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Abstract 

Background Understanding cellular diversity throughout the body is essential for elucidating the complex functions 
of biological systems. Recently, large-scale single-cell omics datasets, known as omics atlases, have become available. 
These atlases encompass data from diverse tissues and cell-types, providing insights into the landscape of cell-type-
specific gene expression. However, the isolated effect of the tissue environment has not been thoroughly investi-
gated. Evaluating this isolated effect is challenging due to statistical confounding with cell-type effects, which arises 
from the highly limited subset of tissue-cell-type combinations that are biologically realized compared to the vast 
number of theoretical possibilities.

Results This study introduces a novel data analysis framework, named the Combinatorial Sub-dataset Extraction 
for Confounding Reduction (COSER), which addresses statistical confounding by using graph theory to enumerate 
appropriate sub-datasets. COSER enables the assessment of isolated effects of discrete variables in single cells. Apply-
ing COSER to the Tabula Muris Senis single-cell transcriptome atlas, we characterized the isolated impact of tissue 
environments. Our findings demonstrate that some genes are markedly affected by the tissue environment, particu-
larly in modulating intercellular diversity in immune responses and their age-related changes.

Conclusion COSER provides a robust, general-purpose framework for evaluating the isolated effects of discrete vari-
ables from large-scale data mining. This approach reveals critical insights into the interplay between tissue environ-
ments and gene expression.
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Background
Understanding the cell diversity across the entire body 
and the underlying molecular mechanisms is essential 
for elucidating the complex functions of biological sys-
tems. Cells that differentiate from a fertilized egg develop 
into a wide variety of cell-types, existing in appropriate 
proportions within each tissue. Single-cell omics enables 
the acquisition of detailed omics information at the indi-
vidual cell level and serves as a powerful tool for inves-
tigating this cell diversity [20, 27]. Recently, large-scale 
single-cell omics datasets, referred to as omics atlases, 
have become available [5, 6, 12]. These datasets, which 
comprise data for a variety of tissues and cell-types, are 
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valuable for comprehensive analyses of the effects of cel-
lular features on gene expression using statistical models. 
However, while cell-type-related gene markers have been 
extensively studied in single-cell omics research [2, 3], 
the impacts of tissue environments have received limited 
attention.

Although omics atlases encompassing multiple tissues 
are publicly available, evaluating the isolated effect of the 
tissue environment on gene expression presents consid-
erable challenges. A primary issue in such evaluations is 
statistical confounding with cell-type effects due to sub-
stantial missing and biases in the combinations of tissues 
and cell-types within the body. For example, while blood 
cells and fibroblasts are present in many tissues, certain 
cell-types are tissue-specific, such as hepatocytes in the 
liver or pancreatic cells in the pancreas. Furthermore, in 
tissues where cell collection is difficult, data may be lim-
ited to only a few cell-types. These factors contribute to 
statistical confounding between tissues and cell-types. 
Effectively addressing these challenges requires the devel-
opment of novel data analysis techniques that account for 
the interrelationships among discrete variables.

Quantifying isolated tissue effects, though challenging, 
is fundamentally important for elucidating cellular diver-
sity. When genes are expressed in the various cell-types 
that comprise a specific tissue but not in other tissues, it 
suggests that factors inherent to the tissue environment, 
such as cellular niches or secreted proteins, play a criti-
cal role in regulating gene expression. Conversely, when 
genes are expressed in multiple tissues within a given 
cell-type but not in different cell-types, internal cell-type 
effects, such as epigenetic status, are likely to be critical. 
Assessing the isolated effect of the tissue environment 
on gene expression is important for achieving a systems-
level understanding of intercellular diversity within the 
transcriptome. Indeed, evidence from previous studies 
has highlighted the influence of the tissue environment 
on transcriptome data. For example, distinct age-related 
variations in gene expression have been observed in the 
same cell-types derived from different tissues [14]. Addi-
tionally, fibroblasts have been shown to exhibit heteroge-
neity among different tissues [19].

In this study, we introduce a novel data analysis frame-
work, referred to here as Combinatorial Sub-dataset 
Extraction for Confounding Reduction (COSER). COSER 
enables the evaluation of the isolated effects of discrete 
variables in cells by overcoming statistical confounding 
by enumerating appropriate sub-datasets using graph 
theory. Application of this method to a large mouse 
scRNA-seq atlas dataset revealed the landscape of iso-
lated tissue environment effects.

Results
Visualization of missing and bias in tissue and cell‑type 
combinations in a single cell RNA‑seq atlas
This study utilized the Tabula Muris Senis (TMS) data-
set, a large-scale publicly available mouse single-cell 
RNA-seq dataset [5]. The TMS dataset serves as a valu-
able resource for aging research [4, 30], encompassing 
data from cells derived from 23 tissues collected from 30 
mouse individuals across six age groups (1, 3, 18, 21, 24, 
and 30 months-old). The dataset includes a sex distribu-
tion of 19 males and 11 females. All cells in the dataset 
have been annotated with cell-types by the TMS project. 
We obtained log-transformed, pre-processed data from 
the TMS dataset, which comprises two subsets generated 
using distinct experimental methodologies: fluorescence-
activated cell sorting (FACS) and droplet-based sequenc-
ing (Droplet). The FACS dataset contains expression data 
for 22,966 genes across 110,824 cells, while the Droplet 
dataset includes data for 20,138 genes across 245,389 
cells.

