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Abstract 

Gastrulation represents a crucial stage in embryonic development and is tightly controlled by a complex network 
involving epigenetic reprogramming. However, the molecular coordination among distinct epigenetic layers entail-
ing the progressive restriction of lineage potency remains unclear. Here, we present a multi-omics map of H3K27ac 
and H3K4me1 single-cell ChIP-seq profiles of mouse embryos collected at six sequential time points. Significant 
epigenetic priming, as reflected by H3K27ac signals, is evident, yet asynchronous cell fate commitment of each germ 
layer at distinct histone modification levels are observed. Integrated scRNA-seq and single-cell ChIP-seq analysis 
unveil a “time lag” transition pattern between enhancer activation and gene expression during germ-layer specifica-
tion. Notably, by utilizing the H3K27ac and H3K4me1 co-marked active enhancers, we construct a gene regulatory 
network centered on pivotal transcription factors, highlighting the potential critical role of Cdkn1c in mesoderm line-
age specification. Together, our study broadens the current understanding of intricate epigenetic regulatory networks 
governing mouse gastrulation and sheds light on their relevance to congenital diseases.

Keywords Gastrulation, Epigenetic, Single-cell, Enhancer, Cell fate

Introduction
Gastrulation of the early mammalian embryo is a process 
characterized by the gradual acquisition of specialized 
lineage and morphogenetic movement of individual cells, 
which orchestrates the formation of the basic body plan 
[1–3]. In mice, gastrulation occurs during approximately 
E6.0-E7.5, when the pluripotent epiblast undergoes lin-
eage restriction, giving rise to the ectoderm, mesoderm 
and definitive endoderm [1, 4–6]. Transplantation and 
clone tracing experiments have unveiled the global pat-
tern of lineage specification during gastrulation [7, 8]. 
Specifically, the anterior epiblast differentiates into ecto-
dermal cells, including neuroectoderm and surface ecto-
derm. Meanwhile, the posterior epiblast cells segregate 
proximally and anteriorly to contribute to the mesoderm 
and endoderm lineages through the primitive streak (PS) 
[9].
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Numerous prior studies have provided valuable 
insights into the activity of various molecular mecha-
nisms including epigenetic regulation, transcription 
factors and signaling pathways, governing the precise 
developmental process and ensuring its robustness [9–
11]. For example, key developmental genes in embry-
onic cells and extraembryonic ectoderm (ExE) cells are 
silenced by H3K27me3 and DNA methylation during 
gastrulation, respectively [12]. Furthermore, the dynam-
ics of both proximal and distal chromatin states during 
the specification of the three primary germ layers exhibit 
asynchronous features as revealed by the epigenomic 
profiling of sub-regions of the mouse gastrula [13]. The 
function of epigenetic regulators in the mouse gastrula 
has been thoroughly dissected through perturbation and 
single-cell RNA-seq analysis [14]. Xiang et  al. revealed 
robust bivalent chromatin states co-marked by H3K4me3 
and H3K27me3 at promoters of developmental genes, 
gradually losing H3K4me3 or H3K27me3 along devel-
opmental progression [11]. Altogether, global epigenetic 
reprogramming is coordinated with the formation of the 
three germ layers during gastrulation. Nevertheless, the 
epigenetic basis for cell-fate plasticity and correct lineage 
allocation remains unresolved.

The advent of single-cell technologies has facilitated 
high-resolution profiling of multiple molecular layers 
of mouse gastrula embryos at the single-cell level [6, 8, 
15–20]. While single-cell transcriptomic analysis has 
generated comprehensive atlases and identified diverse 
developmental trajectories during gastrulation, the role 
of epigenome in these processes is largely unknown. The 
application of scNMT-seq in studying mouse gastrula-
tion represents the first multi-omics analysis, encom-
passing chromatin accessibility, DNA methylation, and 
gene expression levels. This analysis reveals that the epi-
genetic states in DNA methylation and chromatin acces-
sibility in cells fated to ectoderm are already established 
in the early epiblast, whereas cells committed to meso-
derm and endoderm undergo extensive epigenetic repro-
gramming [21]. However, the dynamic patterns of other 
epigenetic molecular layers, such as histone modifica-
tions at the single-cell level during the specification of 
three germ layers, and whether different primary germ 
layers utilize distinct histone codes to orchestrate their 
fate commitment, remain uncharacterized due to tech-
nological limitations.

In this study, we utilized our previously developed 
single-cell ChIP-seq method, CoBATCH [22], to profile 
the H3K27ac and H3K4me1 states in mouse embryos at 
six continuous developmental stages, ranging from Pre-
Primitive Streak to Early Headfold stages [23]. Given 
that H3K27ac (marking active enhancers) and H3K4me1 
(associated with both poised and active enhancers) 

enable precise identification of enhancers, characteri-
zation of super-enhancers, and improved prediction 
of promoter-enhancer interactions, reflecting the cur-
rent and prospective developmental potential of cells 
[24–28], respectively, the joined analysis of both histone 
marks enables us to compare the dynamic patterns of two 
enhancer marks orchestrating the specification of three 
germ layers during mouse gastrulation. This approach 
enhances our understanding of the unique epigenetic 
codes utilized by cells committed to distinct fates. Fur-
thermore, the integration of single-cell ChIP-seq with 
single-cell RNA data unravels the mechanisms through 
which enhancer usage coordinates the transition of gene 
expression along lineage progression, and provides rich 
resources to explore critical transcription factors actively 
involved in the fate commitments of individual germ 
layers.

Results
Single‑cell mapping of histone modifications 
during mouse gastrulation
To elucidate the dynamics of epigenetic program-
ming during gastrulation, we conducted single-cell 
CoBATCH for H3K27ac and H3K4me1 in the embry-
onic portion of mouse embryos, with a limited number 
of extra-embryonic ectoderm cells (Table S1). The sam-
ples were collected across six developmental stages span-
ning from E6.0 to E7.5, including pre-streak (Pre_Ps), 
Early Streak (ES), Mid-Streak (MS), Late Streak (LS), No 
Allantoic Bud (OB), and Early Headfold (EHF) stages 
(Fig.  1A). After quality control, 3,170 (H3K27ac) and 
3,225 (H3K4me1) cells were retained, with averages of 
8,100/7,888 reads, 95%/94% FRIP, and 94.30%/93.43% 
mapping rates, respectively (Fig. S1A-S1F; Table S2).

Unbiased iterative clustering of these single cells 
using the Seurat package [29] identified seven clus-
ters for H3K27ac and five clusters for H3K4me1 single 
cells (Fig.  1B and C) (Methods). And single cells from 
H3K27ac and H3K4me1 ChIP-seq signal were posi-
tively correlated with developmental progression along 
the sampled time points (Fig. S1G and S1H). To define 
the cell identity in each dataset, we examined H3K27ac 
ChIP signals within ± 100 kb of gene body and H3K4me1 
ChIP signals within ± 5 kb of the gene body of the known 
marker genes. In the H3K27ac dataset, we manually 
annotated clusters representing Epiblast (Epi), Late nas-
cent mesoderm (LNM), Neural ectoderm 1 and 2 (NE1 
and NE2), Exe ectoderm (ExE), Definitive endoderm 
(DE) and Mesenchyme to Mesoderm (MM) based on 
the ChIP-seq signals within ± 100 kb of the gene body of 
cluster-specific marker genes (Table  S3), such as Esrrb 
and Epcam for Epi, Tbx6 and Mesp1 for LNM, Otx2 for 
NE1, Bdnf for NE2, Bmp8b and Tfap2c for ExE, Hnf1b 
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and Sox17 for DE, Mesp1 and Hand2 for MM, respec-
tively (Fig. S2A-S2I). Additionally, GREAT [30] analysis 
confirmed that cluster-specific H3K27ac peaks preferen-
tially reside adjacent genes functioning in corresponding 
subpopulations (Fig. S2J-K; Table S4).

Nevertheless, we faced challenges in obtaining strong 
cluster-specific H3K4me1 ChIP-seq signals around the 
marker genes (Fig. S3; Table  S3). This is likely because 

H3K4me1 primarily marks poised enhancers, which 
do not necessarily correlate positively with gene tran-
scriptional activities [31]. Consequently, the H3K4me1 
single-cell subpopulations were broadly categorized into 
clusters resembling Epiblast like (Epi_L), Neural ecto-
derm like (NE_L), Exe ectoderm like (ExE_L), Endoderm 
like (EN_L) and Mesoderm like (ME_L) cells (Fig.  1C). 
The percentage of cells at different stages within each cell 

Fig. 1 Single-cell epigenomic profiling of mouse gastrula. A: Schematic of the experimental design. Single cells from the embryonic portion 
of Pre_PS to EHF mouse embryos were collected and subjected to CoBATCH to profile H3K27ac and H3K4me1 states at single-cell levels. The 
area below the dashed line indicates the sampling location (embryonic portion). Colors represent morphological landmarks during gastrulation. 
ES to MS: Yellow delineates the extent of the embryonic mesoderm. LS: Light blue marks the node at the distal tip; pink indicates the posterior 
amniotic fold (not yet fused to the anterior proamniotic fold). OB: Blue denotes the head process extending anterior to the dorsal tip (now 
visible); green marks the small allantois. EHF: Blue indicates head fold formation; green represents the enlarged allantois. B and C: UMAP showing 
the clustering of single cells from H3K27ac (B) and H3K4me1 (C) profiles, respectively. D‑G: Stacked bar plots showing the percentage of each cell 
stage (D, E) and cell type (F, G) identified by H3K27ac (D, F) and H3K4me1 (E, G) single-cell ChIP-seq across different developmental stages. Pre_PS, 
Pre-Primitive Streak; ES, Early Streak; MS, Mid-Streak; LS, Late Streak; OB, No Allantoic Bud; EHF, Early Headfold
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type provided an overall view of the developmental pro-
cess from the epiblast to the formation of the three pri-
mary germ layers (Fig. 1D-E). Among these, epiblast cells 
defined by H3K27ac ChIP-seq signals mostly originated 
from the Pre_PS stage (Fig.  1D), while the H3K4me1 
dataset showed a more disordered composition of cell 
stages in epiblast-like cells (Fig.  1E). From another per-
spective, when assessing the representation of each 
cluster at different developmental stages, we observed 
a decline in the percentage of epiblast cells as develop-
ment progressed (Fig.  1F-G). Notably, the H3K27ac 
ChIP-seq-defined germ layer-specific subpopulations 
emerged as early as the Pre_PS stage, with the exception 
of the extraembryonic lineage (Fig.  1F), Similarly, ecto-
derm- and mesoderm-like lineages defined by H3K4me1 
ChIP-seq were also detectable at Pre_PS stage (Fig. 1G), 
indicating effective epigenetic priming for lineage specifi-
cations in Pre_PS embryos.

