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Abstract
Background Cotesia congregata is a parasitoid Hymenoptera belonging to the Braconidae family and carrying 
CCBV (Cotesia congregata Bracovirus), an endosymbiotic polydnavirus. CCBV virus is considered as the main virulence 
factor of this species, which has raised questions, over the past thirty years, about the potential roles of venom in the 
parasitic interaction between C. congregata and its host, Manduca sexta (Lepidoptera: Sphingidae). To investigate C. 
congregata venom composition, we identified genes overexpressed in the venom glands (VGs) compared to ovaries, 
analyzed the protein composition of this fluid and performed a detailed analysis of conserved domains of these 
proteins.

Results Of the 14 140 known genes of the C. congregata genome, 659 genes were significantly over-expressed (with 
10-fold or higher changes in expression) in the VGs of female C. congregata, compared with the ovaries. We identified 
30 proteins whose presence was confirmed in venom extracts by proteomic analyses. Twenty-four of these were 
produced as precursor molecules containing a predicted signal peptide. Six of the proteins lacked a predicted signal 
peptide, suggesting that venom production in C. congregata also involves non-canonical secretion mechanisms. We 
have also analysed 18 additional proteins and peptides of interest whose presence in venom remains uncertain, but 
which could play a role in VG function.

Conclusions Our results show that the venom of C. congregata not only contains proteins (including several 
enzymes) homologous to well-known venomous compounds, but also original proteins that appear to be specific 
to this species. This exhaustive study sheds a new light on this venom composition, the molecular diversity of which 
was unexpected. These data pave the way for targeted functional analyses and to better understand the evolutionary 
mechanisms that have led to the formation of the venomous arsenals we observe today in parasitoid insects.
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Background
Parasitoid insects are defined as organisms that develop 
at the expense of another host organism, whose death 
results from a direct or indirect consequence of their 
development [1]. Among parasitoid species, parasitoid 
wasps (Hymenoptera) manipulate their host’s physiol-
ogy using a diversified range of virulence factors includ-
ing embryonic, larval and maternal factors. Embryonic 
factors include the use of specialized cells named terato-
cytes, originating from the extraembryonic serosa, which 
abundantly secrete proteins into the haemolymph of the 
parasitized host [2, 3]. The main larval factor is saliva 
[4, 5]. Maternal factors include ovarian proteins [6–10], 
symbiotic polydnaviruses (PDVs) or virus-like particles 
(VLPs) produced by endogenous viruses present in the 
genome of these insects [11–15]. Female wasps within 
the genus Leptopilina also produce extracellular vesicles 
formerly named VLPs, but now also designated by dif-
ferent authors as Mixed Strategy Extracellular Vesicles 
(MSEV) [16] or venosomes [17]. It is indeed a matter of 
debate whether the filamentoviridae endogenous virus 
present in the Leptopilina genomes [18] is involved in 
vesicle production, as only one virally derived protein 
could be identified as being part of these structures by 
proteomic analyses [19]. All hymenopteran parasitoid 
females inject venom in the parasitized host at the time 
of oviposition [20, 21], making venom gland (VG) secre-
tions a very important category of maternal factors. After 
venom injection, one or several eggs are deposited out-
side (for ectoparasitoids) or inside (for endoparasitoids) 
the body of the insect host [22], depending on the para-
sitic lifestyle. In some cases, ovarian fluids antagonize the 
powerful effects of venom toxins that otherwise would 
prematurely kill the host [23, 24].

The composition and functions of venoms from ecto-
parasitoid and endoparasitoid species have received a 
growing interest thanks to major improvements in high 
throughput analyses of DNA, RNA and proteins which 
allow combined analytical approaches [25, 26].

Since 2015, venoms of over 45 parasitoid species have 
been thoroughly investigated by these means, allowing 
the description of the cocktail of peptides and proteins 
that enter in their composition. However, many questions 
remain unanswered, such as what are the mechanisms at 
the basis of VG cell secretion and what are the evolution-
ary forces that drive the evolution of the virulence fac-
tors contained within venom. It appears that the role and 
composition of venoms can greatly vary even between 
closely related species of parasitoid Hymenoptera [20]. 
In this regard, the Cotesia genus (Hymenoptera: Braco-
nidae) is an interesting taxon to study with a great varia-
tion in the importance of venom for parasitic success 
depending on the species and in the functional diversi-
fication among venomous secretions. For example, in 

Cotesia melanoscela, the venom ensures virus uncoating 
and uptake of viral particles by host cells [27] whereas in 
Cotesia glomerata, it directly protects eggs from encap-
sulation by the hemocytes of the host Pieris rapae [28]. 
In Cotesia rubecula, the Vn4.6 venom polypeptide is 
known to interfere with the activation of the host hemo-
lymph prophenoloxidase [29]. The venom of Cotesia chi-
lonis inhibits host humoral immunity and synergizes the 
immunosuppressive effects of the calyx fluid produced at 
the basis of the ovaries of the female wasp [30]. In Cotesia 
vestalis (formerly named Cotesia plutellae), the venom 
also synergizes the immunosuppressive effect of calyx 
fluid or PDVs and has a transient effect, at high doses, 
on the spreading and survival of Plutella xylostella plas-
matocytes [31].

By contrast, Beckage et al. stated in 1994 that host 
envenomation was not required for the parasitic success 
of Cotesia congregata, since eggs experimentally injected 
with PDVs alone into caterpillars of its host, the tobacco 
hornworm (Manduca sexta), were able to develop suc-
cessfully [32]. In addition, injection of venom alone in 
non-parasitized M. sexta larvae had no apparent effect 
on the levels of hemolymph proteins, larval growth and 
metamorphosis [32]. However, the production of a mix 
of active substances likely represents a significant physio-
logical cost for C. congregata females. It is hence doubtful 
that this complex arsenal selected during evolution has 
no effect on parasitism success [33]. Subtle effects may 
have been overlooked due to methodological limitations 
or biases in the experimental design of previous physi-
ological studies. To provide further clues on the potential 
role of C. congregata venom, we investigated its protein 
composition by combining genomic, transcriptomic 
and proteomic approaches. In the present paper a brief 
anatomical description of the venom apparatus is given, 
using fluorescent microscopy and confocal imaging, fol-
lowed by a detailed list of the main venomous compo-
nents. Our results are discussed in the light of knowledge 
gained on the composition of venoms of hymenopteran 
parasitoids in the last ten years. Together, these new data 
pave the way for functional studies and the understand-
ing of the evolutionary mechanisms that led to the for-
mation of the venomous arsenals we observe today in 
modern Hymenoptera.

Methods
Rearings and sample preparation
The C. congregata laboratory strain was reared on its nat-
ural host, the tobacco hornworm, M. sexta (Lepidoptera: 
Sphingidae) fed using artificial diet as described previ-
ously [32, 34, 35].

Isolation of ovaries and VGs of C. congregata females in 
order to perform mRNA and protein analyses were per-
formed as previously described [36]. Briefly, ovaries and 
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VGs were extracted from females at emergence. Female 
wasps were anesthetized on ice for several minutes, 
shortly rinsed in 70% ethanol and air dried. The abdomi-
nal organs, including ovaries and venom apparatuses, 
were gently pulled out with forceps and placed in 50  μl 
sterile Insect Ringer (for RNA extraction and micros-
copy) or sterile water (for collection of venom extracts).