We visualized the missing and bias in the tissue and 
cell-type combinations in each dataset (Fig. 1A). A bipar-
tite graph was constructed wherein the edges represent 
existing combinations between tissues and cell-types in 
the dataset. The graphs were constructed based on 207 
observed combinations of 23 tissues and 120 cell types 
derived from the FACS dataset, representing only 7.5% 
of all theoretically possible combinations between tissues 
and cell types. Similarly, the Droplet dataset included 169 
observed combinations of 20 tissues and 123 cell types, 
representing only 6.9% of all theoretically possible tissue-
cell-type combinations. All edges of these graphs are 
shown in Supplementary File 1. The highly limited subset 
of tissue-cell-type combinations that are biologically real-
ized compared to the vast number of theoretical possi-
bilities would lead to statistical confounding, potentially 
hindering the accurate evaluation of individual effects.

The degree distribution of tissues and cell types in the 
bipartite graph presented in Fig. 1A is depicted in Fig. 1B. 
The average degree of tissues was 9 in the FACS dataset 
and 10.6 in the Droplet dataset. Conversely, the average 
degree of cell types was 1.7 in the FACS dataset and 1.4 in 
the Droplet dataset. While some cell types are present in 
multiple tissues, many are restricted to a single tissue or a 
limited number of tissues, indicating a bias in tissue-cell 
type associations. By restricting the analysis to cell types 
present in multiple tissues, one can achieve a more accu-
rate and statistically robust quantification of the isolated 
effect of tissues.

Our research addresses the challenge of statistical con-
founding among discrete variables, including tissue and 
cell-type, when assessing the effects of the tissue environ-
ment on gene expression levels. Statistical confounding 
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arises from the missing and bias in the combinations 
of these discrete variables, making it difficult to evalu-
ate individual effects. Methods for preventing statistical 
confounding have been well researched in the field of 
experimental design in medical statistics, but there were 
no methods that could be used to solve problems of this 
kind in large-scale omics data mining. In theory, con-
founding can be resolved if all possible combinations of 
discrete variables were represented in the dataset. How-
ever, achieving this representation in real-world datasets 

is often impractical, necessitating the development of 
robust analytical methods to manage incomplete or 
biased combinations effectively.

Brief description of the COSER framework
To address the issue of missing and bias in the combi-
nation of discrete variables such as tissue and cell-type, 
we propose a novel data analysis framework called 
Combinatorial Sub-dataset Extraction for Confound-
ing Reduction (COSER). By constructing a bipartite 

Fig. 1 Bipartite graphs of tissue and cell-type combinations in the TMS dataset. A Visualization of the bipartite graphs in FACS and Droplet dataset. 
The missing and bias in combinations of tissues and cell-types are shown, highlighting the imbalance in their representation. All edges of these 
graphs are shown in Supplementary File 1. B The histograms of degrees of tissues and cell types in bipartite graphs of FACS and Droplet datasets
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graph where the edges represent combinations of 
variables (e.g., Fig.  1A), within this graph, bicliques, 
i.e., subgraphs containing all possible combinations 
of connected variables, are identified (Fig.  2A). These 
bicliques provide a robust foundation for statistical 
analysis by ensuring that variable combinations are 
comprehensively represented.

While identifying maximal bicliques in bipartite graphs 
is a well-established concept in graph theory, many bio-
logical datasets involve more than two discrete variables. 
To address this, we extended the maximal biclique enu-
meration problem to k-partite hypergraphs. For example, 
consider the combinations of three discrete variables of 
a single cell: sex, tissue, and cell-type. If all eight com-
binations exist in the dataset: male/liver/T-cell, male/
liver/B-cell, male/spleen/T-cell, male/spleen/B-cell, 
female/liver/T-cell, female/liver/B-cell, female/spleen/T-
cell, female/spleen/B-cell (Fig. 2B), [[male, female], [liver, 
spleen], [T cell, B cell]] forms an extended biclique in a 
k-partite hypergraph (k = 3). The developed algorithm 
accepts as input a table representing combinations of 
discrete variables that exist in the dataset. The algorithm 
detects the maximal solutions with ensuring that each 
solution includes at least two distinct values for all vari-
ables represented in the dataset. Further details of this 
extension and the algorithm developed to enumerate all 
maximal solutions in k-partite hypergraphs are provided 
in the Method section.

Figure 2C shows an overview of the COSER framework 
as applied to scRNA-seq. First, all of the combinations of 
discrete variables in the dataset are listed. These combi-
nations of discrete variables are represented as a k-partite 
hypergraph. The developed algorithm then enumerates 
subgraphs that contain all possible combinations, identi-
fying them as solutions. For each solution, a sub-dataset 
is created that contains only the cells corresponding to 
the included combinations. Statistical analyses are per-
formed independently on each sub-dataset, allowing for 
unbiased statistical evaluation of the effects of individual 
variables on cellular phenotypes, such as gene expression 
levels. By integrating the results of these independent 
statistical analyses, a consensus conclusion is reached, 
providing robust insights into the isolated effects of the 
variables.