Asynchronous germ‑layer fate commitment revealed 
by distinct histone modification dynamics
We proceeded to interrogate the level of epigenetic 
similarity among clusters during developmental pro-
cesses across different molecular layers to elucidate 
cell fate commitment. Principal components analysis 
(PCA) of the average H3K27ac and H3K4me1 signals in 
each subpopulation revealed different molecular layers. 
Across all stages, the ectoderm cluster located closer 
with mesenchyme to mesoderm, while separating from 
the endodermal lineages at the H3K27ac level (Fig. 2A). 
Interestingly, we observed highly similar H3K27ac pat-
terns of NE1 and Epi cells at the Pre_PS stages, suggest-
ing that the fate of NE1 lineage was already primed at 

the Pre_PS stage. Conversely, germ layer-specific dif-
ferences appeared before H3K4me1 ChIP-seq signal 
patterns in each subpopulation (Fig. 2B). When charac-
terizing the lineage-specific dynamics of H3K27ac- and 
H3K4me1-marked enhancers during mouse gastru-
lation (Fig.  2C-H), we found the majority of lineage-
specific H3K27ac peaks in EHF stage were generated 
at the ES stages and maintained during development 
(Fig. 2C, E and G). However, most ectodermal-specific 
H3K4me1 peaks in the EHF stage were already primed 
at the Pre_PS stage (Fig.  2D), while endodermal- and 
mesodermal-specific H3K4me1 peaks exhibited higher 
dynamics at the ES to MS stages. During this period, 
about half of the peaks in the Pre-PS stage disappeared 
at the ES stage, and peaks were gradually de novo gen-
erated along later development (Fig.  2F, H). The dif-
ferences in histone modification patterns at distinct 
developmental stages indicate cells in different sub-
populations likely utilized different epigenetic codes to 
orchestrate developmental functions.

To further characterize how different histone modi-
fications were associated with germ-layer specification 
during development, we examined the enrichment of 
germ-layer-specific H3K27ac- and H3K4me1-defined 
enhancers in epiblast cells. Consistent with the observa-
tions that ectodermal cells exhibited the highest epige-
netic similarity with epiblast cells at the H3K27ac level 
(Fig.  2A), the H3K27ac-marked ectoderm enhancers 
showed higher enrichment in epiblast cells than meso-
derm and endoderm enhancers (Fig.  2I). However, all 
germ-layer-specific H3K4me1-marked enhancers were 
primed in the epiblast cells, with ectodermal enhanc-
ers showing the highest enrichment (Fig.  2J). This 

Fig. 2 Dynamics of H3K27ac and H3K4me1 ChIP-seq signals across mouse gastrulation. A and B: PCA analysis of the average H3K27ac (A) 
and H3K4me1 (B) ChIP-seq signals of each subpopulation at different developmental stages except for the ExE cluster. C and D: Alluvial plots 
showing the global dynamics of H3K27ac (C) and H3K4me1 (D) ChIP-seq signals during ectoderm lineage specification. The number of total 
ectoderm-specific H3K27ac (C) and H3K4me1 (D) peaks in all stages was shown. GO enrichment analysis of the genes adjacent to EHF-specific 
ectoderm peaks was shown on the right panel. The colorful codes in the vertical columns represent specific ChIP-seq peaks at each stage, 
and the green ribbons indicate the flow of ectoderm-specific ChIP-seq signals from the previous stage along the sampled time points. E 
and F: Alluvial plots showing the global dynamics of H3K27ac (E) and H3K4me1 (F) ChIP-seq signals during endoderm lineage specification. 
The number of total endoderm-specific H3K27ac (E) and H3K4me1 (F) peaks in all stages was shown. GO enrichment analysis of the genes 
adjacent to EHF-specific endoderm peaks was shown on the right panel. The colorful codes in the vertical columns represent specific ChIP-seq 
peaks at each stage, and the blue ribbons indicate the flow of endoderm-specific ChIP-seq signals from the previous stage along the sampled 
time points. G and H: Alluvial plots showing the global dynamics of H3K27ac (G) and H3K4me1 (H) ChIP-seq signals during mesoderm lineage 
specification. The number of total mesoderm-specific H3K27ac (G) and H3K4me1 (H) peaks in all stages was shown. GO enrichment analysis 
of the genes adjacent to EHF-specific mesoderm peaks was shown on the right panel. The colorful codes in the vertical columns represent 
specific ChIP-seq peaks at each stage, and the red ribbons indicate the flow of mesoderm-specific ChIP-seq signals from the previous stage 
along the sampled time points. I and J: Line plot showing cluster-specific H3K27ac (I) and H3K4me1 (J) ChIP-seq signals in Epiblast cells. ChIP-seq 
signals were calculated within 50 bp window around the ± 1 kb of the peak centers. Total 61, 3,174, 1,264, 2,226 H3K27ac peaks in the epiblast 
(Epi cluster), ectoderm (both NE1 and NE2 clusters), endoderm (DE cluster), and mesoderm (MM cluster), respectively, and 7,137, 176, 548, 21,567 
H3K4me1 peaks in the epiblast (Epi_L cluster), ectoderm (NE_L), endoderm (EN_L), and mesoderm (ME_L), respectively, were used for signal 
calculations

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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observation aligns with previous reports that H3K4me1 
marks inactive enhancers poised for future activation 
[32].

Altogether, the distinctions in different histone modi-
fication patterns during the specification of three germ 
layers validate the asynchronous fate commitment mech-
anisms of different lineages.

The regulatory trajectory of germ‑layer specification
We then aimed to investigate whether our single-
cell H3K27ac and H3K4me1 ChIP-seq data could be 
employed to reconstruct cellular developmental trajec-
tories in an unbiased manner. We employed ForceAt-
las2-based PAGA (partition-based graph abstraction) to 
construct a force-directed graph integrating six H3K27ac 
and four H3K4me1 clusters. Pseudotime analysis cou-
pled with lineage-specific marker genes revealed pro-
gressive chromatin remodeling patterns that precisely 
matched known developmental transitions (Fig.  3A-
D; Fig. S4; Table  S5).To facilitate the following analysis, 
we combined the NE1 and NE2 subpopulations in the 
H3K27ac dataset into one ectoderm differentiation tra-
jectory (Fig. 3B). From the above, it can be seen that the 
active marker can effectively fit the actual developmental 
trajectory, providing a reliable basis for our subsequent 
analysis.

Cell fate commitment is a dynamic process gener-
ally orchestration by the activity of cell type-specific 
transcription factors. We thus employed the single-cell 
regulatory trajectory to identify germ-layer specific activ-
ities of transcription factors enriched in distinct cis-ele-
ments during lineage specification. The H3K27ac- and 
H3K4me1-marked cis-elements with dynamic activities 
across the endoderm, mesoderm and ectoderm trajec-
tories were identified (Table  S6), including enhancers 
near known transcription factors of each lineage. For 
instance, genes marked by H3K27ac enhancers that were 
active early in the epiblasts including Foxo1 [33] and 
Arh, consistent with their roles in maintaining epiblast 
identity. While H3K27ac-marked enhancers near germ 
layer-specific transcription factors were selectively acti-
vated late in individual trajectories (such as Tbx3 [34], 
Gatat6 [35] and Hnf4a [36] in endoderm lineage; Meox1 
[37], Mesp1 [38] and Hand2 [39] in mesoderm lineage; 
Pou3f1 [40], Otx2 [41] and Sox1 [42] in ectoderm line-
age) (Fig. 3E). Notably, while intergroup differences were 
subtle, germ layer-specific enhancers maintained largely 
consistent dynamic patterns. Additionally, H3K4me1-
marked enhancers exhibited similar lineage-specific 
activities (Fig.  3F). Taken together, these analyses dem-
onstrated that the regulatory trajectory of scH3K27ac 
and scH3K4me1 data could be used to identify distinct 

cis-elements controlling lineage-specific transcription 
factors essential for germ layer specifications.

Integrating scRNA‑seq and scChIP‑seq data reveals 
regulatory bases underly germ‑layer specification
To correlate dynamic cis-elements with gene expres-
sion profiles, we integrated our single-cell ChIP-seq with 
previously published scRNA-seq datasets [19]. To better 
match the sample stage and cell identity, we extracted 
Epiblast, Mesoderm, Mesenchyme, Ectoderm, Endo-
derm and ExE cells across E5.5 to E7.5 from the scRNA-
seq dataset generated by Pijuan-Sala et al. for integration 
using canonical correlation analysis (CCA) by Seurat V3 
[43] (Fig. S5A; Table S7).

The identity of assigned cell types through integration 
in the H3K27ac and H3K4me1 datasets was verified by 
the enhancer activities of selected cluster-specific mark 
genes in each of the annotated cell types (Fig. S5B and 
S6A), suggesting that both of the two modalities (i.e., 
H3K27ac ChIP-seq and RNA-seq; H3K4me1 ChIP-seq 
and RNA-seq) are generally correlated.

Overall, 32.6% of H3K27ac scChIP-seq cells were 
assigned to the Ectoderm cluster, 26.2% to Mesoderm, 
18.47% to Mesenchyme, 9.37% to Epiblast, 9.85% to 
Endoderm, and 4.51% to ExE (Fig.  4A; Table  S8). Clus-
ter annotations of the cells in the H3K27ac dataset were 
broadly consistent between ChIP signal defined and 
scRNA-seq assigned through integration, except for the 
scRNA-seq annotated Mesoderm cluster, which included 
cells from Epi, MM, and NE1/2 subpopulation in the 
H3K27ac ChIP-seq dataset (Fig.  4B). Additionally, we 
found intermixing of different types of cells defined by 
scRNA-seq within the same H3K27ac defined cluster 
(Fig. 4C), indicating extensive chromatin priming occurs 
among scRNA-seq defined cell types. Similarly, 29.09% of 
H3K4me1 scChIP-seq cells were assigned to the Meso-
derm cluster, 28.34% to Epiblast, 24.19% to Ectoderm, 
9.89% to ExE, 7.26% to Endoderm, and 1.24% to Mesen-
chyme (Fig. S6B, Table S8). However, cluster annotation 
of the scH3K4me1 and scRNA exhibited weak correla-
tion except for endoderm and ExE (Fig. S6C), coincident 
with the role of H3K4me1 at enhancers, which function 
in fine-tuning, rather than tightly control enhancer activ-
ity and function [44].