Fluorescence microscopy and confocal microscopy 
imaging of VGs
Observation of VGs under confocal microscopy was per-
formed according to the protocol published by Cambier 
and collaborators [37].

RNA extraction and RNA-seq analysis
Two replicates of 20 pairs of ovaries and 100 pairs of 
VGs were dissected and pooled together. RNA extrac-
tions were performed and RNA-Seq library preparations 
were carried out from 1 to 2 μg total RNA as described in 
[36]. Each library was sequenced using 100 bp paired-end 
reads on a HiSeq2000 Illumina sequencer. A total of 19.2 
Gb were sequenced for the four libraries with an aver-
age of 48.2  million reads per library (sd = 6.2 millions). 
The paired-end reads from C. congregata ovary and VG 
libraries were mapped on the reference genome [36] 
using TopHat2 with default parameters [38] resulting 
in an average mapping percentage of 91.1% (sd = 5.6%) 
(detailed in [36]). The featureCounts program from the 
Subread package [39] was used to determine fragment 
counts per genes (default parameters) using the C. con-
gregata OGS2.3_20170323 containing 14 140 genes and 
available at  h t t p  s : /  / b i p  a a  . g e  n o u  e s t .  o r  g / s p / c o t e s i a /.

To analyze gene expression the raw fragment counts of 
ovaries and VGs samples were first converted to counts 
per million (CPM) using the edge-R implemented pack-
age [40]. Statistical analysis was further performed fol-
lowing standard protocol as we previously described 
[36], including the edgeR TMM method for Normaliza-
tion Factor calculation [41] and empirical Bayes quasi-
likelihood F-tests to identify differentially expressed (DE) 
genes under chosen contrasts [42]. F-test p-values were 
adjusted using false-discovery rate (FDR) method [43]. 
When FDR was inferior to 0.001 and fold change (FC) 
of expressions between compared conditions was higher 
or equal to 2, genes were considered as DE. Genes with a 
significantly higher level of expression in VGs compared 
to ovaries were considered as putative venom genes.

Collection of venom proteins
Thirteen newly emerged C. congregata females were 
anesthetized on ice and their venom apparatus (two VG 
filaments and a central reservoir) was dissected in 50 μL 
of sterile milliQ water at 4 °C, under a Stemi stereomicro-
scope (Carl Zeiss Microscopy GmbH, Jena, Germany). 

To avoid the leakage of venomous fluid from the reser-
voir, each venom apparatus was first separated from the 
venom duct (ductus venatus) downstream from the res-
ervoir’s distal end and transferred in another drop of cold 
50 μL sterile water, using a thin entomological pin. Sur-
rounding fat tissues were carefully removed before the 
transfer of the venom apparatus in 15 μL of sterile milliQ 
water, kept on ice, with a sterile thin pin. The reservoir 
was then gently pressed with the pin to allow venom to 
diffuse in water, and the organ was immediately removed 
with the pin. When venom was extracted from the 13 
venom apparatuses, the extract was centrifuged (1000 g, 
5  min, 4  °C) and the supernatant was recovered and 
stored 15 h at -20 °C. Protein concentration of the venom 
extract was determined in triplicates by spectrophotom-
etry according to Bradford method [44].

To visualize the protein profile by SDS-PAGE, 7 μL of 
venom extract containing 10  μg of total proteins were 
mixed with 2 μl of 5X concentrated Laemmli sample buf-
fer (0.225 M Tris-HCl pH 6.8, 12% (w/v) SDS, 50% (v/v) 
glycerol, 0.5% bromophenol blue, 5% (v/v) b-mercapto-
ethanol) and 1 μL milliQ water and heated at 96  °C for 
5  min. Fractionation of proteins was performed using a 
12,5%Tris-SDS gel or a 15%Tris-SDS gel [see Additional 
file 1]. Electrophoresis was performed in 0.025  M Tris, 
0.2 M glycine, and 0.1% (w/v) SDS. Staining of the gel was 
done overnight by soaking the gel in a staining solution 
(0.1% (w/v) Coomassie Brilliant Blue R-250 (MP Biomed-
ical) in 50% (v/v) ethanol and 10% (v/v) acetic acid), fol-
lowed by several baths of destaining solution (20% (v/v) 
ethanol and 7.5% (v/v) acetic acid) to destain the gel. 
Destaining was stopped with milliQ water.

For protein identification by GeLC-MS/MS (protein 
samples included in polyacrylamide gel and analyzed by 
nanoLC–MS/MS after in-gel digestion), venom extract 
was included in a 12,5%Tris-SDS polyacrylamide gel 
without fractionation electrophoresis using a constant 
voltage of 70 V in the stacking gel and 100 V in the run-
ning gel, for only 5  min. After staining with Coomassie 
Brilliant Blue R-250, the single band was excised and 
transferred into an Eppendorf tube and stored at -20 °C.

Analysis of venom proteins by tandem mass spectrometry
The gel band was cut and in-gel digestion step was per-
formed as previously described [45]. The resultant pep-
tide mixture was analyzed by on-line nanoflow liquid 
chromatography tandem mass spectrometry (nanoLC-
MS/MS) at the PIXANIM platform (INRAE, Nouzilly, 
France) as previously described [46]. Briefly, all experi-
ments were performed on a LTQ Velos ETD Orbitrap 
Mass Spectrometer coupled to an Ultimate® 3000 RSLC 
Liquid Chromatographer (Thermo Fisher Scientific, Bre-
men, Germany) controlled by Chromeleon Software (v 
6.80 SR13).

https://bipaa.genouest.org/sp/cotesia/
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Samples were concentrated on a trap column (Acclaim 
PepMap 100 C18, 75  μm inner diameter x 2  cm long, 
3  μm particles, 100 Å pores) and separated on a nano-
column (Acclaim PepMap C18, 75 μm inner diameter x 
50 cm long, 2 μm particles, 100 Å pores) at 300 nL/min. 
Mobile phases consisted of (A), 98% water, 2% acetoni-
trile in presence of 0.1% formic acid and (B) 20% water, 
80% acetonitrile in presence of 0.1% formic acid. The gra-
dient profile was as follows: (i) Equilibration of the col-
umns with 96% solvent A and 4% solvent B; (ii) Gradient 
from 4 to 55% solvent B in 120 min; (iii) Step up to 99% 
solvent B for 15 min. Data were acquired in positive data-
dependent mode using an Orbitrap resolution at 60,000. 
In the 300–1800  m/z range, the 20 most intense multi-
charged peptide ions were sequentially isolated (isolation 
width 2  m/z, 1 microscan) and fragmented in the trap 
using collision induced dissociation ion mode (collision 
energy at 35%, activation time 10 ms, Qz 0.25). Dynamic 
exclusion was activated (30  s with a repeat count of 1). 
A lock mass was enabled using the polydimethylcyclosi-
loxane ions (m/z 445.120025) for internal recalibration of 
the mass spectra.