As an example implementation, we applied the COSER 
framework to the bipartite graph of the FACS dataset 
(Fig. 1A). As a result, 31 maximal solutions were identi-
fied (Supplementary File 2). These solutions represent 
suitable units of analysis for evaluating the impacts of the 
tissue environment or cell-type effects on cell phenotypes 
within the dataset. For example, Example 1 in Fig.  2D 
contains four adipose sub-tissues (i.e., brown adipose 
tissue (BAT), gonadal adipose tissue (GAT), mesenteric 

adipose tissue (MAT), and subcutaneous adipose tissue 
(SCAT)), and represents the solution with the largest 
number of edges. In contrast, Example 2 in Fig. 2D fea-
tures another maximal solution and includes a more ana-
tomically diverse set of tissues. These maximal solutions 
form bipartite cliques, which means that all of their com-
binations are included in the original dataset. Research-
ers can explore these enumerated maximal solutions to 
identify solutions that align with their research questions.

Quantitative assessment of the isolated effect of the tissue 
environment
We used COSER to examine the isolated effect of the tis-
sue environment on single-cell transcriptome profiles. 
This analysis specifically targeted cells from mice aged 
three months, focusing on the combinations of individu-
als, tissues, and cell-types. Only combinations containing 
more than ten cells were selected for downstream analy-
sis. We applied COSER to a three-column table com-
prising individual, tissue, and cell-type combinations to 
enumerate the maximal solutions. We then quantified the 
tissue effect on gene expression levels using a generalized 
liner model (GLM) for each sub-dataset. In this model, 
gene expression values were treated as the objective vari-
able, while individual, tissue, and cell-type were used as 
explanatory variables.

In the FACS dataset, 24 maximal solutions for indi-
vidual × tissue × cell-type combinations were identified 
(Table 1, Supplementary File 3). Figure  3A shows a QQ 
plot of the P-values obtained for the tissue and cell-type 
effects in each solution, demonstrating that not only cell-
type but also tissue has an isolated effect on gene expres-
sion. The P-values for each gene in all sub-datasets are 
listed in Supplementary File 4. Genes exhibiting a signifi-
cant tissue effect in more than 12 of the 24 sub-datasets 
(FDR < 0.05) were identified as tissue environment-sus-
ceptible genes. A total of 253 such genes were identified. 
Enrichment analysis of Gene Ontology (GO) Biologi-
cal Processes for these genes revealed 135 significantly 
enriched GO terms within this gene set (FDR < 0.05) 
(Supplementary File 5). The ten GO terms with the high-
est enrichment scores are shown in Fig. 3B. The most sig-
nificantly enriched biological process was GO:0035455 
(response to interferon-alpha). Other biological pro-
cesses related to immune responses, such as GO:0097028 
(dendritic cell differentiation), GO:0035456 (response 
to interferon-beta), and GO:0070670 (response to inter-
leukin- 4), were also highly represented. Additionally, a 
fundamental cellular function, GO:0002181 (cytoplasmic 
translation), also appeared among the enriched terms.

In the Droplet dataset, a single maximal solution 
comprising two tissues (limb muscle and mammary 
gland) was identified (Table  1). As with the FACS 
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Fig. 2 Extension of the maximal biclique enumeration problem to k-partite hypergraphs and the COSER framework. A Illustration of a maximal 
biclique. B An example of extending bicliques to k-partite hypergraphs, where the solution [[male, female], [liver, spleen], [T cell, B cell]] ensures 
the presence of all eight combinations shown in the tree diagram within the dataset. C Graphical overview of the COSER framework. These 
combinations of discrete variables in dataset are represented as a k-partite hypergraph. The subgraphs that contain all possible combinations 
are identified as solutions. For each solution, a sub-dataset is created that contains only the cells corresponding to the included combinations. 
Independent statistical analyses are conducted on sub-datasets, and their results are integrated to derive a consensus, ensuring robust insights 
into the variables’ isolated effects. D Examples of maximal bicliques in the bipartite graph of FACS dataset shown in Fig. 1
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dataset, isolated tissue effects were observed. A statis-
tically significant contribution from the tissue environ-
ment was detected in 3,581 genes (FDR < 0.05). The 
P-values for all genes are shown in Supplementary File 
6. Figure 3C shows a QQ plot of the P-values obtained 
for tissue effects. Among these genes, 264 GO terms 
were significantly enriched (FDR < 0.05) (Supplemen-
tary File 7). The 10 GO terms with the highest enrich-
ment scores are shown in Fig.  3D. Despite this result 
being based on a comparison between limb muscle and 
mammary gland, processes related to immune response 
and cytoplasmic translation were prominently repre-
sented, which is consistent with the FACS dataset.

By integrating the results of statistical analyses from 
the sub-datasets corresponding to each solution, it is 
possible to compare isolated tissue effects among tis-
sues. To achieve this, a directed graph was constructed 
with tissues represented as nodes, based on the order 
of the coefficients of the tissue effects obtained from all 
24 analyses in the FACS dataset. If this directed graph 
forms a directed acyclic graph (DAG), then the tissue 
effects are considered to have a partial ordering struc-
ture. Using the constructed DAG, a consistent order of 
tissue effects on gene expression was obtained. Among 
the identified tissue environment-susceptible genes, a 
DAG was successfully constructed for 54 genes (Sup-
plementary File 8). Notably, four transcription factors 
were identified within these genes (Fosb, Klf4, Tbx15, 
Wt1).