We then utilized the integrated H3K27ac ChIP-seq 
and RNA-seq datasets to investigate the lineage-specific 
dynamics of H3K27ac-defined enhancers along germ 
layer specification, considering its better integration 
results. Pseudotime analysis of scRNA-seq revealed three 
differentiation trajectories starting from the epiblast to 
endoderm, mesoderm or ectoderm lineages (Fig.  4D-K 
and S7A-S7D; Table  S9), in which cell identities were 
corroborated by the progressive loss of epiblast markers 
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Fig. 3 Regulatory trajectory analysis of epiblast differentiation according to H3K27ac and H3K4me1 ChIP-seq signals. A: Force-directed graph 
(FDG) showing the differentiation trajectories of H3K27ac single cells from Fig. 1B. B: Partition-based approximate graph abstraction (PAGA) 
showing pseudotime trajectories of cells from (A). The size of the dots represents the relative number of cells in each cluster. C: FDG showing 
the differentiation trajectories of H3K4me1 single cells from Fig. 1C. D: PAGA showing pseudotime trajectories of cells from (C). The size of the dots 
represents the relative number of cells in each cluster. E and F: Heatmap (the upper panel) and line plot (the lower panel) showing the H3K27ac (E) 
and H3K4me1 (F) signals around lineage-specific genes along three lineage specifications in (A and C)
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and gain of lineage-specific genes (e.g., Mesp1 for meso-
derm, Sox17 for endoderm) (Fig.  4E, I and S7B). These 
marker dynamics align with established murine gastru-
lation studies [6]. The dynamic trends along pseudo-
time in both gene expression and H3K27ac ChIP signals 
around ± 100  kb of corresponding variable genes were 
well correlated, highlighting the critical role of lineage-
specific H3K27ac defined enhancers in the orchestration 
of cell fate commitment during gastrulation (Fig. 4F, G, J, 
K and S7C-S7D).

Comparing the dynamic patterns of gene expression 
versus enhancer activity during germ-layer specifica-
tion, we found that the shutdown of epiblast-specific 
gene expression slightly precedes the repression of cor-
responding enhancers at the early stage of endoderm 
differentiation trajectory (Fig.  4G), and a more obvious 
pattern was observed during the mesoderm differentia-
tion trajectory (Fig.  4K). On the contrary, the initiation 
of enhancer activity of germ layer-specific genes occurs 
before their gene expression at late developmental stages, 
indicating extensive epigenetic priming before cell fate 
commitments. However, the enhancer reprogramming 
for silencing or activation preceded the gene expression 
at both early and later ectodermal lineage specification 
(Fig. S7D), suggesting that the dynamics of transcrip-
tional states and epigenetic modifications are far from 
coherent and synchronous among different layers. As 
a control, we also analyzed the dynamics of RNA and 
H3K27ac signals on unchanged genes along three lineage 
differentiation (Fig. S7E-S7G; Table S9).

Collectively, the above data uncovered distinct regu-
latory bases underlying ectoderm lineage specification 
compared to mesoderm and endoderm fate commitment 
through our integration analysis. Moreover, we revealed 

a “time lag” transition pattern between H3K27ac-marked 
enhancer and gene expression during germ-layer specifi-
cation, which guarantees the correct priming of the epi-
blast cells towards individual lineages.

Active enhancer‑related gene regulatory networks 
across mesoderm lineage specification
Enhancers can be defined as poised or active states based 
on the presence or absence of H3K27ac and H3K4me1 
modifications [45]. Thus, we aim to further clarify the 
dynamics of active enhancers co-marked by H3K27ac 
and H3K4me1 during lineage specification and iden-
tify pivotal transcription factors essential for cell fate 
commitments.

Inspired by our previous integration strategy (Fig.  4 
and S5-6), we tended to integrate the H3K27ac and 
H3K4me1 ChIP-seq datasets through scRNA-seq as a 
linker. To achieve this goal, we first merged single RNA-
seq cells with their closest K-nearest neighbors to gen-
erate Micro-sc (Micro single cell) utilizing Vision [46], 
and performed integration of Micro-sc in scRNA-seq 
dataset with single cells from H3K27ac and H3K4me1 
datasets, respectively (Fig. 5A). To avoid potential con-
tamination during integration, we only kept cell pairs 
with the same identities defined by scRNA-seq and 
scChIP-seq (Fig.  5B; Table  S10). Successful integra-
tion of three datasets thus can be achieved through the 
scRNA-seq dataset as the linker. To further increase the 
integration efficiency, we performed a second round of 
Vision analysis to merge Micro-sc into Pseudobulk-sc 
(Pseudobulk single cell) to get more paired cells with 
the same identities defined by three modalities (Fig. 5A 
and B). The identities of correctly linked cells in each 
dataset were confirmed by the expression and enhancer 

Fig. 4 Integrative analysis of single-cell H3K27ac ChIP-seq and single-cell RNA-seq datasets of the mouse gastrula. A: Donut plot showing 
the percentage of scH3K27ac ChIP-seq cells assigned to different types of scRNA-seq cells. B: Heatmap displaying the fraction of cells in each 
scRNA-seq cluster linked to corresponding H3K27ac ChIP-seq clusters through integration by Seurat. C: Barplot showing the percentage 
of scRNA-seq cells within each annotated scH3K27ac ChIP-seq cluster. Cluster colors match the cell type in (A). D: Pseudotime analysis 
of the scRNA-seq cells of endoderm lineage by Monocle 3. E: Scatter plot showing the cell-type specific gene expression. The representative marker 
genes were selected for the validation of the epiblast and endoderm cells, respectively. F: Heatmap showing normalized RNA signals of 193 DEGs 
across 109 scRNA-seq cells of endoderm lineage (left), and normalized H3K27ac ChIP-seq signals at ± 100 kb of gene body across corresponding 
linked scH3K27ac ChIP-seq cells of endoderm lineage (right). The DEGs were clustered into three modules. The heatmap in the left panel represents 
scRNA-seq cells ordered by pseudotime, and the heatmap in the right panel represents scH3K27ac ChIP-seq cells linked to the same scRNA-seq 
cells but annotated with identities defined by the H3K27ac ChIP-seq. G: Aggregate curves showing the scaled RNA and H3K27ac ChIP-seq signals 
in (F) of three gene modules, two model signals were max–min normalized to 0 ~ 1 for comparison. H: Pseudotime analysis of the scRNA-seq 
cells of mesoderm lineage by Monocle 3. I: Scatter plot showing the cell-type specific feature gene expression. The representative marker genes 
were selected for the validation of epiblast and mesoderm cells, respectively. J: Heatmap showing normalized RNA signals of 159 DEGs across 217 
scRNA-seq cells of mesoderm lineage (left), and normalized H3K27ac ChIP-seq signals at ± 100 kb of gene body across corresponding linked 
scH3K27ac ChIP-seq cells of mesoderm lineage (right). The DEGs were clustered into three modules. The heatmap in the left panel represents 
scRNA-seq cells ordered by pseudotime, and the heatmap in the right panel represents scH3K27ac ChIP-seq cells linked to the same scRNA-seq 
cells in the left but annotated with identities defined by H3K27ac ChIP-seq. K: Aggregate curves showing the scaled RNA and H3K27ac ChIP-seq 
signals in (J) of three gene modules, two model signals were max–min normalized to 0 ~ 1 for comparison

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Fig. 5 Lineage dynamics of chromatin and gene expression identify molecular signatures for mesoderm specification. A: Schematic representation 
of the triple-omics integration strategy for scRNA-seq, H3K27ac and H3K4me1 scChIP-seq datasets. B: Sankey diagram highlighting cell pairs 
with the same cell identity defined by three modalities. C: Heatmaps showing the dynamics of gene expression (left) and active enhancer 
score (right) of 87 variable genes along mesoderm differentiation trajectory. D: GO enrichment analysis of genes represented in three modules 
of mesoderm differentiation trajectory. E: Enrichment of TF motifs in active enhancers represented in three modules of mesoderm differentiation 
trajectory. F: Dot plot showing gene discordance scores using TRIAGE analysis, with genes ordered by their expression. TFs with discordance scores 
above the threshold were displayed. Venn diagram showing the overlap of TFs enriched in TRIAGE and those enriched in active enhancers. G: 
TF-gene regulatory network showing the regulation of TFs enriched in active enhancers and its targeted genes in mesoderm trajectory. The width 
of an edge indicates the expression correlation between TFs and targeted genes, the size of a dot indicates the number of nodes in the network. 
H: Dynamics of gene expression along mesoderm differentiation trajectory. The color bar represents the z-score standardized value for each row. I: 
Schematic of stepwise activation of Cdkn1c expression in mesoderm specification



Page 11 of 18Fu et al. BMC Genomics          (2025) 26:454  

activities of selected cluster-specific mark genes in 
individual subtypes (Fig. S8A).

Using the integrated dataset, we analyzed the dynam-
ics of gene expression and the enhancer score of their 
corresponding active enhancers defined by both 
H3K27ac and H3K4me1 signals during mesoderm 
specification (Table  S11) (Methods). Pseudobulk-scs 
were ordered along pseudotime and 87 variable genes 
were grouped into three clusters: decreased (cluster 
A), intermediate (cluster B), and increased (cluster C) 
(Fig. 5C, S8B and S8C). Cluster A genes exhibited gene 
ontology (GO) enrichments for embryonic morphogen-
esis and embryonic organ development, whereas genes 
represented in cluster C were enriched for mesoderm 
development, gastrulation, and vasculature devel-
opment-related terms. Interestingly, cluster B genes 
particularly participated in the negative regulation of 
neurogenesis, indicating that the inhibition of neuro-
genesis is essential for the initiation of mesoderm dif-
ferentiation during gastrulation (Fig.  5D; Table  S12). 
Notably, the signals of active enhancers defined by the 
co-occurrence of H3K27ac and H3K4me1 at ± 5  kb 
of the gene body of corresponding genes exhibited 
overall similar dynamic patterns as gene expression 
(Fig. 5C), highlighting the positive correlation between 
gene expression and the activity of their corresponding 
active enhancers.

