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Abstract
Background Asian water buffaloes (Bubalus bubalis) in the Yangtze River Basin of China are the important meat 
provider for local residents because of its outstanding body size. Several previous studies have highlighted their 
genetic basis of growth characteristics, but the crucial genes regulating growth traits via multi-layer omics are still 
rarely investigated.

Results We conducted a comprehensive multi-omics analysis integrating blood and muscle transcriptome, plasma 
metabolome, rumen fluid metagenome, and genome of Haizi water buffaloes. Of note, ribosomal protein L26 (RPL26) 
located in the evolutionary selection regions associated with body sizes is the top differentially expressed gene (DEG) 
in both blood and muscle tissues. Further metabolomics and metagenomics identified growth-related molecular 
biomarkers (myristicin and Bacteroidales) and microbiological composition (Bacteroides and Prevotella). Leveraging 
cattle quantitative trait loci (QTLs) and genotype-tissue expression (CattleGTEx) databases, we found the significant 
correlations of QTL_180979 on RPL26 and two identified cis-eQTLs in muscle tissue in the upstream of RPL26 with 
weight gain. The follow-up cell assay validations confirmed the regulation roles of RPL26 in cell cycle, apoptosis, and 
differentiation, where the low RPL26 expressions enhanced the antiapoptotic ability and promoted the differentiation 
of myoblasts into myotubes markedly.

Conclusions Our study illustrates RPL26 roles in regulating growth traits via both integrated multi-omics analysis and 
functional validations that suggests the further applications of RPL26 for growth trait selection of water buffaloes.
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Introduction
In China, Asian water buffaloes (Bubalus bubalis) are 
mainly distributed in the rice-growing regions of the 
Yangtze River Basin as the meat provider for local resi-
dents because of its outstanding body size, such as Haizi 
(HZ) water buffaloes [1]. The genetic basis of growth 
characteristics has been investigated to understand the 
mechanisms underlying growth traits [2, 3], but the 
related genes were seldom identified. Therefore, it’s valu-
able to explore the crucial genes regulating growth traits 
of HZ water buffaloes due to its more advantageous 
growth characteristics than other buffaloes.

The cattle genome has been extensively shaped by arti-
ficial selection [4–6] and the selection signature analysis 
facilitates the understanding of genetic mechanisms [7–
9]. The frequencies of beneficial mutations selected over 
generations increase within populations and ultimately 
influence the final phenotypes [10]. In buffaloes, SNPs in 
exon and promoter regions of HSP family were associ-
ated with milk production, heat resistance, stress recov-
ery, and disease susceptibility traits [1, 11]. Compared 
with quantitative trait locus (QTL) mapping, the current 
multi-omics methods enable deeper insights into biologi-
cal mechanisms [12, 13]. The integration of differentially 
expressed genes (DEGs) with genome-wide association 
study (GWAS) increased the identification of 38 pleio-
tropic key regulators [14]. Utilizing the cattle Genotype-
Tissue Expression (CattleGTEx), Liu et al. characterized 
the genetic regulatory variants on gene expressions and 
linked those gene expressions to 43 economic traits for 
different tissues [15].

Recent advances in multi-omics approaches have sig-
nificantly enhanced our understanding of the genetic 
and molecular basis of complex traits in livestock. 
High-throughput sequencing technologies, combined 
with integrative omics analyses, have enabled research-
ers to dissect the intricate regulatory networks under-
lying growth traits, uncovering key genes, metabolic 
pathways, and microbiome interactions that contribute 
to phenotypic variation. In particular, studies on cattle 
and other ruminants have demonstrated that integrat-
ing transcriptomics, metabolomics, and metagenomics 
provides a more comprehensive view of the factors influ-
encing growth performance and feed efficiency. A com-
prehensive investigation into the molecular mechanisms 
underlying complex growth traits has profound implica-
tions in genetic improvement and innovative utilization 
of the buffalo breeds [16, 17]. Therefore, we conducted 
a comprehensive multi-omics analysis of buffaloes using 
their integrated blood and muscle transcriptome, plasma 
metabolome, rumen metagenome, and genome, which 
aims to identify key genes regulating growth traits, the 
growth-related metabolites and rumen microbes, and 
their enriched pathways. Furthermore, we utilized cattle 

QTLs and CattleGTEx databases to validate the QTLs 
and eQTLs on the identified key genes and functional 
experiments at the cellular level to confirm their regu-
lation roles. This study will provide growth-related key 
genes and molecular biomarkers for the practical appli-
cations for selecting superior growth characteristics of 
Asian water buffaloes.