Figure  4 shows the DAGs constructed for the four 
transcription factor genes. These DAGs provide valuable 
insights into the differences in gene expression among 
adipose sub-tissues. The effect of the tissue environment 
on Tbx15 gene expression follows the order: SCAT > 
BAT > GAT > MAT. It has been reported that Tbx15 is 
highly expressed in brown adipose tissue and essential for 
differentiating brown adipocytes [10]. The effect of the 
tissue environment on Wt1 gene expression follows the 
order: GAT > MAT > BAT > SCAT. Wt1 is known to be 
expressed in fat cell progenitors in visceral white adipose 
tissue but is absent in energy-storing subcutaneous white 
adipose tissue and brown adipose tissue (BAT) [15].Dif-
ferences in gene expression among adipose sub-tissues 
have been previously reported for these genes. Our anal-
ysis suggests that these differences are driven more by 
the effects of the tissue microenvironment rather than 
by specific cell types. While there are no known differ-
ences in the expression of Fosb, Klf4 between adipose 
sub-tissues, these genes are reported to be involved in 
adipogenesis and adipocyte differentiation [16, 18, 23]. 
Although further research is needed to understand how 
differences in the tissue environment affect gene expres-
sion, this analysis suggests that differences in the adipose 
tissue environment may affect the expression of these 
transcription factors, and this may control adipocyte dif-
ferentiation and adipogenesis. By integrating the results 
of statistical model analyses for each sub-dataset into a 
graph where nodes represent tissues, this approach ena-
bles a systematic evaluation of the relative magnitude of 
tissue environment effects on gene expression.

Detection of divergent aging patterns between different 
tissues
We investigated transcriptomic changes associated with 
aging in different tissue environments. Previous stud-
ies have demonstrated that age-related changes in gene 

Table 1 All maximal solutions for the combinations of 
individuals, tissues, and cell-types. BAT: brown adipose tissue, 
GAT: gonadal adipose tissue, MAT: mesenteric adipose tissue, 
SCAT: subcutaneous adipose tissue, LM: limb muscle, MG: 
mammary gland, MSC: mesenchymal stem cell/mesenchymal 
stem cell of adipose, MC: myeloid cell, BC: B cell, TC: T cell, SC: 
skeletal muscle satellite cell, MAC: macrophage, EC: endothelial 
cell

Name No. of 
individuals

Tissue Cell‑type

FACS_solution1 7 GAT, SCAT MSC, MC

FACS_solution2 5 MAT, SCAT EC, MSC

FACS_solution3 5 BAT, SCAT EC, MC

FACS_solution4 4 BAT, MAT BC, EC

FACS_solution5 4 GAT, SCAT EC, MSC, MC

FACS_solution6 4 Diaphragm, LM MSC, SC

FACS_solution7 3 BAT, SCAT BC, MC

FACS_solution8 3 GAT, MAT, SCAT MSC, MC

FACS_solution9 3 BAT, GAT, SCAT MSC, MC

FACS_solution10 3 GAT, MAT, SCAT EC, MSC

FACS_solution11 3 BAT, GAT, SCAT EC, MC

FACS_solution12 2 MAT, Spleen BC, CD4+alpha-
betaTC

FACS_solution13 2 BAT, MAT BC, EC, MSC

FACS_solution14 2 BAT, SCAT BC, MSC, MC

FACS_solution15 2 BAT, MAT BC, EC, MC

FACS_solution16 2 BAT, SCAT BC, EC, MC

FACS_solution17 2 BAT, Diaphragm BC, EC

FACS_solution18 2 Diaphragm, LM BC, MSC, SC

FACS_solution19 2 MAT, Trachea EC, MAC

FACS_solution20 2 MAT, SCAT EC, MSC, MC

FACS_solution21 2 BAT, GAT, SCAT EC, MSC, MC

FACS_solution22 2 BAT, GAT, MAT, 
SCAT 

EC, MSC

FACS_solution23 2 BAT, MAT, SCAT EC, MC

FACS_solution24 2 Diaphragm, LM EC, MSC, SC

Droplet_solution1 2 LM, MG BC, TC, EC, MAC
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expression can be specific to both tissue and cell-type 
[11, 26, 30]. In addition, data-mining analyses of the TMS 
dataset have identified genes that exhibit age-related 
increases in expression in specific sex-tissue-cell-type 
combinations while showing decreases in others (or vice 
versa) [21]. Understanding the underlying mechanisms 
driving these differences in age-related changes is cru-
cial for advancing our knowledge of tissue-specific aging 
processes.

Using COSER, we investigated the occurrence of oppo-
site aging effects within different tissue environments. 
For both the FACS and Droplet datasets, we focused on 
different combinations of sex, tissue, cell-type, and age. 
Donor age was defined as “Young” for three-month-
old cells, “Old” for cells aged ≥ 18 months, and cells 
from one-month-old donors were excluded. Only com-
binations harboring more than 25 cells were selected 
for further analysis. When we applied COSER to this 

four-column table to identify sub-datasets, four maximal 
solutions were obtained using the FACS dataset while 
none were obtained using the Droplet dataset (Table 2).