Consistent with previous reports that enhancers 
co-marked by both H3K4me1 and H3K27ac exhibit 
stronger tissue specificity and are prone to be relevant 
to cell lineage commitments [47], we observed that 
the gene activity of active enhancers was higher than 
of the H3K4m1-marked primed enhancers among the 
pseudobulk mesodermal cells (Fig. S8D). Furthermore, 
we identified TF motifs enriched in the active enhanc-
ers specific to each module (Fig. 5E). The TFs enriched 
early in the epiblast cells including the Krüppel-like fac-
tor and specificity protein (KLF/SP) family transcrip-
tion factors, have been demonstrated to participate in 
biological processes including stem cell maintenance, 
embryonic development, and tissue differentiation 
[48]. TFs with known function in mesoderm specifica-
tion, including MEF2C [49], FOXC2 [50], MESP1 [38], 
HAND2 [51], TWIST2 [52], were specifically enriched 
in module C (Fig. 5E; Table S13). Additionally, we also 
identified some unknown TFs with potential roles 
in mesoderm specification, such as TEAD3 (Fig.  5E; 
Table S13). Intersecting these TFs, enriched in variable 
active enhancer regions along mesoderm specification, 
TFs identified through TRIAGE [53] revealed three key 
TFs: T, FOXC2, and HAND2. This finding aligns with 
their well-established critical roles in mesoderm fate 
commitment [15, 54, 55] (Fig. 5F).

We then explored the TF-driven regulatory networks 
associated with mesoderm lineage specification by link-
ing relating TFs enriched in active enhancers to their 
putative target genes (Fig. 5G; Fig. S8E; Table S14). Anal-
ysis revealed a stepwise transcriptional cascade involving 
cell cycle regulator Cdkn1c during mesoderm specifica-
tion (Fig. 5H and I). Specifically, the expression of Hoxa1 
was activated early during lineage trajectory, which 
then activated Meis1 expression together with TBX1/5 
through binding the active enhancers of Meis1. The 
expressed MEIS1 then activated the expression Cdkn1c 
together with TBX1/5 (Fig.  5H and I). The above mes-
oderm-specific transcription factor (HOXA1, TBX1/5, 
MEIS1) involved regulatory circuit suggests that Cdkn1c 
may play a coordinated role in mesoderm development, 
though its functional significance relative to other down-
stream effectors requires further validation. Thus, the 
integration of single-cell RNA-seq and single-cell ChIP-
seq data can be used to construct regulatory networks 
and explore particular regulatory circuits essential for 
specific lineage specification.

Discussion
Understanding the epigenetic basis of gastrulation is cru-
cial as it addresses a fundamental question in both stem 
cell biology and developmental biology. Disruptions in 
this intricate process can lead to developmental abnor-
malities and congenital disorders. However, exploring 
the molecular activities contributing to the intricate cho-
reography of gene expression that underlies successful 
gastrulation remains technically challenging due to the 
complexity and plasticity of this process. In this study, 
we present the first single-cell resolution maps of his-
tone modifications, specifically H3K27ac and H3K4me1, 
during the development of mouse gastrula across six 
stages. Although both H3K27ac and H3K4me1 make 
enhancers, more subclusters were identified by H3K27ac 
ChIP-seq signals than H3K4me1 signals. One plausible 
explanation is that H3K27ac ChIP-seq signals demon-
strate greater variability than H3K4me1 signals in gastru-
lating embryos, thereby enabling better discrimination 
of cell subtypes. Previous studies have established that 
H3K27ac exhibits superior cell-type specificity compared 
to H3K4me1, showing dramatic variation across different 
cellular states [24]. This difference is further amplified by 
their distinct chromatin signatures: H3K27ac forms nar-
row, sharp peaks that facilitate clear cluster separation, 
while H3K4me1 generates broader, more uniform peaks 
that resist subdivision into discrete clusters. Addition-
ally, H3K27ac-marked enhancers reflect cells’ immediate 
developmental potential through their rapid response to 
signaling and differentiation cues, whereas H3K4me1 pri-
marily marks poised enhancers that maintain relatively 



Page 12 of 18Fu et al. BMC Genomics          (2025) 26:454 

stable chromatin states, making cell identity determina-
tion more challenging when relying solely on H3K4me1 
signals.

Our findings reveal substantial epigenetic priming for 
the specification of different germ layers in the Pre_PS 
embryos, as reflected by H3K27ac signals. Neverthe-
less, there are asynchronous features in cell fate com-
mitment among each germ layer at distinct histone 
modification levels. When comparing the dynamic pat-
terns of H3K27ac and H3K4me1 during gastrulation, we 
observed that cells destined for distinct lineages employ 
unique epigenetic codes to orchestrate their develop-
mental functions. Notably, cells in early mesoderm and 
ectoderm lineages exhibit more similar H3K27ac modi-
fication patterns compared to the endoderm lineage, 
which is consistent with the observation that inhibition 
of neurogenesis restricts the differentiation of meso-
dermal lineage during gastrulation [56]. However, the 
three germ layers display more obvious lineage-specific 
H3K4me1 patterns in each subpopulation.

Integrative scRNA-seq and single cell H3K27ac 
ChIP-seq analysis revealed a “time lag” transition pat-
terns between H3K27ac-marked enhancer and gene 
expression during germ-layer specification, showcasing 
extensive chromatin priming within transcriptionally 
homogeneous subpopulations. Previous studies have also 
reported a time lag between epigenetic modifications 
(e.g., H3K27ac) and transcriptional dynamics. This lag is 
attributed to enhancer priming for cell fate decisions, the 
release of paused RNA polymerase II, and the progressive 
recruitment of co-activator complexes prior to produc-
tive transcription initiation [57, 58]. Notably, our results 
showed that the downregulation of epiblast-specific 
genes precedes that of enhancer repression in mesoderm 
and endoderm, but not in ectoderm, suggesting that epi-
blast cells are epigenetically primed for an ectodermal 
fate earlier than for mesodermal and endodermal fates, 
as previously reported [21]. This finding also supports the 
idea that epiblast cells are more similar to ectoderm at the 
transcriptional and epigenetic levels [13, 59]. Further tri-
modality integrative analysis uncovered active enhancer-
related gene regulatory networks defined by H3K27ac 
and H3K4me1, along with pivotal transcription factors 
essential for mesoderm lineage specification. While these 
TFs are not genomically clustered, their co-enrichment 
within mesoderm-specific enhancers suggests potential 
functional convergence through shared regulatory hubs 
or chromatin interactions. Notably, HAND2 and TWIST 
family, which co-regulate cardiac development via 
enhancer sharing, exemplify a broader mechanism where 
lineage-specific TFs may bind spatially proximal enhanc-
ers to coordinate gene expression [60]. Exploration of 
the regulatory network identified a stepwise activation 

of Cdkn1c by a combination of mesoderm-specific tran-
scription factors, emphasizing the potential essential role 
of Cdkn1c in mesoderm cell differentiation and speci-
fication. During mouse gastrulation, Cdkn1c displays 
dynamic spatiotemporal expression patterns [19], with 
sustained activity throughout embryonic development 
that potentially regulates cell proliferation and differenti-
ation [19, 61]. The expression and function of Cdkn1c are 
evolutionarily conserved across species (e.g., zebrafish 
and Xenopus), underscoring its essential role in develop-
mental processes [61]. Recent studies have demonstrated 
that cell cycle regulators are involved in cell fate deci-
sions not only through their roles in cell cycle regulation 
and signaling modulation but also directly as chromatin 
regulatory factors [62–65]. Moreover, loss-of-function 
experiments have shown that G1 phase regulators play a 
critical role in efficient mesoderm formation [66], provid-
ing strong evidence that the G1 phase inhibitor Cdkn1c is 
integral to mesoderm specification. Furthermore, the role 
of Cdkn1c in regulating cell division and differentiation 
in diseases like Beckwith-Wiedemann syndrome (BWS) 
also suggests its potential influence on lineage specifica-
tion [67]. While these findings hint at a plausible role for 
Cdkn1c in mesoderm specification, its exact mechanistic 
contributions remain to be fully resolved. Taken together, 
our comprehensive single-cell multi-omics profiling of 
the mouse gastrula provides a new molecular framework 
for understanding the distinction and cooperation among 
distinct epigenetic layers in controlling cell fate allocation 
during this critical developmental stage.

However, our study has certain limitations due to its 
reliance on widely used computational tools. While these 
tools are well-established, their inherent may introduce 
biases. Further studies using multi-omics strategies such 
as Paired-Tag [27] and CoTECH [68] to directly measure 
transcriptomic and epigenetic modalities in the same sin-
gle cell, as well as integrating multi-algorithm consensus, 
rather than relying on stand-alone bioinformatic anal-
ysis-based data integration, would provide more direct 
and thorough insights into the role and dynamic patterns 
of distinct epigenetic codes in the lineage specification of 
the three germ layers.

Materials and methods
Research animals
All mice experiments were performed following the 
protocol approved by the Institutional Animal Care 
and Use Committee of Southern Medical University 
(SMUL2023045). All mice used in this study were are 
on a C57BL/6  J background and were purchased from 
the Institutional Animal Care and Use Committee of 
Southern Medical University. Euthanasia was performed 
using the CO₂ inhalation method, in accordance with 
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the American Veterinary Medical Association’s Euthana-
sia Guidelines. Briefly, mice were placed in a euthanasia 
chamber, and CO₂ was gradually introduced at the rec-
ommended flow rate. After no detectable breathing was 
observed for more than five minutes, pregnant mice were 
considered deceased and used for dissection. Mouse 
embryos were dissected at time points of E6.0, E6.5, E7.0, 
E7.25 and E7.5. The embryos were staged according to 
their morphology (Downs and Davies staging) [23], and 
classified as pre-streak (Pre_Ps), Early Streak (ES), Mid-
Streak (MS), Late Streak (LS), No Allantoic Bud (OB), 
and Early Headfold (EHF) stages. No anesthetic agents 
were used in this study.