Materials and methods
Sample collection
HZ buffaloes were selected from a national conservation 
farm in Sheyang city, Jiangsu Province, under uniform 
feeding conditions and aged approximately 30 months. 
The buffalo population was individually weighed, and 
on the basis of weight differences, four high-weight 
(522 ± 23.87  kg) and four low-weight (444 ± 20.74  kg) 
individuals were chosen (Fig. S1A). The high-weight 
group averaged approximately 1.2 times the weight of 
the low-weight group. Before slaughter, live weights 
were recorded following a 24-hour fasting period and 
8  h without water. Net meat weight was determined 
postslaughter by subtracting bones, inner block-shaped 
fat, and ligaments. Organ and bone weights were mea-
sured via standard procedures (Fig. S1B). Each buffalo 
provided two blood samples, one for RNA sequencing 
and the other for nontargeted metabolome sequencing. 
Additionally, samples of the longest back muscle were 
collected for transcriptome sequencing. Slaughter proce-
dures adhered to GB/T19477-2018 guidelines, ensuring 
ethical handling. The specimens were taken from the lon-
gissimus dorsi muscle’s identical position on the left half 
of the carcass within 15  min postslaughter, rinsed with 
cold saline, sanitized, and promptly frozen in 5 mL tubes 
in liquid nitrogen.

RNA extraction and RNA-seq analysis
Total RNA was extracted via TRIzol reagent, and its 
concentration, purity, and integrity were assessed with 
a Qubit 4, Nanodrop spectrophotometer, and Agilent 
2100 Bioanalyzer kits. cDNA libraries were prepared fol-
lowing the protocols of the Illumina TruSeqTM RNA 
Sample Preparation Kit. After quality assessment of the 
libraries, PE150 sequencing was conducted on the Illu-
mina HiSeq platform by Novogene Co., Ltd. (Beijing, 
China). HISAT2 (v2.0.5) [18] was employed to align the 
clean data against the buffalo reference genome (NDDB_
SH_1, GenBank: GCA_019923935.1), followed by quan-
tification via FeatureCounts (v1.5.0-p3) [19], resulting in 
counts and fragments per kilobase million (FPKM) val-
ues. Gene expression levels were ranked on the basis of 
scores derived from log2-fold change (Log2FC > 1.5) and 
adjusted P values (Padj < 0.05). DESeq2 (v1.12.1) [20] was 
used to identify differentially expressed genes (DEGs) 
between high- and low-weight samples, with significance 
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determined at Padj ≤ 0.05. The significant DEGs were 
subsequently subjected to enrichment analysis via the 
web tool for Gene Ontology (GO) terms [21]. Functional 
enrichment analyses were conducted via the DAVID Bio-
informatics Resources [22].

Metabolite detection and data analysis
To identify potential growth markers in water buffaloes, 
we employed a rigorous nontargeted LC‒MS approach. 
The plasma samples (100 µL) were initially treated with 
cold methanol (200 µL), incubated at -20  °C, and then 
centrifuged. The resulting supernatant (150 µL) was dried 
and reconstituted in H2O: acetonitrile (50:50, v/v) with 
0.1% formic acid for LC‒MS analysis. Quality control 
(QC) samples were integrated throughout the system to 
ensure data reliability, monitor instrument performance 
and validate metabolite detection accuracy through seg-
mental scanning. Chromatographic separation was per-
formed with a Hypesil Gold C18 column with a gradient 
of 0.1% formic acid and methanol at a constant flow rate. 
The mass spectrometry conditions encompassed a wide 
mass range (m/z 100–1,500) in positive and negative ion 
modes, employing electrospray ionization. Compound 
Discoverer (v3.1) processed high-resolution MS data, 
facilitating peak alignment and extraction on the basis 
of defined parameters, and identification against spec-
tral databases such as mzCloud, mzVault, and MassList. 
The identified metabolites were annotated via the KEGG 
and LIPIDMaps databases to link their molecular fea-
tures with relevant biological pathways. metaX [23] con-
ducted Principal Component Analysis (PCA) and Partial 
Least Squares Discriminant Analysis (PLS-DA), generat-
ing Variable Importance in Projection (VIP) scores. Dif-
ferentially abundant metabolites between the high- and 
low-weight groups were identified on the basis of VIP > 1, 
P < 0.05, and fold change thresholds (≥ 2 or ≤ 0.5).

Microbial community and function profiling
Rumen metagenome DNA from HZ buffalo was extracted 
via the FastDNA® Spin Kit for Soil (MP Biomedicals) and 
fragmented via a Covaris ultrasonic crusher. Library 
preparation involved end repair, A-tailing, adapter liga-
tion, PCR amplification, fragment screening, and puri-
fication. Sequencing was conducted on the BGISEQ 
DNBSEQ-T7 platform by Beijing Novogene Technol-
ogy Co., Ltd. Quality trimming was performed via Fastp 
(v0.23.4) [24] to remove 3’ and 5’ end adapters, filter out 
reads shorter than 50  bp, reads with low average base 
quality scores (< 20), and those containing N bases. Reads 
were aligned to host DNA sequences via BWA-MEME 
(v1.0.6) [25] to filter out contaminant reads. MEGAHIT 
(v1.2.9) [26] was used for sequence assembly, generating 
contigs of ≥ 300 bp. Prodigal (v2.6.3) [27] was employed 
to predict open reading frames (ORFs) of ≥ 100 bp, which 

were translated into amino acid sequences. The pre-
dicted genes were clustered into a nonredundant set via 
CD-HIT (v4.8.1) [28] with 90% identity and coverage, 
and the longest gene from each cluster was selected as 
the representative gene. SOAPaligner (v2.21) calculates 
gene abundance by aligning high-quality reads to the 
nonredundant gene set with a 95% similarity threshold. 
Amino acid sequences were aligned against the NR and 
KEGG databases via Diamond with an e-value thresh-
old of 1e-5 for species and functional annotation. Car-
bohydrate-active enzymes were annotated via hmmscan 
from the CAZy database. Analyses were conducted on 
the Majorbio Cloud Platform. Species alpha diversity was 
assessed via one-way ANOVA. Principal coordinate anal-
ysis (PCoA) was performed for intergroup analysis, and 
intergroup similarity was evaluated via ANOSIM with R 
QIIME software. Spearman correlation was employed to 
link differential species and functional genes with rumen 
carbohydrate-active enzyme activity.