We focused on two solutions from the FACS dataset, 
each containing at least three cell-types (FACS_solution1 
and FACS_solution3). The sub-dataset corresponding to 
FACS_solution1 facilitates a comparative analysis of gene 
expression between GAT and SCAT. In contrast, the sub-
dataset corresponding to FACS_solution3 facilitates the 
exploration of differences between MAT and SCAT.

We performed GLM analysis on cells from each tis-
sue in a sub-dataset, and calculated the regression coef-
ficients and P-values for the “Young” category across all 
genes in each tissue. We identified genes where the sign 
of the “Young” coefficient was opposite between tissues 
and both were statistically significant (FDR < 0.05). Scat-
ter plots of the regression coefficients for the “Young” 
category in the two tissues are shown in Fig. 5A and B. 

Fig. 3 Isolated effects of the tissue environment observed throughout the body. A QQ plot showing P-values for the effect of tissue and cell-type 
in 24 sub-datasets from the FACS dataset. Each line corresponds to a sub-dataset. Zero P-values were replaced with the minimum non-zero P-value 
before log transformation. B GO terms with the top ten enrichment scores for genes affected by the tissue environment in the FACS dataset. C QQ 
plot showing P-values for the effect of the tissue and cell-type in one sub-dataset from the FACS dataset. D GO terms with the top ten enrichment 
scores for genes affected by the tissue environment in the Droplet dataset
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A total of 14 genes in the BAT vs. SCAT comparison and 
119 genes in the MAT vs. SCAT comparison exhibited 
different directions of significant age-related gene expres-
sion change. Detailed results, including regression coef-
ficients for BAT vs. SCAT and MAT vs. SCAT, are shown 
in Supplementary File 9 and Supplementary File 10, 
respectively.

The findings showed that opposite aging effects are 
present even among different adipose sub-tissues. Spe-
cifically, four GO terms were significantly associated 
with genes exhibiting age-related expression changes in 

Fig. 4 DAGs representing the relative magnitude of the isolated effect of tissue environments on the expression of four transcription factors (Fosb, 
Klf4, Tbx15, Wt1). The inequalities of the isolated tissue effects derived from the graphs are also included

Table 2 All maximal solutions for the combinations of tissue, 
cell-type, sex, and age

Name Sex Tissue Cell‑type Age

FACS_solu-
tion1

Male, Female BAT, SCAT BC, EC, MC Old, Young

FACS_solu-
tion2

Male, Female GAT, SCAT MSC, MC Old, Young

FACS_solu-
tion3

Male, Female MAT, SCAT BC, EC, MSC Old, Young

FACS_solu-
tion4

Male, Female BAT, MAT, 
SCAT 

BC, EC Old, Young
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opposite directions between BAT and SCAT. These terms 
include GO:0042742 (defense response to bacterium), 
GO:0042107 (cytokine metabolic process), GO:0002237 
(response to molecule of bacterial origin), and 
GO:0002526 (acute inflammatory response), as shown in 
Fig. 5C and Supplementary File 11. These results suggest 
that gene expression related to immunity and inflamma-
tion changes with age in opposing directions, depend-
ing on the tissue environment. Such findings highlight 
the importance of accounting for the influence of the 
tissue environment when studying age-related changes 
in immunity and inflammation. In the case of MAT vs. 
SCAT, no GO terms were significantly enriched.

Discussion
In this study, we showed that a substantial number of 
genes are affected by the tissue environment. Specifically, 
various immune response pathways were associated with 
genes exhibiting differential expression affected by tissue 
environments. In addition, biological processes related to 
translation showed a strong association with the tissue 
environment. These findings highlight the importance of 
considering the tissue environment when analyzing cel-
lular gene expression patterns. This investigation repre-
sents a pioneering effort to systematically evaluate the 
isolated effects of the tissue environment through data 
mining of a large-scale scRNA-seq atlas.

Aging analysis suggested that age-related changes in 
gene expression are influenced by the tissue environment. 
Specifically, genes exhibiting age-related changes were 
predominantly enriched in biological functions associ-
ated with immune responses. This decline in immune 
function with age, referred to as immunosenescence, is 

an important aspect of the aging process in individuals 
[1, 28]. While the tissue environment typically regulates 
the cellular states involved in the immune responses, 
aging may disrupt this regulatory process.

The biological significance of the phenomenon 
whereby some cell types are shared between different tis-
sues, while many cell types are restricted to specific tis-
sues, is one of the essential but unresolved questions. The 
definition of “cell type” itself is non-trivial, and it is not 
easy to give a clear answer to this question. However, one 
biological reason is that cells that carry out common and 
essential functions such as defense and immune surveil-
lance, such as immune cells, can be cited. These cells can 
move throughout the body via the blood and lymphatic 
circulations and exist in many tissues. In this study, too, 
many of the main cell types observed across multiple tis-
sues are immune system cells, suggesting a link to these 
universal functions.