MS/MS ion searches were performed using Mascot 
search engine version 2.7.0.1 (Matrix Science, London, 
UK) via Proteome Discoverer 2.5 software (Thermo-
Fisher Scientific, Bremen, Germany) against a local data-
base comprising all the predicted amino acid sequences 
deduced from the genome of C. congregata. The param-
eters used for database searches include trypsin protease 
with two missed cleavages allowed, carbamidomethyl-
ation, methionine oxidation and N-terminal protein acet-
ylation as variable modifications. The error tolerance of 
the ions was set to 5 ppm for precursor and 0.8 Da for 
fragment ion matches. Results obtained from the target-
decoy database searches were incorporated to Scaffold 
Q + S software (version 5.2.2, Proteome Software) [47] 
and were validated by the “Peptide Prophet” and “Protein 
Prophet” algorithms at the level of unique peptide with a 
protein identification probability at 99%.

Sequence analysis
Nucleotide sequences of putative venom genes have been 
automatically annotated previously [36]. The automated 
annotations were followed by manual curations, correc-
tions and expert annotations. Similar sequences were 
retrieved by comparing the sequences of interest with 
NCBI non redundant database with the BLASTP.

The signalP 6.0 algorithm [48] was accessed online [49] 
to predict the presence of five types of signal peptides, 
with the “Other” parameter selected. Functional annota-
tions of the deduced amino acid sequences of all the puta-
tive venom genes were performed using the InterPro web 
site [50] that allows classification of submitted sequences 
in protein families and detailed sequence analyses by a 

set of specialized algorithms [51]. Sequences of proteins 
of unknown function were submitted to the Eukaryotic 
Linear Motif (ELM) server [52, 53] and to the Phyre2 web 
portal [54]. Other internet portals and databases were 
used for sequence analyses including Prosite [55, 56], 
Pfam [57, 58], PRINTS [59, 60], PANTHER [61, 62], Gen-
Bank [63, 64] and ParWaspDB [65].

Theoretical pI and Mw of each protein were calculated 
using the Compute pI/Mw online program [66–68]. Dif-
ferences between groups of proteins with respect to their 
probabilities to possess a SP, their theoretical pI and Mw 
and the levels of overexpression of the corresponding 
genes were statistically tested using the Mann-Whitney 
U test, the Kruskal-Wallis one-way ANOVA test and the 
contingency Chi2 test using the Tanagra complement for 
Excel [69], with alpha acceptance levels of statistical sig-
nificance between 0.05 and 0.1.

Results
Morphology of the venom apparatus of C. congregata
The venom apparatus of C. congregata females is closely 
associated with the reproductive tract. It consists of a 
bilobed glandular system secreting venom in a central 
reservoir connected to the ovipositor via a short venom 
duct (Fig.  1A, B and C). Observed in confocal micros-
copy imaging using actin and DNA staining, the glan-
dular cells appeared to be organized around a central 
chitin-lined collecting duct to which they are connected 
through small secretory ductules, also lined with chitin 
(Fig. 1D, E and F). The venom sac epithelia is surrounded 
by a loose network of striated muscular fibers, with no 
apparent glandular cells (Fig. 2A, B and C).

Properties of venom proteins and relations with levels of 
genes expression
Thirty-one bands were observed on a 12.5% SDS-PAGE 
profile of a venom extract (Fig.  3) and on a 15% SDS-
PAGE [see Additional file 1]. The apparent molecular 
weights of these denatured proteins ranked from 11 kDa 
to more than 250 kDa. Some bands could contain several 
proteins and some proteins could be composed of sev-
eral subunits or isoforms leading to several bands. To go 
further and solve the venom composition of females C. 
congregata, we combined proteomic and transcriptomic 
analyses.

Overall, 659 genes were differentially expressed and 
upregulated (fold changes of expressions higher or equal 
to 10) in the VGs of females C. congregata compared 
to their ovaries, over a set of 14 140 genes. Conversely, 
1881 genes were differentially expressed and upregu-
lated in ovaries. A number of genes (8475) were similarly 
expressed in both organs, while 3125 genes were neither 
expressed in VGs nor in ovaries at detectable levels.
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Among the 659 genes differentially expressed in VGs, 
we have analyzed a set of 30 genes encoding proteins and 
polypeptides (Fig.  4; Table  1) that were all detected in 
venom extracts by proteomic analysis [see Additional file 
2]. Among them, we found 24 “venom proteins with SP” 

whose precursor forms all contained a predicted signal 
peptide (SP) and six “venom proteins devoid of SP” [see 
Additional file 3]. Concerning the second group of pro-
teins, their corresponding genes were all overexpressed 
by VGs compared to ovaries: the levels of expression 

Fig. 2 The venom reservoir of a female C. congregata observed in confocal microscopy imaging. A: Observation of nuclei using a 330–380 nm filter after 
DAPI staining; B: observation of chitin and actin-associated molecules using a 465–495 nm filter after FITC staining; C: merged picture of A and B. VR, 
venom reservoir. Pictures were taken using the 10x objective of the confocal microscope

 

Fig. 1 The venom apparatus of a female C. congregata observed in confocal microscopy imaging. A: Observation of nuclei using a 330–380 nm filter after 
DAPI staining; B: observation of chitin and actin-associated molecules using a 465–495 nm filter after FITC staining; C: merged picture of A and B. D-F: 
The venom gland at higher magnification. OV, Ovipositor; VG, venom gland; VR, venom reservoir. Pictures were taken using the 4x objective (A-C) or the 
60x objective (D-F) of the confocal microscope
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observed in VGs were 133 to 3.9 million-fold higher than 
in ovaries. However, none of them possessed a predicted 
SP, suggesting that these proteins used a divergent SP or a 
non-conventional transport pathway to be secreted in the 
venom of C. congregata. Three of them (vpcc35, vpcc38, 
vpcc39) were similar to proteins with predicted func-
tions while the remaining three proteins (vpcc31, vpcc33, 
vpcc34) were of unknown function.

Concerning the first set of 24 “venom proteins with SP”, 
17 venom proteins with predicted functions were iden-
tified, including 10-6, 80-6, 80-10, 90-3, 100-6, vpcc1, 
vpcc4, vpcc5, vpcc7, vpcc8, vpcc12, vpcc13, vpcc17, 

vpcc19, vpcc24, vpcc29 and vpcc36. The genes encod-
ing these proteins were all overexpressed by VGs, with 
observed levels of transcript production being 17.99 to 
almost 39  million-fold higher in VGs compared to ova-
ries (Table 1).

Within the group of the 24 “venom proteins with SP” 
also figured a set of 7 proteins of unknown or undefined 
functions including 80-4, 90-9, vpcc16, vpcc20, vpcc21, 
vpcc30 and vpcc37 [see Additional file 3]. They possessed 
predicted SPs and their presence in venom was con-
firmed by proteomic analysis [see Additional files 2 and 
3]. Their respective genes were highly expressed by VGs, 
with levels of transcript production being 3023 to 4143-
fold higher compared to those observed in the ovaries of 
C. congregata females.