Genome-wide alignment, variation detection and selection 
signature analysis
The large buffaloes consisted of 5 Haizi (HZ) and 5 
Dehong (DH) buffaloes, whereas the small buffaloes 
included 6 Wenzhou (WZ) buffaloes and 5 Yibin (YB) 
buffaloes. The raw data used for selection signal analysis 
were downloaded from the China National Center for 
Bioinformation website ( h t t p  s : /  / n g d  c .  c n c  b . a  c . c n  / g  s a /  b r o  
w s e /  C R  A 0 0 1 4 6 3) [1]. After quality control, the sequenced 
reads were compared to the reference NDDB_SH_1 
(GCA_019923935.1) via BWA-MEM [29]. Genome-wide 
high-quality genetic variation was detected via GATK 
(v3.6) HaplotypeCaller and GenotypeGVCFs [30]. The 
GATK Variant Filtration command was employed with 
the parameter ‘-filter-expression “QD < 2.0|| MQ < 40.0|| 
FS > 60.0|| SOR > 3.0|| MQRankSum < -12.5|| ReadPos-
RankSum < − 8.0” to enable efficient exploration of quality 
filters to exclude potential false-positive variant calls for 
mutation identification. Since we considered only single-
nucleotide variation in this study, all called insertions and 
deletions (indels) were removed via VCFtools (0.1.17) 
[31]‘--remove-indels’ parameter. The fixation index (Fst) 
was calculated via VCFtools [31] for both large buffaloes 
and small buffaloes. Fst was computed for the following 
pairs: HZ vs. WZ, HZ vs. YB, DH vs. WZ, and DH vs. 
YB. The sliding window size was set to 100 kb with a step 
size of 20  kb. The specific command is provided below: 
--big_group–small_group --fst-window-size 100000 
--fst-window-step 20000 --maf 0.05 --max-missing 0.90. 
The genomic regions of selected sites were annotated via 
Snpeff (v3.9H).

https://ngdc.cncb.ac.cn/gsa/browse/CRA001463
https://ngdc.cncb.ac.cn/gsa/browse/CRA001463
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Functional analysis of the RPL26 gene
Homology comparisons of the RPL26 gene across diverse 
species were performed via UniProt [32]. The gene name 
“RPL26” was entered, and the relevant species were 
selected by clicking “Align.” Custom colors were applied 
to the “percent identity matrix” based on the alignment 
results to visualize similarities and differences among 
the species. To construct the evolutionary tree of the 
RPL26 gene, gene sequences from various species were 
downloaded from NCBI. These sequences were imported 
into MEGA (v11.0) [33], and alignment was performed 
via ClustalW with default parameters. The aligned 
sequences were then used to construct a phylogenetic 
tree via the “phylogeny-construct/text maximum likeli-
hood tree” function in MEGA, with default settings gen-
erally applied. This method provides systematic insights 
into the homology and evolutionary relationships of 
the RPL26 gene across different species. The promoter 
sequence of the RPL26 gene was retrieved from NCBI, 
and predicted transcription factor-binding sites were 
identified through ConTra (v3) [34]. Linkage disequilib-
rium analysis within the promoter region and selected 
sites across the gene was conducted via LDblockshow 
(v1.40) [35]. LDBlockShow -InVCF buffalo_snp_fil-
tered.Recode.vcf -OutPut 7k_ld -ShowNum -Region 
NC_059159.1:35121000:35128000 -OutPng -SeleVar 1, 
covering a region with a total of 56 selected SNPs.

Cell culture
C2C12 myoblasts, which exhibit vigorous growth after 
48 ~ 72 h of passaging, were digested with 2.5 g/L trypsin 
solution to generate cell suspensions. The cell density was 
adjusted to 4 × 104 cells per milliliter, and the cells were 
seeded into 6-well culture plates. In a 6-well plate, each 
well received 2 mL of cell suspension, and the cells were 
cultured at 37  °C in a constant-temperature incubator 
for 24 h until they adhered to the surface. The cells were 
divided into two groups: the control group was subjected 
to normal culture conditions (DMEM, 10% fetal bovine 
serum and 1% penicillin‒streptomycin solution (Gibco, 
Shanghai, China)), while the second group was subjected 
to siRNA-mediated knockdown. siRNAs targeting RPL26 
(siRPL26-1, siRPL26‐2) (Table S6-1) were obtained from 
GenePharma Co., Ltd. (Shanghai, China). Each siRNA 
was transfected into the cells at a concentration of 5 
nmol/L via CALNP™ RNAi in vitro (D-Nano Therapeu-
tics, Beijing, China) following the manufacturer’s proto-
col. C2C12 cells were collected 48 h after transfection for 
further experiments. For the differentiation experiments, 
after 24 h of transfection, the medium was replaced with 
normal growth medium. When the cells reached approx-
imately 90% confluence, the medium was changed to dif-
ferentiation medium (DMEM + 2% HS), and the medium 

was changed every two days. Experiments were con-
ducted after 3 days of differentiation.