There are several limitations to this study. First, the 
tissues were not evenly distributed in the detected solu-
tions. For example, although the FACS dataset contains 
23 tissues, only 8 were included in any of the 24 identi-
fied solutions. On the other hand, certain tissues, such 
as adipose tissue, were repeatedly detected in multiple 
solutions, allowing for detailed examination but prevent-
ing a comprehensive evaluation of all tissues in the body. 
In addition, when comparing the FACS dataset and the 
Droplet dataset from the same project, there was a sig-
nificant difference in their applicability for evaluating 
tissue effects. While Droplet dataset contains more than 
two times of cells than FACS dataset, the solutions from 
Droplet dataset were more limited than FACS dataset. 
This discrepancy arises because the TMS dataset was not 

Fig. 5 Comparison of age-related changes between different tissue environments. A Scatter plot of regression coefficient of the “Young” 
to gene expression level. Genes exhibiting the opposite effect of aging are colored red (X-axis is positive) or blue (Y-axis is positive). B Scatter plot 
of the “Young” regression coefficient versus the gene expression level (MAT vs. SCAT). C GO terms with the top ten enrichment scores for genes 
exhibiting the opposite effect of aging (BAT vs. SCAT)
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specifically designed to quantify tissue effects. Instead, 
the findings highlight the potential application of COSER 
to future research in experimental planning and statis-
tical modeling for omics atlases in advance. Another 
limitation is that the main focus of this study is limited 
to mice aged 3 months, which are included in the TMS 
dataset. The TMS dataset is a prominent large-scale data-
set that contains many mouse tissues throughout the 
body and cells of various ages. At present, such datasets 
are limited, but it is expected that more diverse data-
sets will appear in the future. By applying the developed 
method to datasets obtained under different species and 
conditions, it will be possible to analyze the effects of the 
tissue environment on cells in more detail and gain fur-
ther insights.

In terms of future prospects, the key issue will be to 
elucidate the specific mechanisms by which the tissue 
environment affects gene expression. Changes in gene 
expression are affected not only by endogenous con-
trol via transcription factors and epigenetic regulatory 
mechanisms that cells inherently possess but also by 
signals received from surrounding cells and the extracel-
lular matrix. However, this study focused on statistically 
quantifying the magnitude of the tissue effect and did not 
delve into the regulatory mechanisms at the molecular 
level. To elucidate such detailed mechanisms, it will be 
necessary to use experimental approaches to investigate 
interactions with the extracellular environment.

In this study, we developed novel data analysis frame-
work, COSER, to enumerate suitable sub-datasets based 
on the combinations of discrete variables within a data-
set. While selecting sub-datasets is an effective strategy 
for mitigating statistical confounding, manual extrac-
tion of suitable analysis units can be challenging. COSER 
addresses this issue by systematically selecting sub-
datasets through the extension of the maximal bipartite 
clique enumeration problem to a k-partite hypergraph. 
From a future perspective, applying this approach to 
datasets from various omics layers has the potential to 
uncover the overall diversity and functional landscape at 
the cellular level, thereby contributing to advances in the 
life sciences. Although this study primarily focused on 
the effect of the tissue environment in a single scRNA-
seq atlas dataset, the COSER framework could be applied 
to any dataset containing multiple discrete variables.

Method
Acquisition of data
The pre-processed scRNA-seq data of TMS dataset were 
obtained using the “TabulaMurisSenisData” package in R 
[25]. The list of mouse transcription factors was obtained 
from AnimalTFDB [24].

Algorithm for sub‑dataset extraction by extending 
the maximal biclique enumeration problem to k‑partite 
hypergraphs
We model a table on experimental results (i.e., a data-
set) by a hypergraph. A hypergraph H = (V , E) is a pair 
of a set V of vertices and a set E of hyperedges, where 
E ⊆ 2V  . For an integer k ≥ 2 , H is k-partite if there is 
a partition V = V1 ∪ V2 ∪ · · · ∪ Vk such that, for every 
hyperedge H ∈ E , |H ∩ Vi| = 1 , i = 1, 2, . . . , k holds. A 
conventional bipartite graph is a 2-partite hypergraph 
in this terminology. For a subset S ⊆ V  , we denote 
Si := S ∩ Vi , i = 1, 2, . . . , k . For a subset S such that all 
of S1, S2, . . . , Sk are non-empty and q ∈ {1, 2, . . . , k} , we 
define �q(S) � {{v1, v2, . . . , vq} | vi ∈ Si, i = 1, 2, . . . , q} . 
In other words, �q(S) is the set of all combinations of 
vertices that are taken from S1, S2, . . . , Sq one by one, 
respectively.

Let H = (V , E) be a k-partite hypergraph and 
θ1, θ2, . . . , θk be positive integers. We call a tuple 
(H; θ1, θ2, . . . , θk) an instance. We call S ⊆ V  a solution 
to the instance if

• |Si| ≥ θi holds for all i = 1, 2, . . . , k ; and
• �k(S) ⊆ E holds.

A solution S is maximal if there is no solution that is a 
proper superset of S. It is easy to see that, when k = 2 
and θ1 = θ2 = 1 , a solution corresponds to a biclique in 
a bipartite graph. Parameter θi , i = 1, 2, . . . , k is deter-
mined by users and represents a threshold on the num-
ber of entries in Vi that is regarded as significant.

In our context, a table like Fig.  5A can be repre-
sented by a k-partite hypergraph such that each ver-
tex corresponds to an entry in the table (e.g., “Female”, 
“BAT”, “BC”, “Old”); each subset Vi , i = 1, 2, . . . , k in the 
partition corresponds to a column of the table (e.g., 
“Sex”, “Tissue”, “Cell-type”, “Age”); and each hyper-
edge H ∈ E corresponds to a row of the table. A solu-
tion S to the instance (H; θ1, θ2, . . . , θk) corresponds 
to a set of rows in the dataset such that all possible 
|S1| × |S2| × · · · × |Sk | combinations of entries appear, 
where |Si| ≥ θi , i = 1, 2, . . . , k holds. In our experiments, 
we will construct H from a given dataset as above, and 
set θ1 = θ2 = · · · = θk := 2.