Mouse embryo single‑cell isolation
E6.0, E6.5, E7.0, E7.25 and E7.5 embryos were dissected 
from the uterus in 10% FBS-KOSM medium. The indi-
vidual embryo was micro-dissected and staged as Pre-PS, 
ES, MS, LS, OB, and EHF respectively according to the 
morphological criteria of Downs and Davies [23]. Pre-PS, 
ES, MS and LS embryos were dissected to remove extra-
embryo tissues. All the embryos were digested into single 
cells by incubating in Collagenase I dissociation buffer 
(1% Collagenase I and 10% FBS) at 37 °C for 15–60 min. 
The dissociated single cells were collected by centrifuga-
tion at 600  g for 3  min and the cell pellets were resus-
pended with 50 µl 0.1 BSA/PBS. The cell suspension was 
further incubated with 1–5 µl pre-activated Con-A beads 
(the volume of Con-A beads depends on the cell num-
ber) at RT for 15 min. Finally, the cell-bead mixture was 
fixed with methyl alcohol and incubated on ice for 5 min 
before stored at -80 °C for later use.

Purification of PAT
PAT (His-pA-Tn5) was purified as previously described 
[22]. Briefly, the PAT expression vector was transformed 
into BL21 (DE3) chemically competent cells following the 
manufacturer’s protocol. One single clone was inoculated 
with 20 ml LB medium and grew at 37 °C overnight. 5 ml 
of the culture medium was transferred into 500  ml LB 
medium and grew at 37 °C, 220 rpm for about 4 h until 
it reached O.D. ~ 0.8. The culture was chilled on ice for 
20 min and fresh 0.2 mM IPTG was added to induce PAT 
expression. The culture was incubated at 23 °C, 100 rpm 
for 5 h for induction. Bacteria were collected by centrifu-
gation at 5,000 rpm, 4 °C for 5 min. The pellet can be used 
directly or stored at -80  °C for later use. To purify PAT, 
the cell pellet was suspended with 20  ml HGX buffer 
and sonicated for 5 min at 8 s ON, 16 s OFF, 20% ampli-
tude (Sonics). The sonicated lysate was centrifuged at 
10,000 rpm, 4 °C for 30 min. 50 µl 10% PEI (Sigma P3143) 
was added to precipitate bacterial DNA, and the precipi-
tate DNA was removed by centrifugation at 10,000 rpm, 

4  °C for 10  min and the supernatant fraction was fur-
ther purified by 0.45  µM filter (Millipore SLHV033RB). 
The purified lysate was loaded onto the pre-equilibrated 
Ni–NTA column (QIAGEN) and the Ni–NTA column 
was further washed with 100 ml HGX- imidazole buffer 
I (20 mM imidazole). Finally, PAT was eluted with 5 ml 
HGX- imidazole buffer II (250  mM imidazole) and dia-
lyzed with 1000 ml 2X dialysis buffer (100 HEPES–KOH 
at pH7.2, 0.2 M NaCl, 0.2 mM EDTA, 2 mM DTT, 0.2% 
Triton X-100, 20% glycerol). The dialyzed protein was 
concentrated using a 50  kDa cutoff ultracentrifuge col-
umn (Millipore UFC905096) and an equal volume of 
glycerol was added to the purified PAT.

PAT assembly and activity quantification
The PAT transposase was assembled according to the 
Tn5 transposase assemble protocol [69–71]. PAT oligos 
were mixed with an equal volume of MErev oligo and 
incubated at 95 °C for 5 min and then cooled down at a 
rate of 0.1 °C/min for annealing [72]. To generate 25 µM 
PAT adapter, 25  µM purified PAT and 25  µM annealed 
adaptor were mixed with storage buffer (50 mM HEPES 
pH7.2, 100 mM NaCl, 0.1 mM EDTA, 1 mM DTT, 0.1% 
Triton X-100, 60% glycerol) and incubated at 25  °C for 
60  min. The activity of the PAT transposase was deter-
mined by tagmentation of genomic DNA as previously 
described [69–71]. The assembled PAT transposase can 
be stored at -20 °C for about half a year.

CoBATCH experimental procedure
The CoBATCH experiment was performed as previously 
described with several modifications [22]. Briefly, the 
methyl alcohol fixed cell was incubated on ice for 5 min 
and placed onto the magnetic stand to get rid of the 
methyl alcohol, followed by washing with 0.1 BSA/PBS 
Thrice. After wash, the cell was resuspended with 100 µl 
Antibody Buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 
0.5  µM spermidine, 10  mM sodium butyrate, 0.04  mM 
EDTA, 0.01% Digitonin, 0.05% TX-100, cocktail) with 
0.5 µg antibody after the last wash and incubate at 4  °C 
for 4 h at 15 rpm. The cells were washed with 180 µl Anti-
body wash buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 
0.5  µM spermidine, 10  mM sodium butyrate, 0.01% 
Digitonin) twice, followed by incubation with Second-
ary antibody at 4 °C for 10 min. After antibody binding, 
the cells were FACS sorted into 96-well plates with 200–
2000 cells/well containing 3 µg/ml PAT-T5 and 3 µg/ml 
PAT-T7. Cells were washed with 180 µl PAT-wash buffer 
(20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 µM spermi-
dine, 10  mM sodium butyrate, 0.01% Digitonin, 0.05% 
TX-100, cocktail) twice. Tagmentation was activated 
by 10  µl reaction buffer (10  mM TAPS-NaOH pH 8.3, 
5 mM MgCl2, 10% DMF and supplemented with cocktail, 
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10 mM sodium butyrate)) and incubated at 25 °C for 1 h. 
Tagmentation was stopped by adding 8 µl 50 mM EDTA 
and incubating at RT for 15  min. Cells were combined 
after adding 20 µl 2% BSA/PBS to each well and stained 
by DAPI. Finally, 20–25 cells were sorted into each well 
of a new 96-well plate containing 4 µl nuclear lysis buffer 
(10  mM Tris–HCl, PH 8.0, 0.05% SDS, 0.1  mg/ml Pro-
teinase K) and the cells were lysed at 55  °C for 3 h, fol-
lowed by incubation at 85  °C for 15  min to deactivate 
proteinase K.

Library preparation for CoBATCH
The CoBATCH library was prepared directly in the same 
tube according to the 2-round Truseq library preparation 
workflow [72]. Briefly, the first step was performed by the 
addition of 0.5 μL 50 µM Truseq connector primer mix 
(Connector primer F:5′-ACA CTC TTT CCC TAC ACG 
ACG CTC TTC CGA TCT TCG TCG GCA GCG TCT CCA 
CGC -3′, Connector primer R:5′-GAC TGG AGT TCA 
GAC GTG TGC TCT TCC GAT CTG TCT CGT GGG CTC 
GGC TGT CCC TGT-3′), 10 µL 5 × Q5 reaction buffer, 10 
µL 5 × Q5 high GC enhancer, 1 µL 10 mM dNTP, 23.5 µL 
1  mM MgCl2, 0.3 µL Q5 polymerase (NEB M0491S) to 
the 3 μL CoBATCH cell lysis in each tube and the reac-
tion was set up by incubation at 72  °C for 5 min, 95  °C 
for 5 min, 13–16 cycles of amplification (95  °C for 30 s, 
63  °C for 30  s, 72  °C for 1  min), and final 72  °C exten-
sion for 5 min. Then 0.5 μL 20 U/µl ExoI (NEB M0293S) 
was added and the reaction was incubated at 37  °C for 
30 min, and 72  °C for 20 min., The second PCR enrich-
ment was performed by the addition of 1  µl 10  mM 
Truseq index P5, 1 µl Truseq index P7, 2 µl 5 × Q5 reac-
tion buffer, 2 µl 5 × Q5 high GC enhancer, 0.5 µl 10 mM 
dNTP, 3.5 µl 1 mM MgCl2, 0.1 µl Q5 polymerase (NEB 
M0491S) to the mixture, and the reaction was set up by 
incubation at 95 °C for 5 min, 5–7 cycles of amplification 
(95 °C for 30 s, 63 °C for 30 s, 72 °C for 1 min), and final 
72 °C extension for 5 min. Finally, the PCR products were 
purified and selected by SPRI beads for 200–1000 bp.

ChIP‑seq data pre‑processing
CoBATCH data were demultiplexed by custom scripts 
as previously described [22]. Reads were distinguished 
by different barcodes with a Perl script, and trimmed for 
constant sequence and barcodes with Cutadapt [73] with 
default parameters. Reads were aligned to mm10 refer-
ence genome through Bowtie2 [74] with the following 
parameters: –dovetail –very-sensitive-local –no-unal –
no-mixed –no-discordant, and then sam files were sorted 
and converted to bam files with Samtools [75]. Picard 
(https:// broad insti tute. github. io/ picard/) with default 
process was used to remove duplications. The cells with 

reads > 1500, reads < 50,000 and Frip > 0.1 were retained 
for downstream analysis.

Dimension reduction and subcluster annotation
Peaks were called by MACS2 for all stages separately 
[76], additional parameters “–nomodel –nolambda 
-broad” were used for obtaining broad peaks, and then 
merged by a 5 kb window, which was used to generate a 
cell-peak matrix. Doublets were removed with more than 
50,000 reads, and then LSD dimensionality reduction 
and clustering were performed by the Signac package 
[77]. The single-cell subclusters were manually anno-
tated by inspecting of our ChIP-seq datasets and count-
ing the peak signals within ± 100 kb (H3K27ac) and ± 5 kb 
(H3K4me1) of the gene body of cell type-specific mark 
genes (Table S3).

Trajectory analysis
In order to infer potential differentiation trajectories, the 
Seurat objects were converted to the AnnData file with 
the SeuratDisk package (https:// mojav eazure. github. 
io/ seurat- disk). The generated h5ad files were applied 
to PAGA and Force-Directed Graph (FDG) to infer the 
development trajectories with Scanpy [78]. We recal-
culated the neighborhood graph (neighbors function 
with n_neighbors equal to 30 for H3K27ac and 10 for 
H3K4me1) on the latent space to exploit the data, and 
computed the PAGA graph (paga function with a model 
equal to v1.0). The epiblast cluster was set as the root of 
the trajectories for diffusion pseudotime based on PAGA 
maps.