RT-qPCR
Total RNA was extracted from C2C12 cells via a high-
purity total RNA extraction kit (Proteinssci, AF505B, 
Shanghai, China), and cDNA was synthesized via HiS-
cript® III RT SuperMix for qPCR (+ gDNA wiper) 
(Vazyme, R323-01, Nanjing, China). RT-qPCR ampli-
fication was performed via specific primers (Tsingke, 
Nanjing, China) and SYBR Green I dye (Vazyme, Q711, 
Nanjing, China) on a QuantStudio 5 system. The rela-
tive transcript abundance was determined via the 2−ΔΔCt 
method and normalized to that of GAPDH (Table S6-2).

Western blot
Protein was collected after 3 days of differentiation in dif-
ferentiation medium. To each well of a 6-well plate, 200 
µL of RIPA lysis buffer (with 10 µL of PMSF) was added. 
The cells were lysed on ice for 10 min and then scraped 
off (if viscous, brief sonication was used). After dena-
turation at 98  °C for 15  min and cooling to room tem-
perature, the lysate was centrifuged at 12,000  rpm for 
10 min at 4 °C. The supernatant was aliquoted and stored 
at -80 °C (for long-term storage) or -20 °C. The collected 
protein samples were loaded onto polyacrylamide gels for 
electrophoresis, followed by transfer to membranes. The 
membranes were blocked with 5% skim milk for 2 h. The 
following primary antibodies were prepared in TBST at 
a 1:1000 dilution: RPL26 (Proteintech, Wuhan, China), 
MyoD1 (Proteintech, Wuhan, China), MyoG (Protein-
tech, Wuhan, China), and MYH1 (ABclonal, Wuhan, 
China). The membranes were incubated with the appro-
priate primary antibodies overnight at 4  °C. The mem-
branes were then washed three times with TBST, each 
lasting 5  min. HRP-conjugated secondary antibodies 
(rabbit, mouse) were diluted 1:5000 in TBST and incu-
bated at room temperature for 2 h. After the membranes 
were washed, enhanced chemiluminescence (ECL) 
reagent (1:1 mixture of solutions A and B) was applied 
for detection, and chemiluminescent imaging was per-
formed. Protein bands were qualitatively assessed on 
the basis of marker size and quantitatively analyzed via 
ImageJ software.

Immunofluorescence
C2C12 cells were transfected with siRNA, and after 
24 h, the medium was replaced with growth medium for 
recovery. The cells were digested with trypsin to form a 
cell suspension, which was evenly plated into 24-well 
plates. When the cells reached approximately 90% con-
fluence, the medium was replaced with differentiation 
medium. After 4 days of differentiation, the medium was 
removed, and the cells were washed twice with PBS, each 
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Fig. 1 (See legend on next page.)
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lasting 5 min. After the PBS was removed, the cells were 
fixed with 4% paraformaldehyde at room temperature 
for 30 min and washed three times with PBS, each last-
ing 5 min. The cells were permeabilized with 0.5% Triton 
X-100 at room temperature for 20 min and washed three 
times with PBS. Blocking was performed with 5% BSA at 
room temperature for 60 min. The blocking solution was 
removed, and primary antibody dilution (MYH1, 1:100) 
was added overnight incubation at 4  °C. After the pri-
mary antibody was removed, the cells were washed three 
times with PBST, each lasting 5 min. The secondary anti-
body diluted with green fluorescence (1:200) was added 
and incubated at room temperature for 1 h in the dark. 
Hoechst 33,342 (1:1000) was used to stain the cell nuclei 
for 10 min, followed by washing with PBST. Fluorescence 
microscopy was used for observation and imaging.

Results
Genome-wide selection signatures
The genome-wide selection signature analysis was con-
ducted for two buffalo species with large body size (HZ 
and Dehong (DH)) and two buffalo species with small 
body size (Wenzhou (WZ) and Yibin (YB)). The selected 
windows were primarily located on chromosome 3, 4, 8, 
and 25 (Fig.  1A). Under the selected windows for each 
buffalo species, 365,893 selected SNP positions were sub-
sequently extracted to yield 40,323 shared SNP positions 
after pairwise comparisons (Fig. 1B). A total of 438 genes 
were identified within the selected regions and they were 
predominantly located in intron and intergenic regions 
(Fig. 1C). GO (Fig. 1D) and KEGG (Fig. 1E) enrichment 
analysis of these selected genes revealed their involve-
ment in molecular functions such as peptide metabolic 
and biosynthetic process, motor proteins and cytoskel-
eton in muscle cells.