In addition to the 30 venom proteins of C. congregata, 
14 “putative venom proteins and peptides” were charac-
terized [see Additional files 4 and 5]. With the exception 
of 80-5b, they all possessed a predicted SP, but their pres-
ence in venom was not confirmed by proteomic analyses. 
The genes coding for these proteins and peptides were all 
significantly overexpressed in VGs (from 14.09 to 1 693 
151.32-fold higher than in ovaries). Their presence in 
venom, although plausible, has not been experimentally 
established. This group included eight proteins similar to 
proteins with predicted functions (vpcc2, vpcc10, vpcc11, 
vpcc18, vpcc22, vpcc23, vpcc28, vpcc40) and six pep-
tides of unknown function (80-5a, 80-5b, vpcc6, vpcc9, 
vpcc14, vpcc15).

Finally, we analyzed four “products of genes overex-
pressed by VGs”, devoid of SP and not detected in venom 
[see Additional files 4 and 5]: vpcc27, vpcc41, vpcc25 
and vpcc26. The levels of expression of these genes in 
VGs were 132 to 1633-fold higher than in ovaries. Upon 
sequence analysis and comparison, some functions could 
be assigned to vpcc27, vpcc41 and vpcc25 but not to the 
vpcc26 peptide.

The levels of overexpression greatly varied among 
genes encoding the 30 venom proteins of C. congregata 
(Fig. 4). A small subset of genes (6 out of 30 genes, here-
after designed as “massively expressed genes”) reached 
impressive levels of differential expression between VGs 
and ovaries exceeding 1 million-fold. Thirteen additional 
genes (“highly expressed genes”) had levels of expres-
sion comprised between 100 and 700 thousand-fold 
the expression observed in ovaries, while the remaining 
11 genes (“overexpressed genes”) were overexpressed 
between 18-fold and 86 thousand-fold more in VGs 
than in ovaries. The distribution of the 30 genes between 
these three categories differed significantly according to 
the probability that the corresponding venom protein 
possessed or not a predicted SP (Chi2 test value = 6.2, 
p-value = 0.045). The proteins possessing a predicted SP 
were encoded by genes exhibiting levels of overexpression 

Fig. 3 12.5% SDS-PAGE profile of C. congregata venom proteins (Coo-
massie Brilliant Blue staining). Positions of the molecular weight markers 
are indicated on the left
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that were significantly higher (1 998 172.53 ± 7897 
706.92-fold the level of expression observed in ovaries, 
in average) than those of genes encoding venom proteins 
devoid of any SP (1 316 527.26 ± 1 538 898.93) (Mann-
Whitney U test, U = 39, p-value = 0.08709, α = 0.1). More 
information about the clustering of RNA samples from 
ovaries and VGs and expression levels of each gene cor-
responding to venom proteins, putative venom protein or 
peptides or gene products overexpressed by VGs is given 
in additional material [see Additional files 6 and 7].

Nineteen out of the 30 identified venom proteins had 
a theoretical isoelectric point (pI) below 7 and the aver-
age theoretical pI was 6.48 ± 1.48. The average theoreti-
cal molecular weight (Mw) of these venom proteins was 
38 521.41 ± 17 322.50 Da, but we could not include in our 
proteomic analysis peptides below 11 000 Da for techni-
cal reasons. Indeed, venom proteins were submitted to 
a short SDS-PAGE run and analyzed from a gel slice cut 
out from this gel. Most peptides were likely lost during 
the run. Thus, the average Mw of the proteinic and pep-
tidic fraction of C. congregata venom is probably inferior 
to this value. Acidic venom proteins had a slightly higher 
probability to possess a SP (0.82 ± 0.37) than basic venom 

proteins (0.71 ± 0.45) (Mann-Whitney U test, U = 56, 
p-value = 0.03686).

Functional predictions inferred from 17 sequence analyses
We will introduce and discuss hereafter the possible 
functions of 17 proteins, whose presence in the venom of 
C. congregata females was confirmed by proteomic anal-
ysis, with respect to the most recent knowledge acquired 
on their respective families or class of molecules. When 
possible, we extended the functional annotation to simi-
lar proteins expressed by the VGs of other parasitoids, 
in order to compare their structures and to infer puta-
tive functions. Another group of 13 confirmed venom 
proteins of unknown function and/or devoid of SP was 
analyzed and discussed in detail in the supplementary 
materials [see Additional file 3]. An additional set of 18 
putative venom proteins, peptides and interesting gene 
products, whose secretion could not be confirmed by 
proteomic analysis, was also analyzed in detail [see Addi-
tional file 4].

Fig. 4 Expression patterns of 30 genes identified via proteomics of pure venom. A: Volcano plot of differentially expressed genes (DEGs) between ovaries 
(Ov) and venom glands (Vg). Genes up-regulated in ovaries and VGs are highlighted in blue and pink, respectively. The thresholds for significant differ-
ential expression are a fold-change (FC) > 2 (horizontal dashed lines) and FDR ≤ 0.001 (vertical dashed lines). Among the VG-upregulated genes, those 
encoding the 30 proteins identified in pure venom are specifically highlighted. B: Heatmap of expression levels for the 30 venom genes. Expression is 
shown as counts per million (CPM) across VG (Vg1, Vg2) and ovary (Ov1, Ov2) samples. Genes are hierarchically clustered based on their expression levels 
and FC between VGs and ovaries. Genes encoding venom proteins with predicted signal peptides (SP) are marked in black, while the six venom proteins 
lacking SP are shown in white
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vpcc1
The vpcc1 (584 amino acids) venom protein belonged 
to the 5’-nucleotidase/apyrase enzyme family (InterPro: 
IPR006179). The sequence exhibited the conserved con-
sensus pattern of 5’-nucleotidases ([LIVM]-x-[LIVM]
(2)-[HEA]-[TI]-x-D-x-H-[GSA]-x-[LIVMF]) between 
positions 29 and 41 of the mature protein. The vpcc1 pro-
tein exhibited 77.15 to 88.36% of sequence identity with 
5’-nucleotidases predicted from the genomes of the para-
sitoids Glyptapanteles indiensis (GenBank: ABK56991.1), 
Glyptapanteles flavicoxis (GenBank: ACE75062.1) and C. 
glomerata (NCBI Reference Sequence: XP_044589411.1 
and XP_044589412.1 and GenBank: KAH0547187.1), 
which correspond likely to homologous proteins of these 
closely related species.

vpcc19 and 10-6
Two proteins belonging to the histidine phosphatase 
superfamily were identified in the venom of C. congre-
gata: the vpcc19 (378 residues) and the highly similar 
10-6 (374 residues) protein. They shared 93% of sequence 
identity. They also shared 46% of sequence identity with 
vpcc18 (370 residues), a protein whose presence in 
venom has not been confirmed by our proteomic analy-
sis. The catalytic domains of these three proteins con-
tained five conserved residues (R10, H11, R14 and H264 
of the mature proteins, respectively), forming a catalytic 
core conserved among enzymes of the second branch of 
histidine phosphatases superfamily.

