in the 
Adamson dataset. This result is not entirely unexpected, 
given that the Adamson study focused on perturbations 
specifically targeting endoplasmic reticulum homeo-
stasis, where similar transcriptional responses might 
be expected. Only a few genes exhibited anti-correlated 
expression profiles. In contrast, the Replogle K562 data-
set displayed greater variability in the perturbation pro-
files, with a lower median Pearson correlation of 0.117. 
This greater variability aligns with the genome-wide 
scope of the Replogle study, where perturbations target 
a broader range of biological pathways, leading to more 
diverse transcriptional outcomes.

To analyse the effect of dataset heterogeneity on 
benchmarking, we plotted the above-described intra-
dataset median perturbation correlations against the per-
formance difference between the best model and Train 
Mean for each benchmark dataset (Pearson Delta values, 
Fig. 2E) – this later metric represents the dynamic range 
of benchmark dataset for identifying good performing 
models. We found an inverse relationship between intra-
dataset median correlation and delta model performance, 
suggesting that more diverse datasets (Norman, Replo-
gle K562) are better suited to identify good performing 
models.

In summary, our analysis indicates that while these 
benchmark datasets contain many single cells, the actual 
biological variance between the samples is relatively 
small. This limited variance likely explains why simple 
models, such as averaging the training examples, perform 
unexpectedly well in terms of evaluation metrics. How-
ever, this small variance also hampers the benchmarks’ 
ability to effectively differentiate between more complex 
models, thereby limiting the assessment of their true 
performance.

Discussion
In this study, we compared the post-perturbation RNA-
seq prediction performance of foundation models 
against several baseline models using Perturb-seq data-
sets. Surprisingly, we found that even the simplest base-
line, the Train Mean model, outperformed scGPT and 

scFoundation in most cases. A basic machine learning 
model, Random Forest Regressor, which incorporated 
biological prior knowledge in the form of Gene Ontology 
(GO) terms, outperformed foundation models by a large 
margin. These results align with a preprint published 
during the preparation of our manuscript [22]. Our find-
ings also suggest that the current benchmark datasets, 
particularly the Adamson and Replogle RPE studies, 
may lack sufficient variability to accurately distinguish 
between the performances of different models.

Given that these benchmark datasets are primar-
ily designed to evaluate the PEX problem —predicting 
responses to novel perturbations— the correct repre-
sentation of perturbations is essential for model perfor-
mance. While scGPT and scFoundation are pre-trained 
on large-scale, unlabelled single-cell RNA-seq data and 
likely learns gene regulatory interactions, it does not 
utilise perturbation data during pre-training. Our com-
parison of embedding similarities also demonstrated, 
that scGPT embeddings show smaller associations with 
pathway information (KEGG, REACTOME) than Gene 
Ontology features, or natural language processing based 
(scELMO) embeddings. Interestingly, scGPT embed-
dings have stronger association with a gene regulatory 
network (CollecTRI) than scELMO, also underlying that 
current foundation models trained on unlabelled scRNA-
seq data are learning gene regulatory, but not protein 
interaction networks. Perturbation-specific information 
must be learned during fine-tuning of the foundation 
models. The relatively small number of distinct pertur-
bations in the benchmark datasets may not be sufficient 
to capture this complexity. In contrast, the Random For-
est Regressor’s use of GO terms as prior knowledge for 
perturbation representation appears to provide a more 
effective means of modelling perturbation responses. 
This suggests that perturbation effects, which propagate 
through signalling networks, may be better represented 
by functional categories such as GO terms than by the 
gene regulatory networks primarily learned by founda-
tion models.

Our analysis also highlights a significant limitation 
in the current benchmark datasets—low variance. The 
Adamson and Replogle RPE1 datasets exhibit high sim-
ilarity between perturbations, which hinders the ability 
to distinguish between model performances. Addition-
ally, the current benchmarks are focused exclusively on 
the PEX problem, neglecting the CEX problem, which 
involves predicting responses in novel cell types. Data-
sets such as LINCS-L1000 [23], which feature a larger 
number of cell lines and perturbations, or Mix-Seq 
[24], could serve as valuable resources for addressing 
both PEX and CEX setups and improving future bench-
marks. However, these datasets are either hybridization 
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based (LINCS-L1000) or are utilizing drug perturba-
tions, thus incorporating them into existing bench-
marks requires further development.