Identified differentially expressed genes and key 
metabolites
On average, 94.88% of clean reads were filtered from raw 
reads with 90.99% of Q30 base quality metrics (Table S1) 
and 23,703 and 23,216 genes were identified in blood 
and muscle, respectively. Using thresholds of Padj < 0.05 
and| log2(FoldChange)| > 2, we identified 60 differentially 
expressed genes (DEGs) in blood with 4 upregulated and 
56 downregulated genes (Fig. 2A and B, Table S2) and 18 
DEGs in musle with 11 upregulated and 7 downregulated 
genes (Fig. 2A and C, Table S2). The top three DEGs were 
RPL26, CRISP2, and P2RX5 (Fig. 2D) and RPL26, GON7, 

and NPB (Fig.  2E) of blood and muscle, respectively. 
Interestingly, RPL26 was significantly downregulated in 
both blood and muscle tissues of the high-weight group, 
suggesting the crucial role of RPL26 in regulating body 
growth traits.

A total of 851 metabolites were detected in positive 
(n = 563) and negative (n = 288) ion modes (Fig. 3A, Table 
S3). Using thresholds of P value < 0.05, fold change < 1.5, 
and VIP > 1, 11 key metabolites were identified includ-
ing 3 upregulated (myristicin, TKK, progesterone) and 
8 downregulated (glycodeoxycholic acid, adenosine 
5’-monophosphate, PC, LPE, L-ascorbate) metabolites in 
high-weight group compared with those in low-weight 
group (Figs. 2C and 3B). The DEG-metabolie correlation 
analysis found that RPL26 was significantly negatively 
correlated with the metabolites TTK and progesterone 
but significantly positively correlated with the metabo-
lites glycodeoxycholic acid, PC, and 8,15-dihete (Fig. 3D).

Pathway enrichments of the genes, metabolites and rumen 
microbiome
In blood, KEGG enrichment analysis of DEGs revealed 
nine significantly enriched pathways, such as the PPAR 
signaling, the nucleotide and purine metabolism, and 
the thiamine metabolism (Fig. 4A). In muscle, the signifi-
cant pathways included the phospholipase D signaling, 
the pantothenate and CoA biosynthesis, and the amino 
sugar and nucleotide sugar metabolism (Fig.  4B). Path-
way analysis of the metabolites further emphasized their 
key roles in lipid, nucleotide, and amino acid metabolism 
(Fig. 4C), closely mirroring the pathways enriched in the 
blood transcriptome.

The different microbes between two groups at the spe-
cies level included Kiritimatiellae bacterium, Butyricimo-
nas virosa, and Clostridium sp. (Fig. 5A). The microbial 
metabolism, the secondary metabolite biosynthesis, and 
the amino acid and cofactor biosynthesis were involved 
in the major KEGG enrichment of rumen microbi-
ome pathways (Fig.  5B). Notably, the only differentially 
enriched pathway between the groups was nitrotoluene 
degradation (Fig.  5C), which implied the specific envi-
ronmental or dietary influences on rumen microbial 
activity. Subsequent correlation analysis between species 
and functional abundance revealed that Bacteroides con-
tributed mostly to metabolic pathways such as biosynthe-
sis of amino acids, biosynthesis of cofactors, and carbon 
metabolism (Fig. 5D).

(See figure on previous page.)
Fig. 1 Visualization of whole-genome selection signal analysis in water buffaloes of different body sizes via public databases. (A) Manhattan plot compar-
ing the genome-wide selected regions between water buffaloes of different body sizes. (B) Venn diagram of selected regions between water buffaloes 
of different body sizes. (C) Classification statistics bar chart of annotated genome positions for the selected sites after annotation. The x-axis represents 
different genomic position names, and the y-axis represents the percentage of sites. GO (D) and KEGG (E) enrichment analysis of genes annotated to the 
selected regions
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Integrated functional analysis of key gene RPL26
Analysis with ExPASy online tools ( h t t p  s : /  / w e b  . e  x p a  s 
y .  o r g /  p r  o t p a r a m /) revealed that RPL26 in water  b u ff  a l 
o e s encodes 88 amino acids, with lysine (Lys) being the 
most abundant at 19.3%, followed by valine (Val) at 12.5% 
(Fig.  6A). On the basis of the amino acid sequence of 
RPL26, a phylogenetic tree was constructed via MEGA11, 
which revealed the closest evolutionary relationship of 

water buffaloes with cattle and sheep (Fig.  6B). Homol-
ogy analysis revealed approximately 98% similarity for 
RPL26 among different species, with 98.86% homology 
with mammals such as bovines, sheep, goats, pigs, and 
mice (Fig. 6C), demonstrating its high degree of conser-
vation across species.