100-6
A neprilysin-2-like protein, the 100-6 protein (701 resi-
dues including a 26 amino acids SP), has been identified 
in the venom of C. congregata. Its sequence is the lon-
gest among the venom proteins of C. congregata. The 
100-6 venom protein belongs to the Peptidase M13 fam-
ily [70]. It possesses the two groups of highly conserved 
motifs forming zinc-binding domains, which characterize 
neprilysin (NEP) proteins [71, 72]: at positions 514 to 518 
(HELSH corresponding to the HExxH conserved motif ) 
and 575 to 579 (ENIAD, corresponding to the ExxxD 
conserved motif ) of the mature protein. Interestingly, 
a third highly conserved consensus sequence of NEPs 
(NAY/FY) that mediates substrate or inhibitor binding, 
is modified in “NAMY” between positions 473 and 476 
of the 100-6 mature venom protein. In contrast, a fourth 
conserved motif (CxxW), present at the C-terminal end 
of NEPs and critical to protein folding and maturation 
[73], is absent in the 100-6 protein.

vpcc29
The tertiary structure of the vpcc29 venom protein (248 
amino acids) corresponded to a protein related to tryp-
sin-like serine proteases, according to the Phyre2 web 

portal. It possessed a domain found in proteases belong-
ing to the MEROPS peptidase family S1 (clan PA) (Inter-
Pro: IPR009003). However, the classic catalytic triad of 
known serine proteases (His57, Asp102 and Ser195 as in 
chymotrypsinogen A) [74] was modified in vpcc29 in a 
Leu-Val-Ser triad at positions 66, 112 and 210 of the pre-
cursor protein). Two important Gly residues out of three 
were conserved, however, in vpcc29 at positions 186 and 
189. The only known sequences displaying a low but sig-
nificant level of identity with vpcc29 (23.64 to 34.03% of 
sequence identity) were hypothetical or uncharacterized 
proteins from parasitoids of the Microgastrine subfam-
ily including C. glomerata (GenBank: KAH0540702.1), 
M. mediator (GenBank: XP_057324437.1), M. demolitor 
(NCBI Reference Sequence: XP_008546250.1), C. typhae 
(GenBank: KAG8038842.1) and C. chilonis (GenBank: 
QBB01971.1). All these sequences were recognized as 
trypsin-like serine proteases by the Interproscan algo-
rithm, except the one originating from C. typhae for 
which no protein family membership could be predicted.

80-6
According to the InterPro prediction algorithm, the 80-6 
venom protein (415 amino acids) belongs to the pepti-
dase S10 family (InterPro: IPR001563), also known as 
carboxypeptidases C family. The alignment of the amino 
acid sequence of 80-6 with similar serine carboxypep-
tidases and comparison with the consensus patterns 
for S10 peptidases from the PROSITE and the PFAM 
databases (PROSITE: PDOC00122; PFAM: PF00450) 
allowed us to locate and analyze the residues forming the 
expected triad.

First, a serine to asparagine substitution at position 140 
of the mature 80-6 protein distinguished 80-6 from the 
other S10 peptidases, in which the consensus sequence 
for the serine active site was [LIVM]-x-[GSTA]-E-S-Y-
[AG]-[GS] (where S was the active site serine residue) 
(PROSITE: PS00131). A serine residue was still present in 
the modified domain of 80 − 6, but at position 138 of the 
mature protein (MMSENVGT).

Second, the histidine active site (YYIIEAGHLLI-
VDNP between positions 367 and 381 of the mature 
80-6 protein, where H would be the active site histidine 
residue) was also modified in comparison to the con-
sensus sequence for the histidine active site of serine 
carboxypeptidases ([LIVF]-x(2)-[LIVSTA]-x-[IVPST]-
x-[GSDNQL]-[SAGV]-[SG]-H-x-[IVAQ]-P-x(3)-[PSA]; 
PROSITE: PS00560). The first three amino acids of the 
consensus sequence were lacking. Four out of the fifteen 
remaining amino acids differed from the expected resi-
dues at the corresponding positions.

Finally, an aspartic acid residue possibly corresponding 
to an active site residue has been located at position 322 
of the mature 80-6 protein. This residue aligned with an 
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aspartic acid residue conserved in 82% of the sequences 
of serine carboxypeptidases which were used for the 
design of the PFAM signature of the peptidase S10 family 
(PFAM: PF00450; residue 344 of the sequence logo).

It is of note that none of these active sites were detected 
by the InterPro algorithm nor PROSITE Expasy algo-
rithm: the algorithms correctly assigned the 80-6 protein 
to the peptidase S10 family but were unable to locate the 
residues of the conserved triad. This was probably due 
to the existence of subtle variations from the consensus 
patterns observed in 80-6. This protein shared 88.43% of 
sequence identity with Cc-Ven5 (GenBank: APD15616.1), 
a retinoid-inducible serine carboxypeptidase-like protein 
overexpressed by the VGs of C. chilonis [75].

vpcc5 and 80-10
The vpcc5 venom protein (147 amino acids) has no simi-
lar sequence in databases. However, according to the 
InterPro prediction program, its secondary structure 
corresponded to a protein belonging to the Pheromone/
general odorant binding protein (P/GOBP) superfamily 
(InterPro: IPR036728).

In addition to vpcc5, the venom of C. congregata con-
tained a second PBP/GOBP-like protein, the 80-10 pro-
tein (193 amino acids). This protein possessed 6 cysteine 
residues and only shared 11.9% of sequence identity with 
vpcc5. The 80-10 protein shared 61.66 to 68.64% of 
sequence identity with hypothetical proteins from Cote-
sia flavipes (GenBank: UEP64252.1), C. typhae (Gen-
Bank: KAG8040250.1) and C. glomerata (GenBank: 
KAH0555401.1).

vpcc7 and vpcc8
Vpcc7 (117 amino acids) and vpcc8 (121 amino acids) 
were two related venom proteins similar to a hypothetical 
protein of unknown function, CcBV_5.3 (BV16 Family 
2 members), encoded by the genome of the C. congre-
gata Bracovirus (CCBV) (NCBI Reference Sequence: 
YP_184787.1). They respectively shared 45.67% and 
41.1% of sequence identity with CcBV_5.3 and 54% of 
sequence identity between them.

vpcc4, vpcc12, vpcc13 and vpcc24
The venom of C. congregata contained four members 
of the phospholipase C (PLC)-like phosphodiesterases 
superfamily (InterPro: IPR017946): vpcc4 (316 amino 
acids), vpcc12 (329 amino acids), vpcc13 (325 amino 
acids) and vpcc24 (327 amino acids). A gene encoding 
a fifth similar sequence, vpcc25 (346 amino acids), was 
overexpressed in the VGs compared to ovaries, but the 
presence of the corresponding protein in venom was not 
confirmed by proteomic analysis. The vpcc25 protein had 
a low probability to possess a signal peptide (0.594 out 
of a maximum score of 1), according to SignalP 6.0. The 

amino acid sequence of vpcc4 exhibited a lipoprotein sig-
nal peptide instead of a classical SP. Vpcc24 shared 79% 
of sequence identity with vpcc25, 68.6 and 62.5% with 
vpcc12 and vpcc13 and only 28.9% of sequence identity 
with vpcc4.