Our findings also raise questions about the utility of 
single-cell RNA-seq data for post-perturbation RNA-
seq prediction. While single-cell data allow for the 
modelling of cellular heterogeneity and provide larger 
sample sizes, the baseline models we used operated 
on pseudo-bulked data and performed comparably or 
better than foundation models. Single-cell expression 
profiles are often subject to technical noise, such as 
dropout events, which may obscure meaningful bio-
logical signals. In our current benchmark study, using 
single-cell data did not provide an obvious advantage 
over pseudo-bulked data, particularly given that the 
datasets were derived from in  vitro cell lines with low 
heterogeneity.

Recently, several other benchmarks have been sug-
gested for perturbation RNA-seq predictions [22, 25, 
26]. The most important differences of our benchmark-
ing are the following: 1) We show that Pearson corre-
lation in the raw gene expression space is not a useful 
metric for comparing model performances, instead 
correlation of differential expression profiles (Pearson 
Delta) should be used. This metric has been previously 
shown to be useful to compare gene expression signa-
ture similarities [23, 27], thus the similarity between 
predicted and observed gene expression profiles. 2) 
We analysed in detail the usability of different features 
(foundation model embeddings, scELMO, GO) for per-
turbation RNA-seq prediction. 3) We also highlight 
the how dataset diversity influences the benchmarking 
process.

In summary, our benchmarking revealed that founda-
tion models performed comparably to the trivial Train 
Mean model in post-perturbation RNA-seq predic-
tion tasks and were outperformed by a Random Forest 
Regressor utilising prior biological knowledge. Further-
more, the low variance in the commonly used bench-
mark datasets limits their ability to effectively assess 
model performance. Although our analysis focused 
on scGPT and scFoundation, other foundational mod-
els that have been tested on the same datasets may 
face similar limitations. While single cell foundational 
models like scGPT hold promise due to their abil-
ity to incorporate large-scale, unlabelled data, several 
recent studies [28, 29] suggest that their performance 
on certain tasks may lag behind state-of-the-art or even 
baseline models. Moving forward, more rigorous and 
meaningful benchmarks that include higher variance 
and incorporate diverse datasets are needed to properly 
assess the applicability of machine learning models in 
post-perturbation prediction tasks.

Methods
Benchmark datasets
The benchmark datasets (Adamson [14], Norman and 
two Replogle [16] datasets) were downloaded and pro-
cessed by the GEARS’ cell-gears v0.0.1 package [5]. Sin-
gle cell expression values were normalised to 10000 
reads and log transformed. Top 20 mostly differentially 
expressed genes were used from the original GEARS 
publication to ensure the consistency of our benchmark 
with the published results. The top 20 DE genes were 
calculated with the tl.rank_genes_groups() function of 
Scanpy [30] with default parameters. To ensure that our 
benchmark is not affected by DE calculation, we also 
selected the top 20 DE genes using Wilcoxon test (tl.
rank_genes_groups(method = ’wilcoxon’)). All benchmark 
datasets were split into train, validation and test sets 
according to the GEARS publication - corresponding to 
Perturbation Exclusive split, where new, unseen pertur-
bations (or perturbation combinations) were present in 
the test set (Supplementary Table 1).

Foundation models
We reproduced scGPT’s results on the GEARS bench-
marking datasets using the cell-gears v0.0.1 package and 
a fork of scGPT v0.2.1 (commit 7301b51). The default 
hyperparameters were kept, most notably; model and 
feedforward dimensions at 512, number of layers at 12, 
number of heads at 8. Fine tuning was conducted for 15 
epochs, selecting the best-performing epoch based on 
validation set performance. All training runs were exe-
cuted on Nvidia A100 GPUs (80 GB). The fine-tuning 
procedure was applied consistently across all four data-
sets: Adamson, Norman, Replogle K562, and Replogle 
RPE1. To train the scFoundation model on the bench-
mark datasets, its corresponding repository at the com-
mit 69b0710 was used. ScFoundation was fine tuned for 
10 epochs with an effective batch size of 32 on all tasks. 
By default, scFoundation trains for 15 epochs, using an 
effective batch size of 30. By epoch 10, the model already 
converged and thus, an early stopping was sensible in all 
tasks. The rest of the hyperparameters were kept con-
stant. The model was trained on the same hardware as 
scGPT.