We used the animal QTL database (Cattle QTL db) 
to explore whether the regulatory growth-related QTL 

Fig. 2 DEGs in blood and muscle samples between high- and low-weight groups. (A) Number of identified differentially expressed genes (DEGs) in blood 
and muscle. Volcano plot of DEGs in blood (B) and muscle (C). Gray (ns) indicates genes whose expression did not significantly differ. Clustering heat map 
of top 18 DEGs in blood (D) and muscle (E). Red indicates high gene expression and blue indicates low gene expression

 

https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
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intervals are on RPL26. Considering the high amino acid 
sequence homology (98.86%) between bovine and water 
buffalo for RPL26, we aligned each selected SNP posi-
tion on RPL26 from buffalo to the reference genome of 
cattle (ARS-UCD1.2) (Table S5). The results revealed 
that the selected region on RPL26 (primary assembly 
19:27974414–27979325 reverse strand) overlapped with 
QTL_180979 in cattle, which was significantly correlated 
with daily weight gain (P = 2.93 × 10− 9). The QTL peak is 
located at 28  Mb (50.38  cM, Chr19:27977049) on cattle 
chromosome 19 (Fig. S2). One QTL peak was identified 
in the significant block of the promoter region and gene 

body of RPL26 in buffalo (Fig.  6D). To further explore 
RPL26, we downloaded the promoter sequence of this 
gene from NCBI and predicted transcription factor-bind-
ing sites via ConTra ( h t t p  : / /  b i o i  t 2  . i r  c . u  g e n t  . b  e / c o n t r a / v 
3 /) and predicted the most related transcription factors 
like MAX (Fig. 6E), MYCN (Fig. 6F), KLF4 (Fig. 6G), and 
MEF2A (Fig. 6H).

An extensive analysis utilizing the CattleGTEx data-
base ( h t t p  s : /  / c g t  e x  . r o  s l i  n . e d  . a  c . u k / s e a r c h /) identified 
two cis-eQTLs across multiple tissues, situated 377.32 kb 
and 378.05 kb upstream of the gene body, which specifi-
cally modulate RPL26 expression levels. (Fig. 7A, Fig. S3). 

Fig. 3 Metabolites in plasma between high- and low-weight groups. (A) Summary pie chart of detected metabolites in positive and negative ion mode. 
(B) Cluster heatmap of differentially regulated metabolites. (C) Volcano plot of differentially regulated metabolites identified on the basis of set thresholds. 
Red represents upregulated metabolites in the high-weight group, green represents downregulated metabolites, and gray represents nonsignificant 
metabolites. (D) Pearson correlation analysis between differentially expressed genes and differentially abundant metabolites. The vertical axis represents 
genes, the horizontal axis represents metabolites, and red to blue represents positive to negative correlations

 

http://bioit2.irc.ugent.be/contra/v3/
http://bioit2.irc.ugent.be/contra/v3/
https://cgtex.roslin.ed.ac.uk/search/
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Fig. 4 Functional enrichment of the differential genes and metabolites. KEGG pathway enrichment of DEGs in blood (A) and muscles (B). The dot size 
represents the number of differentially expressed genes in that pathway, and the dot color represents the p value. (C) Functional enrichment bar chart 
of detected metabolites in positive and negative ion mode categorized into cellular process, environmental information processing, genetic information 
processing, metabolism, and organismal systems
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Fig. 5 (See legend on next page.)
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Based on UK Biobank release 2 data, the PheWAS results 
showed that RPL26 gene was significantly correlated with 
height and standing height (Fig.  7B). These remarkable 
findings enhance our understanding of the crucial role of 
RPL26 in regulating bovine growth (Fig. 7C).

Low expression of RPL26 regulates cell cycle progression 
and enhances antiapoptotic ability
To further verify the functions of RPL26 in cells, we 
introduced sequence-specific siRNAs against RPL26 and 
conducted follow-up experiments in the C2C12 mouse 
myoblast cell line. Two siRNAs for RPL26 were suc-
cessfully transfected into C2C12 cells, resulting in high 
knockdown efficiency (Fig.  8A and B). The expression 
of Bax and Bcl-2 was significantly downregulated after 
the knockdown of RPL26, as shown by the detection of 
apoptosis-related genes. The increase of Bcl-2/Bax ratio 
indicated the enhanced antiapoptotic ability (Fig.  8C). 
Moreover, the expression of the cell cycle-related gene 
Cyclin D1 was significantly upregulated after knockdown, 
whereas Cyclin D2 expression remained unchanged 
(Fig.  8D). These results suggest that RPL26 knockdown 
can promote cell proliferation and increase the antiapop-
totic ability of cells.

Low expression of RPL26 promotes myogenic 
differentiation and fusion to form muscle ducts
We examined the protein expression of RPL26 and found 
that the siRNAs significantly inhibited RPL26 expres-
sion (Fig.  8E). We also investigated the expression lev-
els of the key myogenic differentiation factors at both 
mRNA (Fig. 8F) and protein (Fig. 8G) levels. The expres-
sion levels of the myogenesis markers MyoD1 and MyoG 
were significantly lower in the knockdown group than 
in the control group, whereas MYH1 expression was 
significantly upregulated. Additionally, we employed 
immunofluorescence staining to examine the morpho-
logical changes in the myocytes after 3 days of differen-
tiation (Fig. 8H). Immunofluorescence staining for MYH1 
revealed that in the MOCK and NC groups, the myo-
cytes were round or spindle shaped, and no fusion events 
or myotube formation was observed. After 3 days of dif-
ferentiation, a significant number of myocytes began 
to fuse, and immunofluorescence staining revealed the 
presence of MYH1-positive multinucleated myotubes, 
although most were binucleated at this stage (Fig.  8H, 
red arrows). Collectively, these results suggest that RPL26 

knockdown promotes myogenic differentiation and myo-
tube hypertrophy.