As for the trajectory of integrated data of scRNA-seq 
and scChIP-seq, we used the pseudotime trajectory 
of scRNA-seq as a reference inferred through Mono-
cle3 [79]. Cells from different lineages in the scRNA-
seq dataset were converted into a cds object as inputs 
for Cicero [80]. The function of detect_genes was used 
to calculate the number of cells each gene expressed in, 
and genes that were detected in more than 50 cells were 
kept for further analysis. Based on the previous UMAP 
dimensionality reduction, the learn_graph function fits 
a principal graph within each partition. After setting the 
epiblast cluster as the root point, we used the order_cells 
function to calculate the pseudotime of each cell along 
each trajectory. The gene matrix was normalized by the 
total counts for each cell and multiplied by the scale.fac-
tor 10,000 and natural-log transformed using log1p and 
then z-score scaled. We summed the gene activity score 
of lineage-specific genes according to pseudotime, and 
used the loess method to fit the curve. The overlapped 
signals of H3K27ac and H3K4me1 around ± 5  kb of the 
gene body of lineage-specific genes were used to define 
the enhancer score of active enhancers. The TF motif 

https://broadinstitute.github.io/picard/
https://mojaveazure.github.io/seurat-disk
https://mojaveazure.github.io/seurat-disk
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enrichment in three modules along the mesoderm line-
age was calculated by Fisher’s exact test with LOLA pack-
age [81] based on the genome-wide motif PWM matrix 
generated by motifmatchr package (https:// doi. org/ 10. 
18129/ b9. bioc. motif matchr). The mouse RTS values were 
obtained from the human reference RTS table by directly 
mapping genes between the human and mouse databases 
using the biomaRt package. The mean expression of mes-
oderm-specific genes enriched for active enhancers was 
calculated and used as input for the TRIAGE tool to infer 
the discordance scores of the genes [53]. Genes with a 
log10 discordance score above 0.5 were considered spe-
cific regulatory factors. Three key transcription factors 
were identified based on the discordance scores and their 
overlap with the enriched active enhancers.

Integration of scRNA‑seq and scChIP‑seq datasets
We extracted scRNA-seq cells for integration from the 
scRNA-seq dataset generated by Pijuan-Sala et  al. [19], 
which includes mouse embryo samples from the E6.5 
to E7.5, and randomly sampled them for each lineage 
according to the cell proportion of each cluster in the 
ChIP-seq datasets. Following the same procedures used 
for integrating our ChIP-seq atlas, we obtained a high-
quality single-cell reference atlas comprising 3,201 cells 
for H3K27ac and 3,550 cells for H3K4me1 from 19 sam-
ples. The integration was conducted using Seurat [43]. 
Briefly, the scRNA-seq data were quoted as the reference 
dataset to assign the cell identity to the ChIP-seq cells 
(Table S7). We used the FindVariableFeatures function to 
extract top 2000 variable genes in the scRNA-seq data-
set, and generated gene activity matrices for our ChIP-
seq datasets by counting the peak signals around ± 100 kb 
(H3K27ac) and ± 5 kb (H3K4me1) of the gene body of the 
variable genes. FindTransferAnchors (query.assay equal 
to gene activity, features equal to VariableFeatures (RNA 
object)) function was used to establish the anchors of the 
cells in the two datasets by utilizing canonical correla-
tion analysis (CCA) as an dimension reduction method, 
and the TransferData function was applied to assign the 
cell identity from scRNA-seq to the ChIP-seq cells. The 
AnnotateAnchors function was used to extract the anchor 
pairs of the cells from the integrated dataset, and the 
anchor pairs with the largest anchor.core for ChIP-seq 
cells were retained.

For triple-omics integration, the RNA cells were sub-
merged into micro-sc (micro single cell) by VISION 
package [46], and the identity of the micro-scs was deter-
mined by the cell type with the highest proportion in the 
micro-sc. The micro-sc was used for integration with 
ChIP-seq datasets as above described. After the first 
integration, we kept cell pairs with the same cell identity 
defined by three omics. As for the other cell pairs, we 

merged two micro-scs with the nearest distance calcu-
lated by the FindNeighbors function into one pseudobulk-
sc (pseudobulk single cell) and also selected cell pairs 
with the same cell identity defined by three omics. The 
selected cell pairs from both micro-scs and pseudobulk-
scs were used to generate new RNA Seurat object.

GRN construction
To build the mesoderm-specific Gene Regulatory Net-
works (GRNs), we employed a multi-step approach to 
identify lineage-critical transcription factors (TFs) with 
high confidence. Mesoderm-specific active enhanc-
ers were defined by co-occurrence of H3K27ac and 
H3K4me1 signals within ± 5  kb of mesoderm marker 
genes. This ensured enhancer relevance to mesoderm dif-
ferentiation. Motifmatchr package was used to scan the 
motifs within these mesoderm-specific active enhancers 
and the values were converted to a binary matrix. The 
getBackgroundPeaks function from chromVAR [82] was 
used to calculate background signals, filtering out ubiq-
uitous motifs to focus on mesoderm-enriched TFs. The 
motifPeakZest from the FigR package [83] was applied 
to calculate motif enrichment by z.test of TF motif-to-
peak match in active enhancers, relative to the expected 
frequency based on matches to a background peak set. 
Based on the scRNA-seq dataset, the expression correla-
tion was computed by Hmisc package between TFs and 
their targeted genes. The GRNs were constructed based 
on the TF motif enrichment and the correlation. The TF-
targeted gene pairs with log10 motif enrichment scores 
higher than 0.32 and significant correlation absolute 
values   higher than 0.25 were selected to construct the 
mesoderm core regulatory network,, ensuring functional 
relevance. Eigenvector centrality was calculated by the 
evcent function in igraph (https:// igraph. org/) to subset 
network that were displayed in cytoscape [84].

PCA analysis
The single cells from H3K27ac and H3K4me1 scChIP-
seq datasets were aggregated into 36 and 24 pseudobulk 
groups according to their stage and cluster information 
except for the ExE cluster, respectively. The ChIP-seq sig-
nals of each group were calculated by summing the value 
of all single cells in each group according to the single-
cell cell-peak matrix. Principal Component Analysis 
(PCA) was applied to dimensionality reduction on the 
top 100 variable genes.

Dynamics of H3K27ac andH3K4me1 signals in each germ 
layer
The single cells from subpopulations of Epiblast, Ecto-
derm (both NE1 and NE2 for H3K27ac dataset), Endo-
derm and Mesoderm were aggregated separately to 

https://doi.org/10.18129/b9.bioc.motifmatchr
https://doi.org/10.18129/b9.bioc.motifmatchr
https://igraph.org/
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generate four pseudobulk groups. The peaks of the four 
pseudobulk groups were called by MACS2 [76] and spe-
cific peaks for each group were obtained through hier-
archical clustering in pheatmap (https:// CRAN.R- proje 
ct. org/ packa ge= pheat map). The four pseudobulk groups 
were further subdivided into 24 subgroups according to 
six developmental stages and peaks were called separately 
for the 24 subgroups. Bedtools [85] were used to calculate 
the number of overlapped peaks between 24 subgroups 
and four pseudobulk groups with intersect function. GO 
term enrichment for specific peaks was performed by 
GREAT [86] based on UCSC mm10 genome.

The enrichment of germ layer‑specific ChIP‑seq signals 
in epiblast cells
We used bedtools [85] intersect with “–v” parameter 
to obtain germ layer-specific peaks for four pseudobulk 
groups (Epiblast, Ectoderm, Endoderm and Mesoderm). 
ComputeMatrix was further applied to calculate the 
ChIP-seq signals of Epiblast cells at ± 1 kb of germ layer-
specific peak centers with the reference-point model and 
50 bin sizes for averaging the score.

Statistical information
Parameters and results for Statistical analysis were 
described in the figure legend for each experiment, and 
more details were shown in specific method descriptions. 
For all statistical tests, the 0.05 P-value < 0.05 was consid-
ered statistically significant.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12864- 025- 11619-5.

Supplementary Material 1.

Declaration on animal experimentation
This study is reported in accordance with ARRIVE guidelines.

Authors’ contributions
S.A. and X.L. designed and conceived the study. M.F. and L.P. performed the 
bioinformatic analyses. S.A., X.L. and Z.W. conducted the experiments. X.L., S.A., 
M.F., J.J. and M.W. participated in data discussion and interpretation, as well as 
paper writing.

Funding
This study was supported by grants from the National Key R&D Program of 
China (2021YFA1102700 and 2022YFA1106200), the National Natural Science 
Foundation of China (82270307, 32200660 and 3240060016), the Natural 
Science Foundation of Guangdong Province (2024B1515020058), China 
Postdoctoral Science Foundation (2024M751309) and Young Talent Support 
Project of Guangzhou Association for Science and Technology.

Data availability
The single-cell H3K27ac and H3K4me1 CoBATCH datasets generated in 
this study have been deposited in the GEO database at accession code 

GSE249551, also seen at https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc = GSE249551 (secure token: spkzksamtjuxjod). All custom code used 
in this study is available from the corresponding author upon reasonable 
request.

Declarations

Ethics approval and consent to participate
This study was conducted in strict accordance with ethical guidelines and 
received approval from the Institutional Animal Care and Use Committee of 
Southern Medical University.

Competing interests
The authors declare no competing interests.

Received: 31 December 2024   Accepted: 21 April 2025

References
 1. Arnold SJ, Robertson EJ. Making a commitment: cell lineage allocation 

and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol. 
2009;10(2):91–103.

 2. Rivera-Perez JA, Hadjantonakis AK. The Dynamics of Morphogen-
esis in the Early Mouse Embryo. Cold Spring Harb Perspect Biol. 
2014;7(11):a015867.

 3. Peng G, Suo S, Chen J, Chen W, Liu C, Yu F, Wang R, Chen S, Sun N, Cui 
G, et al. Spatial Transcriptome for the Molecular Annotation of Line-
age Fates and Cell Identity in Mid-gastrula Mouse Embryo. Dev Cell. 
2020;55(6):802–4.

 4. Takaoka K, Hamada H. Cell fate decisions and axis determination in the 
early mouse embryo. Development. 2012;139(1):3–14.

 5. Tam PP, Behringer RR. Mouse gastrulation: the formation of a mammalian 
body plan. Mech Dev. 1997;68(1–2):3–25.

 6. Peng G, Suo S, Cui G, Yu F, Wang R, Chen J, Chen S, Liu Z, Chen G, Qian Y, 
et al. Molecular architecture of lineage allocation and tissue organization 
in early mouse embryo. Nature. 2019;572(7770):528–32.