Interestingly, the vpcc4 venom protein was the only 
one to possess a phosphatidylinositol-specific phospho-
lipase C (PI-PLC) X domain, extending from positions 
42 to 159 of the mature protein. However, the Y domain, 
which constitutes the second characteristic functional 
domain of eukaryotic PI-PLCs, was lacking in the vpcc4 
sequence, as it was in vpcc12, vpcc13 and vpcc24. The 
vpcc24 sequence exhibited 29.82 to 67.79% of sequence 
identity with sequences from Microgastrinae and 28.12 
to 30.63% of sequence identity with bacterial PLC-like 
proteins.

vpcc17
The vpcc17 venom protein (594 amino acids) corre-
sponded to a β-hexosaminidase (InterPro: IPR025705). 
The mature vpcc17 protein possessed the N-terminal 
domain of the eukaryotic β-hexosaminidases (PFAM 
domain: PF14845), from positions 44 to 164, and a TIM 
barrel (triose-phosphate isomerase) fold correspond-
ing to a catalytic domain (PFAM domain: PF00728), 
between positions 188 and 536. Homologous proteins 
predicted from numerous genomes of Hymenoptera 
were returned by the BLASTP search using vpcc17 as the 
entry sequence. Among the matching gene products fig-
ured the sequence of Cc-Ven12 (GenBank: APD15623.1), 
a protein produced by the VGs of C. chilonis [75] 
that shared 86.2% of sequence identity with vpcc17. 
Vpcc17 also shared 14.5% of sequence identity with a 
β-hexosaminidase-like truncated protein (207 amino 
acids only, encoded by the sequence Dr_contig00438) 
that we have previously identified as a protein produced 
by the VGs of the cynipid gall wasp D. rosae [37].

90-3
The 90-3 venom protein (211 amino acids) contained a 
dsRNA-binding domain extending from positions 41 to 
162 and was recognized as a RAD52 family member by 
the InterPro algorithm (InterPro: IPR041247). The 90-3 
protein shared 30.15 to 33.33% of sequence identity with 
proteins predicted as DNA repair and recombination 
proteins from C. congregata (GenBank: CAG5075450.1) 
and C. glomerata (NCBI Reference Sequence: 
XP_044588796.1, XP_044586548.1, XP_044596685.1, 
and GenBank: KAH0562764.1) that all lacked a predicted 
SP.

vpcc36
The vpcc36 venom protein (193 amino acids) exhibited 4 
sequence signatures specific from apolipoprotein D-like 
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proteins (PRINTS: PR01219), also named lipocalins 
(InterPro: IPR022271) at positions 19–33, 104–115, 148–
164 and 174–193 of the precursor protein. The sequence 
contained a SP of 19 amino acids and 31 residues pre-
dicted to be involved in a ligand binding cavity of apo-
lipoprotein D and similar proteins (Conserved Domains 
entry: cd19437).

Discussion
Protein richness of C. congregata venom
The venom of C. congregata contains at least 30 venom 
proteins. This number of venom proteins is close to those 
observed in other Braconid species: for example, VGs 
of B. hebetor females produce 27 main proteins [76] and 
females Chelonus inanitus produce 29 venom proteins 
[26]. Females P. lounsburyi and P. concolor produce 39 
and 40 venom proteins, respectively [77]. This number 
is also globally in accordance with the 31 denatured pro-
teins observed on the 12.5% SDS-PAGE profile (Fig. 3). It 
is likely that other C. congregata venom proteins remain 
to be identified, and it would be of particular interest to 
specifically study the venomous peptides of this parasit-
oid wasp with appropriate methods.

In most animals, the protein/mRNA ratio is constant 
across cell types and tissues but varies by several orders 
of magnitude from one gene to another. Therefore, pro-
tein abundance is not directly inferable from gene expres-
sion levels [78]. In parasitoid VGs however, the most 
expressed genes produce the most abundant venom 
proteins [20] and VGs generally produce a small num-
ber of highly abundant proteins and peptides and a large 
number of low abundance products. Our results con-
firmed that globally, the venom proteins corresponded 
to the most expressed genes in the VGs of C. congre-
gata, which represent a small set of the 659 genes over-
expressed by this tissue. Among these genes, we have 
identified four genes whose products (vpcc27, vpcc41, 
vpcc25 and vpcc26) are not part of the venom but could 
play a role in VG function and/or in the maintenance of 
its structure and integrity. They potentially encode cru-
cial functions for the safe production and secretion of 
the venomous arsenal and to avoid nonintentional dam-
ages to the wasp’s tissues and organs. As only two rep-
licates were performed for each tissue, the observed 
gene expression levels should not be taken as absolute 
and definitive values. They are likely to vary from one 
individual to another, and even at different stages in the 
development of parasitoid wasps. The average expression 
levels allowed to identify genes of interest that are over-
expressed in VGs and to attempt to establish interesting 
relationships between these expression levels and certain 
characteristics of the deduced proteins.

In the past, some authors referred to the venom-
secreting glands as “acid glands”, in contrast to Dufour’s 

“alkaline” gland, which produces marking pheromones 
[79–83]. Our results confirm that the majority of C. 
congretata venom proteins are acidic proteins and pos-
sess a SP allowing them to be secreted by a classical 
pathway. However, 3 out of the 6 genes with the higher 
levels of overexpression in VGs compared to ovaries, 
encoded venom proteins whose sequences were devoid 
of SPs. One of these venom proteins was a basic protein 
(vpcc31). This suggests that C. congregata use canonical 
and non-canonical secretory pathways to secrete venom 
proteins and notably a basic one. Therefore, our study 
demonstrates that not all venom proteins are acidic in 
nature, and not all have SP.

Diversity and specificity of C. congregata venom hydrolases
Our study revealed that C. congregata venom is above 
all a diversified mixture of hydrolytic enzymes likely to 
interact with a wide range of molecules in the host and/
or within the VG itself (see below). This may seem sur-
prising in view of the previously published article on 
the supposed lack of involvement of this venom in the 
reproductive success of C. congregata [32]. However, our 
results are consistent with those from works carried out 
in recent years on other parasitoid species, and notably 
within the Cotesia genus. They show that the venom of 
these species is indeed a mixture of active substances, 
capable of directly provoking physiological effects in 
envenomated hosts or of facilitating the action of other 
virulence factors, like polydnaviruses. Sequence analysis 
and comparisons reveal subtle differences between C. 
congregata venom hydrolases and the hydrolytic enzymes 
of other parasitoids, which probably have functional 
consequences.

The 5’-nucleotidase/apyrase enzyme family, to which 
vpcc1 belongs, gathers ubiquitous proteins that hydro-
lyze phosphate esterified at carbon 5’ of 5-carbon sug-
ars (ribose or deoxyribose) of nucleotide molecules. 
Hence, they are crucial for the degradation of nucleo-
tides. In the braconid wasp Meteorus pulchricornis [84], 
a protein sharing low sequence similarity with bacterial 
and eukaryotic ecto-5’-nucleotidases was also strongly 
expressed by VGs. However, it lacked the above-men-
tioned 5’-nucleotidase signature found in vpcc1. A 
5’-nucleotidase gene was also found overexpressed by the 
VGs of the cynipid gall wasp Diplolepis rosae [37].