Discussion
Currently, many countries are transforming water buffa-
loes for labor into for dairy and meat products [36]. The 
body size of cattle plays a crucial role in their production, 
health, breeding selection, and environmental adaptation 
[37]. Body size encompasses a range of complex quantita-
tive traits, such as body weight, body length, and height 
[38]. In this study, 438 genes were identified in the selec-
tion regions including RPL26 and the expressions of 
RPL26 in blood and muscle were significantly lower, pro-
viding crucial evidence for the significant role of RPL26 
in regulating buffalo body size. This finding aligns with a 
previous study on sheep body size, where Antonios et al. 
identified the top 5 genes associated with sheep body size, 
namely, TP53, BMPR1A, PIK3R5, RPL26, and PRKDC, 
through a combined GWAS and ‘guided by association’-
based prioritization analysis [39]. The higher number of 
differentially expressed genes (DEGs) observed in blood 
compared to muscle can be attributed to several biologi-
cal factors. Blood is a dynamic and systemic tissue that 
reflects metabolic, immune, and hormonal fluctuations, 
whereas muscle is a more structurally stable tissue with 
relatively conserved gene expression. Blood cells, par-
ticularly leukocytes, have a high turnover rate and are 
highly responsive to physiological changes, making it 
easier to detect transcriptional differences. Additionally, 
blood is a heterogeneous tissue comprising various cell 
types, leading to greater transcriptomic variability, while 
muscle tissue is more homogeneous, primarily consisting 
of terminally differentiated myofibers with fewer tran-
sient transcriptional changes. These factors collectively 
contribute to the greater number of DEGs identified in 
blood than in muscle.

By integrating publicly available animal QTL databases, 
we identified a QTL interval associated with daily weight 
gain in cattle located on the RPL26 gene. Interestingly, 
this region showed high linkage with the gene’s pro-
moter region, suggesting that SNP sites in the promoter 
region may exert vigorous promoter activity on the QTL 
interval. Aniek et al. [40] conducted a meta-analysis of 
GWASthat compared the genomes of cattle, humans, and 
dogs and reported a significant overlap in the loci con-
trolling body size. Using CattleGTEx database [15], we 
discovered two cis-eQTLs on the RPL26 gene in bovine 

(See figure on previous page.)
Fig. 5 Rumen microbiota composition of the high- and low-weight groups. (A) Bar plot of the mean relative abundance differences of the same species 
between groups. The y-axis indicates the species names at different taxonomic levels, and the x-axis shows the percentage abundance of a species in the 
sample. (B) KEGG pathway functional composition and changes in the composition of the dominant pathways. (C) Analysis of the differential pathways 
associated with the microbiota/function composition. *P < 0.05 indicates a significant difference. **P < 0.01 and ***P < 0.001 indicate very significant dif-
ferences. (D) The bar chart shows the contributions of species to different functions at the species level. 1–10 represent 10 functional classifications, and 
11 different colors represent the degree of species contribution under each functional classification
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muscle tissue that influence gene expression. Interest-
ingly, these two cis-eQTLs are located approximately 
377 kb upstream of the RPL26 gene (Fig. S3), specifically 
on another gene, PIK3R5, which is known to play crucial 
roles in cell growth, proliferation, differentiation, move-
ment, survival, and intracellular transport [41, 42]. An 
interaction between RPL26 and PIK3R5 potentially influ-
encing the growth and development of cattle could ulti-
mately result in differences in body size (Fig. S4).

Currently, research on RPL26 has mainly focused on 
endoplasmic reticulum homeostasis, cellular autophagy, 
and apoptosis [43]. The ubiquitin-like modification of 
RPL26 regulates the translocation of nascent proteins 
to the endoplasmic reticulum, promoting the targeted 
degradation of stalled endoplasmic reticulum proteins 
to lysosomes [44, 45]. By maintaining the stability of ER 
proteins, RPL26 plays a crucial role in ER protein bio-
synthesis, facilitating protein synthesis and participating 
in posttranslational modifications [45]. In our study, the 
knockdown of the RPL26 gene in C2C12 cells via siRNA 
resulted in a significant decrease in the mRNA expres-
sion of p53, bcl2, and Bax, whereas Cyclin D2 expression 
was significantly increased. Therefore, we speculate that 
RPL26 inhibits cell apoptosis by affecting p53 transcrip-
tional activation and reducing p53 protein expression, 
although the specific regulatory mechanisms require fur-
ther investigation.

The p53 protein is a key regulator of cell growth, pro-
liferation, and damage repair and plays a pivotal role in 
important biological processes of cell cycle regulation 
and apoptosis [46]. RPL26 is also a key mediator of p53 
signal responsive to ribosomal stress induced by ribo-
some biogenesis. When overexpressed or subjected to 
ribosomal stress, RPL26 binds to MDM2 and inhibits 
MDM2-mediated p53 ubiquitination and proteasomal 
degradation, thereby stabilizing p53 and inducing cell 
cycle arrest. Alternatively, RPL26 enhances the binding of 
p53 mRNA to ribosomes and increases p53 translation, 
inhibiting cell proliferation and inducing p53-dependent 
cell cycle arrest at the G1 phase, thereby increasing radia-
tion-induced cell apoptosis [47].