We consider the problem of enumerating all maxi-
mal solutions. Let n := |V | , m := |E | , and N denote the 
number of all maximal solutions. It is inevitable that 
the enumeration task takes �(N ) time, and N can be up 
to an exponential number with respect to n and m. For 
example, when k = 2 , there exist 2min{|V1|,|V2|} maxi-
mal solutions in crown graphs. A natural question is to 
ask whether or not we can enumerate all maximal solu-
tions in polynomial time with respect to n, m and N (i.e., 
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output-polynomial time [13]). Unfortunately, it is hope-
less to obtain such an algorithm since it is NP-complete 
to decide whether there exists a solution even for the case 
of k = 2 and θ1 = θ2  [9]. This indicates that there is no 
polynomial-time algorithm to find a maximal solution 
unless P =NP.

Based on the hardness of the problem, we decide to 
focus on developing an algorithm that completes the 
enumeration task for our datasets in practical time while 
the time complexity bound is trivial O∗(2n) , where O∗(·) 
ignores polynomial factors. For space complexity, the 
algorithm uses O∗(2n) space to store all candidates of 
maximal solutions. However, the algorithm is efficient 
enough for our datasets.

Let us introduce notations for preparation. For a ver-
tex v ∈ V  , we denote by E(v) the set of all hyperedges 
in E that contain v. We define Ê(v) to be the family of 
all vertex subsets that are obtained by deleting v from 
a hyperedge in E(v) ; i.e., Ê(v) � {H \ {v} | H ∈ E(v)} . 
For i ∈ {1, 2, . . . , k} , let U ⊆ Vi . We define 
Ê(U) :=

⋂
v∈U Ê(v) . For any subset F ∈ Ê(U) and ver-

tex v ∈ U , the union F ∪ {v} is a hyperedge in E . For a 
k-partite hypergraph H , let us define an auxiliary bipar-
tite graph BH = (Vk ∪WH,EH) such that WH :=

⋃
v∈Vk

Ê(v) 
and EH := {(v, Ĥ) | v ∈ Vk , Ĥ ∈ WH, {v} ∪ Ĥ ∈ E} . Note that each 
node Ĥ ∈ WH is a subset of V1 ∪ V2 ∪ · · · ∪ Vk−1.

In order to avoid redundant search, we restrict 
the search space by using two necessary condi-
tions that should be satisfied by any maximal solu-
tion. Let I = (H = (V , E); θ1, θ2, . . . , θk) . First, if S 
is a maximal solution to I  , then there is a maximal 
solution B to the auxiliary instance J = (BH; θk , 1) 
such that Sk = B ∩ Vk . This indicates that Sk of 
maximal solutions S to I  are within maximal solu-
tions to J  , where the latter solutions can be effi-
ciently computed by existing biclique enumeration 
algorithms. Second, if S is a maximal solution to I  , then 
S \ Sk = S1 ∪ S2 ∪ · · · ∪ Sk−1 must be a maximal solution 
in the reduced instance I ′ = (H′; θ1, θ2, . . . , θk−1) , where 
H
′ := (V1 ∪ V2 ∪ · · · ∪ Vk−1, Ê(Sk)) . Using this property, 

we generate the candidates of Sk , Sk−1, . . . , S1 recursively 
and maintain Sk ∪ Sk−1 ∪ · · · ∪ S1 as a candidate of a 
maximal solution to I  . After generating all candidates, 
we output those which are inclusion-wise maximal.

The two necessary conditions are summarized as Lem-
mas 1 and 2 as follows.

Lemma 1 For an instance I = (H = (V ,E); θ1, θ2, . . . , θk ) , if 
S ⊆ V  is a maximal solution to I  , then Sk ∪ Ê(Sk) is a 
maximal solution to J = (BH; θk , 1).

Proof We see that Ê(Sk ) = (
v∈Sk

Ê(v)) ⊆ (
v∈Vk

Ê(v)) = WH
 . 

For every u ∈ Sk and Ĥ ∈ Ê(Sk ) , it holds that (u, Ĥ) ∈ EH since 

Ĥ ∈ Ê(Sk ) =
⋂

v∈Sk
Ê(v) ⊆ Ê(u) , indicating that {u} ∪ Ĥ ∈ E . 

Then Sk ∪ Ê(Sk ) is a solution to J  , where the maximality is 
obvious.   �

Lemma 2 Suppose that we are given an instance 
I = (H = (V , E); θ1, θ2, . . . , θk) . Let S be a solution to I  
and H′ := (V1 ∪ V2 ∪ · · · ∪ Vk−1, Ê(Sk )) . (i) The hypergraph H′ is 
(k − 1)-partite. (ii) If S is a maximal solution to I  , then 
S \ Sk is a maximal solution to I ′ := (H′; θ1, θ2, . . . , θk−1).

Proof (i) We see that Ê(Sk ) =
⋂

v∈Sk
Ê(v) by the defi-

nition, where each Ĥ ∈ Ê(v) satisfies |Ĥ ∩ Vj | = 1 for 
j = 1, 2, . . . , k − 1 since H is k-partite. This shows that H′ 
is (k − 1)-partite.