 7. Lawson KA, Meneses JJ, Pedersen RA. Clonal analysis of epiblast fate 
during germ layer formation in the mouse embryo. Development. 
1991;113(3):891–911.

 8. Chan MM, Smith ZD, Grosswendt S, Kretzmer H, Norman TM, Adamson 
B, Jost M, Quinn JJ, Yang D, Jones MG, et al. Molecular recording of mam-
malian embryogenesis. Nature. 2019;570(7759):77–82.

 9. Bardot ES, Hadjantonakis AK. Mouse gastrulation: Coordination of tis-
sue patterning, specification and diversification of cell fate. Mech Dev. 
2020;163:103617.

 10. Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem 
cell differentiation and development. Nat Rev Genet. 2017;18(11):643–58.

 11. Xiang Y, Zhang Y, Xu Q, Zhou C, Liu B, Du Z, Zhang K, Zhang B, Wang X, 
Gayen S, et al. Epigenomic analysis of gastrulation identifies a unique 
chromatin state for primed pluripotency. Nat Genet. 2020;52(1):95–105.

 12. Yang X, Hu B, Hou Y, Qiao Y, Wang R, Chen Y, Qian Y, Feng S, Chen J, Liu C, 
et al. Silencing of developmental genes by H3K27me3 and DNA methyla-
tion reflects the discrepant plasticity of embryonic and extraembryonic 
lineages. Cell Res. 2018;28(5):593–6.

 13. Yang X, Hu B, Liao J, Qiao Y, Chen Y, Qian Y, Feng S, Yu F, Dong J, Hou 
Y, et al. Distinct enhancer signatures in the mouse gastrula delineate 
progressive cell fate continuum during embryo development. Cell Res. 
2019;29(11):911–26.

 14. Grosswendt S, Kretzmer H, Smith ZD, Kumar AS, Hetzel S, Wittler L, Klages 
S, Timmermann B, Mukherji S, Meissner A. Epigenetic regulator function 
through mouse gastrulation. Nature. 2020;584(7819):102–8.

 15. Mittnenzweig M, Mayshar Y, Cheng S, Ben-Yair R, Hadas R, Rais Y, Chomsky 
E, Reines N, Uzonyi A, Lumerman L, et al. A single-embryo, single-cell 
time-resolved model for mouse gastrulation. Cell. 2021;184(11):2825-
2842 e2822.

 16. Cheng S, Pei Y, He L, Peng G, Reinius B, Tam PPL, Jing N, Deng Q. Single-
Cell RNA-Seq Reveals Cellular Heterogeneity of Pluripotency Transition 

https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
https://doi.org/10.1186/s12864-025-11619-5
https://doi.org/10.1186/s12864-025-11619-5


Page 17 of 18Fu et al. BMC Genomics          (2025) 26:454  

and X Chromosome Dynamics during Early Mouse Development. Cell 
Rep. 2019;26(10):2593-2607 e2593.

 17. Ibarra-Soria X, Jawaid W, Pijuan-Sala B, Ladopoulos V, Scialdone A, Jorg 
DJ, Tyser RCV, Calero-Nieto FJ, Mulas C, Nichols J, et al. Defining murine 
organogenesis at single-cell resolution reveals a role for the leukot-
riene pathway in regulating blood progenitor formation. Nat Cell Biol. 
2018;20(2):127–34.

 18. Mohammed H, Hernando-Herraez I, Savino A, Scialdone A, Macaulay I, 
Mulas C, Chandra T, Voet T, Dean W, Nichols J, et al. Single-Cell Landscape 
of Transcriptional Heterogeneity and Cell Fate Decisions during Mouse 
Early Gastrulation. Cell Rep. 2017;20(5):1215–28.

 19. Pijuan-Sala B, Griffiths JA, Guibentif C, Hiscock TW, Jawaid W, Calero-
Nieto FJ, Mulas C, Ibarra-Soria X, Tyser RCV, Ho DLL, et al. A single-cell 
molecular map of mouse gastrulation and early organogenesis. Nature. 
2019;566(7745):490–5.

 20. Scialdone A, Tanaka Y, Jawaid W, Moignard V, Wilson NK, Macaulay IC, 
Marioni JC, Gottgens B. Resolving early mesoderm diversification through 
single-cell expression profiling. Nature. 2016;535(7611):289–93.

 21. Argelaguet R, Clark SJ, Mohammed H, Stapel LC, Krueger C, Kapourani 
CA, Imaz-Rosshandler I, Lohoff T, Xiang Y, Hanna CW, et al. Multi-omics 
profiling of mouse gastrulation at single-cell resolution. Nature. 
2019;576(7787):487–91.

 22. Wang Q, Xiong H, Ai S, Yu X, Liu Y, Zhang J, He A. CoBATCH for High-
Throughput Single-Cell Epigenomic Profiling. Mol Cell. 2019;76(1):206-
216 e207.

 23. Downs KM, Davies T. Staging of gastrulating mouse embryos by 
morphological landmarks in the dissecting microscope. Development. 
1993;118(4):1255–66.

 24. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, 
Hanna J, Lodato MA, Frampton GM, Sharp PA, et al. Histone H3K27ac 
separates active from poised enhancers and predicts developmental 
state. Proc Natl Acad Sci U S A. 2010;107(50):21931–6.

 25. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl 
PB, Lee TI, Young RA. Master transcription factors and mediator establish 
super-enhancers at key cell identity genes. Cell. 2013;153(2):307–19.

 26. Liu M, Yue Y, Chen X, Xian K, Dong C, Shi M, Xiong H, Tian K, Li Y, Zhang 
QC, et al. Genome-coverage single-cell histone modifications for embryo 
lineage tracing. Nature. 2025;640(8059):828–39.

 27. Zhu C, Zhang Y, Li YE, Lucero J, Behrens MM, Ren B. Joint profiling of his-
tone modifications and transcriptome in single cells from mouse brain. 
Nat Methods. 2021;18(3):283–92.

 28. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and 
characterization. Nat Methods. 2012;9(3):215–6.

 29. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee 
MJ, Wilk AJ, Darby C, Zager M, et al. Integrated analysis of multimodal 
single-cell data. Cell. 2021;184(13):3573-3587 e3529.

 30. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, 
Bejerano G. GREAT improves functional interpretation of cis-regulatory 
regions. Nat Biotechnol. 2010;28(5):495–501.

 31. Hong CP, Choe MK, Roh TY. Characterization of Chromatin Structure-asso-
ciated Histone Modifications in Breast Cancer Cells. Genomics Inform. 
2012;10(3):145–52.

 32. Koenecke N, Johnston J, He Q, Meier S, Zeitlinger J. Drosophila poised 
enhancers are generated during tissue patterning with the help of 
repression. Genome Res. 2017;27(1):64–74.

 33. Zhang X, Yalcin S, Lee DF, Yeh TY, Lee SM, Su J, Mungamuri SK, Rimmele P, 
Kennedy M, Sellers R, et al. FOXO1 is an essential regulator of pluripo-
tency in human embryonic stem cells. Nat Cell Biol. 2011;13(9):1092–9.

 34. Mukherjee S, French DL, Gadue P. Loss of TBX3 enhances pancreatic 
progenitor generation from human pluripotent stem cells. Stem Cell 
Reports. 2021;16(11):2617–27.

 35. Heslop JA, Pournasr B, Liu JT, Duncan SA. GATA6 defines endoderm fate 
by controlling chromatin accessibility during differentiation of human-
induced pluripotent stem cells. Cell Rep. 2021;35(7):109145.

 36. DeLaForest A, Nagaoka M, Si-Tayeb K, Noto FK, Konopka G, Battle MA, 
Duncan SA. HNF4A is essential for specification of hepatic progenitors 
from human pluripotent stem cells. Development. 2011;138(19):4143–53.

 37. Mankoo BS, Skuntz S, Harrigan I, Grigorieva E, Candia A, Wright CV, 
Arnheiter H, Pachnis V. The concerted action of Meox homeobox 
genes is required upstream of genetic pathways essential for the 

formation, patterning and differentiation of somites. Development. 
2003;130(19):4655–64.

 38. Chan SS, Shi X, Toyama A, Arpke RW, Dandapat A, Iacovino M, Kang J, 
Le G, Hagen HR, Garry DJ, et al. Mesp1 patterns mesoderm into cardiac, 
hematopoietic, or skeletal myogenic progenitors in a context-dependent 
manner. Cell Stem Cell. 2013;12(5):587–601.

 39. Tsuchihashi T, Maeda J, Shin CH, Ivey KN, Black BL, Olson EN, Yamagishi H, 
Srivastava D. Hand2 function in second heart field progenitors is essential 
for cardiogenesis. Dev Biol. 2011;351(1):62–9.

 40. Zhu Q, Song L, Peng G, Sun N, Chen J, Zhang T, Sheng N, Tang W, Qian C, 
Qiao Y, et al. The transcription factor Pou3f1 promotes neural fate com-
mitment via activation of neural lineage genes and inhibition of external 
signaling pathways. Elife. 2014;3:e02224.

 41. Vernay B, Koch M, Vaccarino F, Briscoe J, Simeone A, Kageyama R, Ang SL. 
Otx2 regulates subtype specification and neurogenesis in the midbrain. J 
Neurosci. 2005;25(19):4856–67.

 42. Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R. A role for SOX1 in 
neural determination. Development. 1998;125(10):1967–78.

 43. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, 
Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive Integration of 
Single-Cell Data. Cell. 2019;177(7):1888-1902 e1821.

 44. Rada-Iglesias A. Is H3K4me1 at enhancers correlative or causative? Nat 
Genet. 2018;50(1):4–5.

 45. Spicuglia S, Vanhille L. Chromatin signatures of active enhancers. Nucleus. 
2012;3(2):126–31.

 46. DeTomaso D, Jones MG, Subramaniam M, Ashuach T, Ye CJ, Yosef N. 
Functional interpretation of single cell similarity maps. Nat Commun. 
2019;10(1):4376.

 47. Zwaka TP. Unraveling the score of the enhancer symphony. Proc Natl 
Acad Sci U S A. 2010;107(50):21240–1.

 48. Presnell JS, Schnitzler CE, Browne WE. KLF/SP Transcription Factor Family 
Evolution: Expansion, Diversification, and Innovation in Eukaryotes. 
Genome Biol Evol. 2015;7(8):2289–309.