This study revealed that the mRNA and protein lev-
els of both MyoD and MyoG were significantly lower in 
the RPL26-knockdown group than in the control group. 
These findings suggest that RPL26 knockdown inhibits 
the expression of these factors in the early stages of dif-
ferentiation, promoting cell cycle exit and accelerating 
differentiation. MyoD is a muscle-specific transcription 
factor expressed in myoblasts during the late prolif-
eration and early differentiation stages. It is generally 
believed that MyoD is upstream of MyoG in the differ-
entiation process and that MyoD expression levels can 
reflect the early differentiation status of myoblasts [48, 
49]. The myosin heavy chain (MYHC) subtypes, which 

are composed of MYH7, MYH2, MYH1, and MYH4, are 
critical markers of myotube formation. In this study, 
MYH1 was significantly upregulated in the MYH1-
knockdown group, and the immunofluorescence results 
also visually confirmed the occurrence of fusion events 
and the formation of binucleated myotubes. Jin et al. [50]. 
found that MYH1 transgenic mice demonstrated greater 
endurance, running longer and farther on a treadmill 
than did wild-type mice. Given that, it is suggested that 
low RPL26 expression may enhance endurance by upreg-
ulating MYH1 expression.

Our study revealed that RPL26 expression exhibits dis-
tinct correlations with specific metabolites—significantly 
negative correlations with TTK and progesterone, and 
positive correlations with glycodeoxycholic acid (GDCA) 
and phosphatidylcholine (PC). Specifically, studies on 
PGC-1α—a transcriptional coactivator regulating mus-
cle metabolism—have shown that steroid hormones like 
progesterone can suppress anabolic pathways, leading to 
muscle atrophy [51, 52]. Conversely, the positive corre-
lation with GDCA, a bile acid involved in lipid metabo-
lism, supports its role in enhancing energy availability 
for myocyte proliferation [53]. The link between PC and 
RPL26 highlights the importance of membrane dynam-
ics in myogenesis. PC, a major phospholipid compo-
nent, contributes to membrane integrity during myoblast 
fusion and satellite cell activation [54]. Notably, PGC-1α-
mediated pathways have been shown to upregulate phos-
pholipid biosynthesis [55], which supports membrane 
expansion in differentiating muscle cells. RPL26 may 
enhance PC availability to stabilize mTOR signaling—
a key pathway driving myogenic differentiation [56]. In 
summary, RPL26 likely serves as a nexus integrating met-
abolic and transcriptional networks in muscle biology. Its 
dual role in suppressing catabolic signals (progesterone) 
while enhancing anabolic and regenerative pathways (via 
GDCA, PC) positions it as a potential therapeutic target 
for muscle-wasting disorders. Future studies should vali-
date these mechanisms using genetic models (e.g., mus-
cle-specific RPL26 knockout) and explore cross-talk with 
established regulators like PGC-1α [53].

Conclusion
In summary, our study identified top DEG gene RPL26, 
molecular biomarkers (myristicin and Bacteroidales) 
and microbiological composition (Bacteroides and Pre-
votella) associated with growth. Besides, One QTL 
(QTL_180979, Chr19: 27974414–27979325) and two 
cis-eQTLs related to growth traits are also located in the 
upstream of RPL26. The follow-up cell experiments vali-
dated the key role of RPL26 in promoting muscle differ-
entiation. Our results suggest the further applications of 
RPL26 for growth trait selection of water buffaloes.
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Fig. 6 Bioinformatics analysis of RPL26. (A) Amino acid composition of RPL26. (B) Evolutionary analysis of the amino acid sequences of RPL26 in different 
species. (C) Homology analysis of RPL26 in different species. (D) Linkage disequilibrium blocks detected in the RPL26 promoter and gene body regions 
on buffalo. The SNPs in red boxes have the highest P values. The black boxes represent hypothesized highly linked blocks. (E, F, G, H) Predicted potential 
transcription factor-binding sites via the upstream 2 kb promoter sequence of RPL26
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Fig. 7 Functional analysis of RPL26. (A) Location diagram of two cis-eQTLs on RPL26, which are located 377.32 kb and 378.05 kb upstream of the gene 
body. (B) PheWAS results of RPL26 gene. Screenshot of query results from Genome wide association study ATLAS ( h t t p s :   /  / a t l a   s . c  t g l a   b .   n l  / P h e W A S). (C) 
Integrating transcriptome-metabolome-metagenomic data revealed the central role of the key gene RPL26 and molecular markers in regulating the 
growth and size of Haizi buffalo

 

https://atlas.ctglab.nl/PheWAS
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Fig. 8 (See legend on next page.)
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eQTL  Expression quantitative trait loci
CattleGTEx  Genotype-tissue expression
HZ  Haizi water buffaloes
DH  Dehong water buffaloes
WZ  Wenzhou water buffaloes
YB  Yibin water buffaloes
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