(ii) By (i), H′ is (k − 1)-partite. Obviously |Si| ≥ θi holds for 
i = 1, 2, . . . , k − 1 . Let H := {v1, v2, . . . , vk−1} ∈ �k−1(S) . 
For every vk ∈ Sk , we have H ∪ {vk} ∈ E(vk) ⊆ E since 
S is a solution to I  . Then H ∈

⋂
vk∈Sk

Ê(vk ) = Ê(Sk ) holds, 
where we see that S \ Sk is a solution to I ′ . If S \ Sk is not 
maximal, then there would be a solution S+ to I ′ such that 
S+ � S \ Sk . For u ∈ S+ \ (S \ Sk) , it is easy to see that 
S ∪ {u} is a solution to I  , contradicting the maximality of 
S.   �

Now we are ready to present an algorithm to enumer-
ate all maximal solutions. The algorithm is summarized 
as EnumMaxSol in Algorithm 1.

Algorithm  1 An  algorithm EnumMaxSol  (I) to  output 
all maximal solutions to a given instance I
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Theorem 1 For an instance I  , Algorithm 1 enumerates 
all maximal solutions.

Proof We show the correctness of the algorithm by 
induction on k. If k = 1 , then every hyperedge in E 
consists of precisely one vertex in V. The unique maxi-
mal solution is the set S of vertices that are contained in 
hyperedges and hence |S| = |E | holds. We see that Algo-
rithm 1 outputs S if k = 1 and |S| ≥ θ1.

Suppose k > 1 and that Algorithm 1 works correctly for 
k − 1 . We show that every subset S in C is a solution (which 
may not be maximal) at any time in the execution of the 
algorithm; S is constructed by taking the union S = K ∪ Ĥ 
in line 12. The set K is a subset of Vk (line 8) and also a sub-
set of a maximal solution B to J  that is generated in line 6. 
Then |K | ≥ θk holds. Also, Ĥ is a solution to I ′ in line 9 that 
satisfies |Ĥ ∩ Vi| ≥ θi , i = 1, 2, . . . , k − 1 . One readily sees 
that �k(S) ⊆ E holds and hence S is a solution.

We show that any maximal solution S to I  belongs to 
C when the algorithm terminates. By Lemma 1, there is a 
maximal solution B to J  such that Sk = B ∩ Vk , where B 
is exactly generated in line 6. Let us denote Ĥ := S \ Sk . 
By Lemma 2(ii), Ĥ is a maximal solution to I ′ , and by the 
induction assumption, the recursive call in line 10 exactly 
generates Ĥ . Then S = Sk ∪ Ĥ is added to C in line 14 
since it is inclusion-wise maximal and hence no maximal 
solution S+ � S to I  exists. Once S is added to C , it is not 
excluded from C in line 15.

A non-maximal solution cannot belong to C at the end 
of the algorithm since all maximal solutions are con-
tained in C and any non-maximal solution has not been 
included to C by line 13 or has been excluded from C in 
line 15. Then C is the set of all maximal solutions when 
the algorithm terminates.   �

Let us make remarks on our Python implementation of 
the algorithm. In line 6, we enumerate bicliques in BH by 
the algorithm of [29]. We use data structure set to real-
ize the family C of candidate solutions, which is essen-
tially a hash table.

Generalized linear model analysis
A GLM was used to evaluate the contribution of discrete 
variables to each gene’s expression level. Discrete variables, 
such as sex, tissue, and cell-type, were used as explanatory 
variables. Our model can be expressed as follows.

yi = bsex × sexi + btissue × tissue + bcelltype × celltype + error

yi is the gene expression level of the i-th cell, and sexi , 
tissuei , and celltypei are the attributes of the i-th cell. the 
error term is the random error under a gaussian distribu-
tion. bsex , btissue , bcelltype are the partial regression coeffi-
cient of each discrete variable and represents the isolated 
effect of that variable. The partial regression coefficients 
and P-values for the discrete variables were calculated 
using the “glm” function in R with default settings. The 
P-values for each discrete variable were calculated using 
Type II ANOVA, implemented with the “Anova” function 
from the R package “car” (version 3.1.3) [8].

Gene Ontology analysis
Gene Ontology analysis was performed for the biologi-
cal interpretation of the results derived from the omics 
analysis performed using the proposed method. Gene 
Ontology analysis was performed using the “WebGe-
staltR” package (version 0.4.6) in R [17]. The “WebGe-
staltR” function within this package was used for the 
analysis, and Over-Representation Analysis (ORA) was 
specified as the method. The analysis focused on the GO 
category “Biological Process”, using the database setting 
“geneontology_Biological_Process_noRedundant”.

Data visualization
The bipartite graph was visualized using the “igraph” 
(version 1.6.0) and “multigraph” (version 0.99) packages 
in R [7, 22].

Software availability and requirements
 

• Project name: k-partite-hypergraph
• Project home page: https:// github. com/ ku- dml/k- 

parti te- hyper graph
• Operating system(s): Platform independent
• Programming language: Python
• Other requirements: Python 3.9 or higher, pandas ≥ 

1.4.2
• License: MIT License
• Any restrictions to use by non-academics: License 

needed
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