 49. Lin Q, Schwarz J, Bucana C, Olson EN. Control of mouse cardiac mor-
phogenesis and myogenesis by transcription factor MEF2C. Science. 
1997;276(5317):1404–7.

 50. Wilm B, James RG, Schultheiss TM, Hogan BL. The forkhead genes, Foxc1 
and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. Dev 
Biol. 2004;271(1):176–89.

 51. George RM, Firulli AB. Hand Factors in Cardiac Development. Anat Rec 
(Hoboken). 2019;302(1):101–7.

 52. Chen ZF, Behringer RR. twist is required in head mesenchyme for cranial 
neural tube morphogenesis. Genes Dev. 1995;9(6):686–99.

 53. Shim WJ, Sinniah E, Xu J, Vitrinel B, Alexanian M, Andreoletti G, Shen S, 
Sun Y, Balderson B, Boix C, et al. Conserved Epigenetic Regulatory Logic 
Infers Genes Governing Cell Identity. Cell Syst. 2020;11(6):625-639 e613.

 54. Aramaki S, Hayashi K, Kurimoto K, Ohta H, Yabuta Y, Iwanari H, Mochizuki 
Y, Hamakubo T, Kato Y, Shirahige K, et al. A mesodermal factor, T, specifies 
mouse germ cell fate by directly activating germline determinants. Dev 
Cell. 2013;27(5):516–29.

 55. Schule KM, Weckerle J, Probst S, Wehmeyer AE, Zissel L, Schroder CM, 
Tekman M, Kim GJ, Schlagl IM, Arnold SSJ, et al. Eomes restricts Brachyury 
functions at the onset of mouse gastrulation. Dev Cell. 2023;58(18):1627-
1642 e1627.

 56. Sasai N, Yakura R, Kamiya D, Nakazawa Y, Sasai Y. Ectodermal fac-
tor restricts mesoderm differentiation by inhibiting p53. Cell. 
2008;133(5):878–90.

 57. Wang A, Yue F, Li Y, Xie R, Harper T, Patel NA, Muth K, Palmer J, Qiu Y, Wang 
J, et al. Epigenetic priming of enhancers predicts developmental compe-
tence of hESC-derived endodermal lineage intermediates. Cell Stem Cell. 
2015;16(4):386–99.

 58. Martin EW, Rodriguez YBA, Reggiardo RE, Worthington AK, Mattingly 
CS, Poscablo DM, Krietsch J, McManus MT, Carpenter S, Kim DH, et al. 
Dynamics of Chromatin Accessibility During Hematopoietic Stem Cell 
Differentiation Into Progressively Lineage-Committed Progeny. Stem 
Cells. 2023;41(5):520–39.

 59. Kojima Y, Kaufman-Francis K, Studdert JB, Steiner KA, Power MD, Loebel 
DA, Jones V, Hor A, de Alencastro G, Logan GJ, et al. The transcriptional 
and functional properties of mouse epiblast stem cells resemble the 
anterior primitive streak. Cell Stem Cell. 2014;14(1):107–20.



Page 18 of 18Fu et al. BMC Genomics          (2025) 26:454 

 60. Osterwalder M, Speziale D, Shoukry M, Mohan R, Ivanek R, Kohler M, 
Beisel C, Wen X, Scales SJ, Christoffels VM, et al. HAND2 targets define a 
network of transcriptional regulators that compartmentalize the early 
limb bud mesenchyme. Dev Cell. 2014;31(3):345–57.

 61. Alaiz Noya M, Berti F, Dietrich S. Comprehensive expression analysis 
for the core cell cycle regulators in the chicken embryo reveals novel 
tissue-specific synexpression groups and similarities and differences with 
expression in mouse, frog and zebrafish. J Anat. 2022;241(1):42–66.

 62. Pauklin S, Vallier L. The cell-cycle state of stem cells determines cell fate 
propensity. Cell. 2013;155(1):135–47.

 63. Pauklin S, Madrigal P, Bertero A, Vallier L. Initiation of stem cell differentia-
tion involves cell cycle-dependent regulation of developmental genes by 
Cyclin D. Genes Dev. 2016;30(4):421–33.

 64. Singh AM, Sun Y, Li L, Zhang W, Wu T, Zhao S, Qin Z, Dalton S. Cell-Cycle 
Control of Bivalent Epigenetic Domains Regulates the Exit from Pluripo-
tency. Stem Cell Reports. 2015;5(3):323–36.

 65. Singh AM, Chappell J, Trost R, Lin L, Wang T, Tang J, Matlock BK, Weller 
KP, Wu H, Zhao S, et al. Cell-cycle control of developmentally regulated 
transcription factors accounts for heterogeneity in human pluripotent 
cells. Stem Cell Reports. 2013;1(6):532–44.

 66. Yiangou L, Grandy RA, Osnato A, Ortmann D, Sinha S, Vallier L. Cell cycle 
regulators control mesoderm specification in human pluripotent stem 
cells. J Biol Chem. 2019;294(47):17903–14.

 67. Matsuoka S, Thompson JS, Edwards MC, Bartletta JM, Grundy P, Kalikin 
LM, Harper JW, Elledge SJ, Feinberg AP. Imprinting of the gene encoding 
a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 
11p15. Proc Natl Acad Sci U S A. 1996;93(7):3026–30.

 68. Xiong H, Luo Y, Wang Q, Yu X, He A. Single-cell joint detection of 
chromatin occupancy and transcriptome enables higher-dimensional 
epigenomic reconstructions. Nat Methods. 2021;18(6):652–60.

 69. Chen X, Shen Y, Draper W, Buenrostro JD, Litzenburger U, Cho SW, Satpa-
thy AT, Carter AC, Ghosh RP, East-Seletsky A, et al. ATAC-see reveals the 
accessible genome by transposase-mediated imaging and sequencing. 
Nat Methods. 2016;13(12):1013–20.

 70. Picelli S, Bjorklund AK, Reinius B, Sagasser S, Winberg G, Sandberg R. Tn5 
transposase and tagmentation procedures for massively scaled sequenc-
ing projects. Genome Res. 2014;24(12):2033–40.

 71. Amini S, Pushkarev D, Christiansen L, Kostem E, Royce T, Turk C, Pignatelli 
N, Adey A, Kitzman JO, Vijayan K, et al. Haplotype-resolved whole-
genome sequencing by contiguity-preserving transposition and combi-
natorial indexing. Nat Genet. 2014;46(12):1343–9.

 72. Ai S, Xiong H, Li CC, Luo Y, Shi Q, Liu Y, Yu X, Li C, He A. Profiling chromatin 
states using single-cell itChIP-seq. Nat Cell Biol. 2019;21(9):1164–72.

 73. Kechin A, Boyarskikh U, Kel A, Filipenko M. cutPrimers: A New Tool for 
Accurate Cutting of Primers from Reads of Targeted Next Generation 
Sequencing. J Comput Biol. 2017;24(11):1138–43.

 74. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat 
Methods. 2012;9(4):357–9.

 75. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, 
Whitwham A, Keane T, McCarthy SA, Davies RM, et al. Twelve years of 
SAMtools and BCFtools. Gigascience. 2021;10(2):giab008.

 76. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nus-
baum C, Myers RM, Brown M, Li W, et al. Model-based analysis of ChIP-Seq 
(MACS). Genome Biol. 2008;9(9):R137.

 77. Stuart T, Srivastava A, Madad S, Lareau CA, Satija R. Single-cell chromatin 
state analysis with Signac. Nat Methods. 2021;18(11):1333–41.

 78. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expres-
sion data analysis. Genome Biol. 2018;19(1):15.

 79. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mund-
los S, Christiansen L, Steemers FJ, et al. The single-cell transcriptional land-
scape of mammalian organogenesis. Nature. 2019;566(7745):496–502.

 80. Pliner HA, Packer JS, McFaline-Figueroa JL, Cusanovich DA, Daza RM, 
Aghamirzaie D, Srivatsan S, Qiu X, Jackson D, Minkina A, et al. Cicero 
Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin 
Accessibility Data. Mol Cell. 2018;71(5):858-871 e858.

 81. Sheffield NC, Bock C. LOLA: enrichment analysis for genomic region 
sets and regulatory elements in R and Bioconductor. Bioinformatics. 
2016;32(4):587–9.

 82. Schep AN, Wu B, Buenrostro JD, Greenleaf WJ. chromVAR: inferring 
transcription-factor-associated accessibility from single-cell epigenomic 
data. Nat Methods. 2017;14(10):975–8.

 83. Kartha VK, Duarte FM, Hu Y, Ma S, Chew JG, Lareau CA, Earl A, Burkett ZD, 
Kohlway AS, Lebofsky R, et al. Functional inference of gene regulation 
using single-cell multi-omics. Cell Genom. 2022;2(9):100166.

 84. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin 
N, Schwikowski B, Ideker T. Cytoscape: a software environment for 
integrated models of biomolecular interaction networks. Genome Res. 
2003;13(11):2498–504.

 85. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing 
genomic features. Bioinformatics. 2010;26(6):841–2.

 86. Tanigawa Y, Dyer ES, Bejerano G. WhichTF is functionally important in 
your open chromatin data? PLoS Comput Biol. 2022;18(8):e1010378.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Single-cell multi-omics delineates the dynamics of distinct epigenetic codes coordinating mouse gastrulation
	Abstract 
	Introduction
	Results
	Single-cell mapping of histone modifications during mouse gastrulation
	Asynchronous germ-layer fate commitment revealed by distinct histone modification dynamics
	The regulatory trajectory of germ-layer specification
	Integrating scRNA-seq and scChIP-seq data reveals regulatory bases underly germ-layer specification
	Active enhancer-related gene regulatory networks across mesoderm lineage specification

	Discussion
	Materials and methods
	Research animals
	Mouse embryo single-cell isolation
	Purification of PAT
	PAT assembly and activity quantification
	CoBATCH experimental procedure
	Library preparation for CoBATCH
	ChIP-seq data pre-processing
	Dimension reduction and subcluster annotation
	Trajectory analysis
	Integration of scRNA-seq and scChIP-seq datasets
	GRN construction
	PCA analysis
	Dynamics of H3K27ac andH3K4me1 signals in each germ layer
	The enrichment of germ layer-specific ChIP-seq signals in epiblast cells
	Statistical information

	References