The vpcc19 and 10-6 venom proteins belong to the sec-
ond branch of histidine phosphatases superfamily. This 
group of sequences is notably composed of acid phospha-
tases that hydrolyse phosphate esters, optimally at low 
pH [85]. Acid phosphatases were identified in the ven-
oms of several Hymenoptera, for instance in the Apidae 
Apis mellifera [86] and Apis cerana [87], the Ptromalidae 
Nasonia vitripennis [25] and Pteromalus puparum [88], 
the Ampulicidae Ampulex compressa [89], the Figitidae 
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Leptopilina boulardi and Leptopilina heterotoma [90] 
and the Ichneumonidae Pimpla hypochondriaca [91]. 
Venom acid phosphatases generally act as spreading fac-
tors for other venom components.

The structural features of the 100-6 venom protein 
suggest a potential difference in the functioning of this 
venom enzyme compared to other known NEPs. Most 
NEPs are type II integral membrane proteins acting as 
oligopeptidases, but some family members correspond 
to soluble secreted proteins, such as in Drosophila [71, 
72, 92]. Of note, a NEP is one of the major components 
of Venturia canescens VLPs [93] produced by an endog-
enous nudivirus [14] and protecting parasitoid eggs 
from encapsulation by host hemocytes. NEP-like pro-
teins appear to be widely distributed among the venoms 
of Hymenoptera, except in the Cotesia genus. Accord-
ing to Colinet and collaborators [94], NEP-like proteins 
were indeed found in the venoms of Figitidae (L. bou-
lardi), Braconidae (M. demolitor) and Ichneumonidae 
(Hyposoter didymator). NEP-like proteins were also 
reported from the venoms of A. compressa [89], L. het-
erotoma and a Ganaspis species (Figitidae) [90, 95], T. 
nigriceps [96], Lysiphlebus fabarum [97], P. lounsburyi 
and P. concolor (Braconidae) [77], Tetrastichus brontispae 
(Eulophidae) [98], P. vindemmiae (Pteromalidae) [99]. 
Yang and collaborators [100] have recently suggested 
that the recruitment events of venom NEP-like genes 
occurred independently during the radiation of Hyme-
noptera. In the dryinid wasp Gonatopus flavifemur, 7 
NEP-like proteins, possessing predicted SPs, were found 
to be overexpressed at the mRNA level in VGs [100], 
but the presence of the corresponding proteins in the 
venom has not been verified by proteomic methods. A 
similar lack of information concerns two NEP-like genes 
expressed by the VGs of the Encyrtidae Ooencyrtus tele-
nomicida [101] and the Braconidae Microctonus hypero-
dae [102]. Other NEP-like genes were expressed at low 
level in the VGs of the braconid wasps Aphidius ervi [94] 
and Meteorus pulchricorni [84]. The roles played by NEP-
like proteins in host-parasitoid relationships remain to be 
clarified since experimental evidence is scarce. NEP are 
oligopeptidases with a wide range of biological activities 
and inferring some hypothetical roles from information 
available on mammal or Drosophila enzymes is quite dif-
ficult. However, it was shown experimentally that injec-
tions of a recombinant protein based on the sequence 
of Cp-NEP1, a NEP-like protein expressed in VGs of C. 
vestalis, disrupted the formation of melanized nodules 
against Eschericha coli in the host Plutella xylostella 
[103]. However, the fact that Cp-NEP1 lacks the two 
groups of highly conserved motifs (called “protein finger-
prints”) found in most known NEPs casts doubt on the 
capacity of this protein to act as a classical soluble NEP, 
and therefore to generalize the observed effect to venom 

NEP-like proteins of other parasitoids, within or beyond 
the genus Cotesia. Interestingly, Teng and collaborators 
[75], who studied the venom of C. chilonis, did not men-
tion the presence of a NEP-like protein in this fluid. This 
suggests that the presence of NEP-like proteins in the 
venom would not be a feature conserved in all Cotesia 
species.

The peptidase S1 family is known as the largest pepti-
dase family, by both the number of sequenced proteins 
and the number of distinct peptidase activities. As a 
putative trypsin-like serine protease, vpcc29 belongs to 
this family. Three genes encoding trypsin-like proteins 
possessing predicted SPs were up-regulated in VGs of 
C. vestalis, compared to the remaining bodies of these 
females [104]. The modification of the classic catalytic 
triad of known serine proteases in vpcc29 suggest an abil-
ity to interact with specific peptidic ligands, either in the 
host or in the VG.

The 80-6 venom protein from C. congregata and Cc-
Ven5, from C. chilonis, shared the same sequence fea-
tures, and are thus probably homologous sequences: 
They belong to secreted serine carboxypeptidases, char-
acterized by a catalytic triad including an aspartic acid 
residue, a histidine residue and a serine residue bonded 
together by two hydrogen bonds [105]. The sequences 
surrounding the serine and histidine active residues are 
highly conserved in all serine carboxypeptidases, while 
those near the aspartic acid active site are variable [105]. 
Consequently, consensus patterns are only available for 
two out of the three active sites of serine carboxypepti-
dases. Other serine carboxypeptidases of the S10 or S28 
families (i.e. Lysosomal Pro-X Carboxypeptidase family) 
are expressed by the VGs of several Hymenoptera fami-
lies including Braconidae [77, 96, 106], Apidae [107, 108], 
Cynipidae [37], Pteromalidae [109] and Formicidae [110, 
111].

The group of venom proteins including vpcc4, vpcc12, 
vpcc13 and vpcc24 is related to the PLC superfamily but 
has diverged to such an extent that their sequence fea-
tures distinguish them from classical eukaryotic phos-
phodiesterases. Intriguingly, the results of the BLASTP 
algorithm comparison of these sequences to the NCBI 
nr database revealed that the only sequences showing 
significant similarities with the four proteins originated 
either from other Microgastrinae parasitoids (includ-
ing C. glomerata, C. chilonis, C. typhae and Microplitis 
demolitor) or from bacteria (including organisms of the 
class Bacilli, Flavobacteriia and Gammaproteobacteria). 
On the one hand, a first explanation for these results 
could be that these genes derive from a non-eukaryotic 
ancestor gene. Horizontal or lateral gene transfer from 
bacteria is an important route for metabolic innovation 
in insects [112]. In the gall wasp Biorhiza pallida, two 
cellulase genes expressed by the VG could have been 
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acquired by horizontal transfer from bacteria [37]. Also, 
a GH19 chitinase gene originating from the unicellular 
microsporidia/Rozella clade was laterally transferred to 
parasitoid wasps of the Chalcidoidea lineage and the cor-
responding enzyme was recruited as a venom protein in 
at least 15 species of this family [113]. On the other hand, 
copies of cellular genes recruited as virulence factors 
by parasitoid females are often strongly divergent from 
the original sequences [114]. Bézier and collaborators 
[115] have even shown, in the case of the C.congregata 
polydnavirus CcBV, that a greater divergence level was 
a specific hallmark of the genes involved in the parasit-
oid virulence. Hence, it cannot be completely ruled out 
that sequence similarities found with bacterial sequences 
are due to both the extreme diversity and abundance 
of bacterial sequences in gene databases and to strong 
sequence divergence resulting from specific evolution-
ary constraints applying to these venom enzymes in the 
context of host-parasitic relationships. PLC activities 
are involved in some parasitoid-host relationships: for 
instance, Galleria mellonella larvae displayed an increase 
in PLC activity in hemocytes or fat body in response to 
the venoms of Habrobracon hebetor (synonym of Bracon 
hebetor) and Habrobracon brevicornis [116, 117]. This 
enhanced activity resulted in the death of the targeted 
cells. Furthermore, the venom of N. vitripennis induced 
a PLC transduction pathway dependent cell death in BTI-
TN-5B1-4 cells, which could be transiently impaired by 
the use of PLC inhibitors [118].