Baseline models
scGPT’s performance was compared against four base-
line models: 1) Train Mean 2) Random Forest Regres-
sor, 3) Elastic Net and 4) k-Nearest-Neighbour (kNN) 
Regressor. The Train Mean model predicts the same 
vector for each test sample, calculated as the mean post-
perturbation pseudo-bulk expression across all training 
samples for each perturbation. Other baseline models 
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used different prior knowledge-based embeddings of 
the perturbed gene as features, and the pseudo-bulked 
gene expression profiles (same genes as for foundation 
models) as targets. We used the same splits for founda-
tion and baseline models. Gene Ontology terms for all 
genes were downloaded using the decoupler Python 
package [31], and reformatted as a binary gene – Gene 
Ontology term indication matrix. PCA dimensional-
ity reduction was applied to the GO matrix (n_genes, 
n_functions), reducing it to 256 principal components. 
For each sample, the perturbed gene was identified 
from the PCA-transformed GO features. In cases where 
multiple perturbations occurred in a single sample, the 
embeddings were simply summed. When using scElmo’s, 
scGPT’s, scFoundations embeddings as an alternative 
to the GO, the same preprocessing was applied to these 
embeddings as for the GO. We used GPT3.5 embeddings 
from scELMO (https://​sites.​google.​com/​yale.​edu/​scelm​
olib). The Random Forest Regressor model was tuned for 
the n_estimators hyperparameter. The Elastic Net model 
was tuned in a similar manner but for the l1_ratio hyper-
parameter, while the K-Nearest-Neighbors Regressor was 
tuned for the k neighbours’parameter. The best hyperpa-
rameter setting was selected based on the validation set 
performance in all models. The Random Forest Regres-
sor, Elastic Net and k-Nearest-Neighbors were trained 
using the scikit-learn v1.5.2 Python package [32].

Model evaluation
The model performance was evaluated using four met-
rics: 1) Pearson, 2) Pearson Delta, 3) Pearson Delta DE, 
and 4) Pearson Delta without target genes. The first three 
metrics were used in the scGPT paper. All metrics were 
calculated at the ’bulk’ level, meaning that conditions 
(control and perturbed states) were mean aggregated 
over the gene dimension.

’Pearson’ refers to the raw correlation between pre-
dicted and true post-perturbation expressions. ’Pearson 
Delta’ refers to the correlation between the differential 
expression (post—control) of predicted and true post-
perturbation expressions. ’Pearson Delta DE’ is a varia-
tion of Pearson Delta that is calculated only for the top 
20 most differentially expressed genes. ’Pearson Delta 
without target genes’ excludes the CRISPR target gene(s) 
from the top 20 most differentially expressed genes.

Gene embedding similarities
The biological coherence of the scGPT, scFoundation, 
scELMO, and GO gene embeddings was assessed by 
examining their correlation-based gene similarity net-
works in relation to well-characterized pathways from 
the Reactome [20] and KEGG [19] databases, as well 
as transcription factor-target interactions from the 

CollecTRI [21] database. To ensure consistency across 
comparisons, 16,239 genes common to all four embed-
dings were identified. For each embedding, gene vectors 
were extracted, and Pearson correlations were computed 
between all gene pairs within each pathway, generating a 
gene–gene correlation matrix. To evaluate the biological 
relevance of these embeddings, observed within-path-
way correlations were compared against a null model in 
which gene vectors were randomly permuted, preventing 
any gene from retaining its original vector. For each path-
way, the difference between real and randomized correla-
tions was computed. The distributions of Pearson Delta 
values were visualized using bar plots, where each bar 
represented the mean Pearson delta across pathways with 
95% confidence intervals.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​025-​11600-2.

Supplementary Material 1: Supplementary Figure 1 – Subgroup analysis 
for Norman dataset Evaluation on the Norman dataset: Pearson delta 
metrics (y axis) for scGPT, scFoundation, Train Mean and Random Forest 
Regression with GO features (x axis, top) and for Random Forest Regres-
sion model with different features (x axis, bottom). Different subgroups 
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