The gene coding for vpcc17 belongs to a well conserved 
gene family even among distantly related hymenopteran 
species. Genes of this family code enzymes that hydro-
lyze the terminal non-reducing N-acetyl-D-hexosamine 
residues in N-acetyl-β-D-hexosaminides [119]. In the 
context of insect development, some β-hexosaminidases 
act as chitooligosaccharidolytic enzymes that are acti-
vated during metamorphosis to degrade chitin, an impor-
tant component of insect exoskeletons. The host’s chitin 
is thus a plausible target of the vpcc17 venom protein.

Potential roles of venom proteins with binding abilities
In addition to the previous hydrolases, C. congregata 
venom contains a set of proteins with binding abilities.

Like the vpcc5 and 80-10 proteins, several P/GOBPs, 
were already reported from venoms of parasitoid species: 
N. vitripennis [25], C. inanitus [26], L. heterotoma [120], 
P. puparum [121], Anisopteromalus calandrae [109], 
Bracon nigricans [76], Torymus sinensis [122] and M. 
pulchricornis [84]. Various roles have been suggested for 
these venom proteins, ranging from host selection to sol-
ubilization and transport of hydrophobic molecules [76, 
122]. Vpcc5 only contained 4 cystein residues and there-
fore would belong to the Minus-C OBP family, whose 
members possess less than six cysteine residues [123, 

124]. This feature is shared by the B. nigricans OBP-like 
venom protein [76].

In eukaryotes, the RAD52 proteins bind ssDNA and 
promote strand exchange via the pairing of complemen-
tary single strands [125, 126]. It seems that the unusual 
presence of a SP in frame with the sequence of a RAD52-
like protein allowed the secretion of 90-3 by VGs of C. 
congregata. The ability of venom protein 90-3 to act on 
damaged DNA once injected into the host is difficult to 
hypothesize without the contribution of other proteins. 
If this were the case, it could contribute to the genome 
stability of different cell types (host tissues, embryonic 
cells and the extra-embryonic serosa of C. congregata, for 
example), to the benefit of the parasitoid.

The venom protein vpcc36 corresponds to an apoli-
poprotein D-like protein. Members of this family are 
characterized by several common molecular-recognition 
properties such as the ability to bind to small hydropho-
bic molecules and specific cell-surface receptors [127]. 
They can also form complexes with soluble macromol-
ecules. They exhibit great functional diversity, ranging 
from pheromone transport to modulation of immune 
response [127]. Recently, an apolipoprotein D-like pro-
tein has been reported from the venom of the ant Lasius 
flavus (Hymenoptera: Formicidae) [128], but its role is 
unknown. We have previously reported a high produc-
tion of apolipoproteins D by the VG of the gall wasp B. 
pallida [37] that very likely contributed to the high vis-
cosity of the venom.

The venom of C. congregata also contained proteins of 
unknown function and proteins devoid of SP but exhib-
iting metalloprotease or serpin functional domains [see 
Additional file 3]. The VGs of C. congregata females over-
expressed genes encoding several enzymes (a protein 
disulphide isomerase-like protein and a superoxide dis-
mutase), proteins (calreticulin, proteins with cystatin-like 
domains or IAP-binding motif ) and peptides whose pres-
ences in venom, although plausible, were not experimen-
tally established [see Additional file 4]. Remarkably, the 
venom of C. congregata was apparently devoid of certain 
venomous compounds which are common in Hymenop-
tera, such as phospholipase A2, cathepsin-L or alkaline 
phosphatase, and that are over-expressed by the VGs of 
other Cotesia species like C. vestalis [104]. This is indica-
tive of the numerous specialization processes that have 
taken place within the genus Cotesia during the course of 
evolution.

Conclusions
In this paper, we report for the first time the identifica-
tion of 30 venom proteins produced by the VGs of C. 
congregata, a braconid wasp that parasitizes caterpillars 
of Manduca sexta in laboratory and in field conditions. 
We have also identified several genes coding for putative 
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venom proteins and peptides, although this latter cat-
egory of small compounds was not initially targeted by 
our experimental design. Finally, we have characterized 
several gene products, overexpressed by VGs, that could 
correspond to proteins involved in VG function. Thank 
to meticulous sequence analyses and in silico functional 
predictions based on up-to-date algorithms, we were also 
able to describe the main sequence features of C. congre-
gata venom proteins. This study paves the way to both 
future work in evolutionary biology and functional stud-
ies using parasitoid wasps as models.

We have observed the convergent recruitment of sev-
eral protein groups already described in multiple venom-
ous animal lineages [129] for use as venom components, 
like a neprilysin-like protein (the 100-6 protein), two 
acid phosphatases (vpcc19 and 10-6) and two P/GOBPs 
(vpcc5 and 80-10). We have also detected conserved 
venom proteins at the intrageneric (80-4) or intrafam-
ily (vpcc29) levels, but also original proteins of unknown 
function that seem specific to C. congregata (vpcc7 and 
vpcc8). Interestingly, these latter two venom compo-
nents showed sequence similarity with gene products 
encoded by the genome of the symbiotic bracovirus of 
C. congregata. In addition, four venom PI-PLCs from C. 
congregata (vpcc4, vpcc12, vpcc13 and vpcc24) lacked 
characteristic functional domains of eukaryotic enzymes 
and shared sequence similarity with gene products origi-
nating from bacteria. This raises the possibility that 
duplication of symbiotic polydnaviral genes, horizontal 
transfers and strong sequence divergence due to specific 
evolutionary constraints may have contributed to the 
current diversity of venom components in C. congregata.

The massive expression levels observed for some genes 
encoding venomous proteins confirmed that venom pro-
duction represents a costly investment for C. congregata 
females. This finding contrasts with previous statements, 
based on convincing but limited physiological studies 
that suggested that the venom of C. congregata was not 
involved in the parasitic success of C. congregata eggs, 
once injected in their hosts. It is very unlikely that this 
mixture of hydrolytic enzymes and binding proteins 
plays no role in the parasitic interaction. The diversity 
and the effects of the venom proteins of these PDV-car-
rying wasps are probably linked to the diversity and the 
effects of polydnaviral gene products. Our work hence 
opens interesting perspectives for research, both to study 
the biological functions of C. congregata venom, and to 
understand the underlying evolutionary mechanisms that 
enabled the progressive elaboration of such a diversified 
arsenal.
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