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Introduction
The history of the formation of Chinese native cattle 
breeds is complex. Previous studies using archaeologi-
cal and genomic methods have determined that the main 
ancestry sources of Chinese native cattle are East Asian 
taurine, Eurasian taurine and Chinese indicine [1]. Fol-
low-up studies have made it clearer that Chinese indicine 
(East Asian indicine) is different from Indian indicine 
(South Asian indicine), making the origin of the Chinese 
native cattle clearer [2]. Nanyang cattle is one of the five 
excellent Chinese native cattle breeds, with advantages of 
delicate meat, roughage resistance, environmental adapt-
ability [3]. However, due to the long-term breeding as 
draft cattle, Nanyang cattle has a slow growth rate, low 
feed conversion rate, low slaughter rate, and poor eco-
nomic efficiency which are compared with the beef cattle 
breeds. So, crossbreeding with excellent beef breeds is an 

BMC Genomics

†Xingya Song, Zijing Zhang, Shengyan Xing and Xian Liu are first 
authors.

*Correspondence:
Eryao Wang
eryaowang@outlook.com
Yongzhen Huang
hyzsci@nwafu.edu.cn
1College of Animal Science and Technology, Northwest A&F University, 
No. 22 Xinong Road, Yangling, Shaanxi 712100, People’s Republic of China
2Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, 
Zhengzhou, Henan 450002, People’s Republic of China
3Henan Provincial Livestock Technology Promotion Station, Zhengzhou, 
Henan 450008, People’s Republic of China
4Biyang County Xiananniu Technology Development Co., Ltd, Zhumadian, 
Henan 463700, People’s Republic of China
5Shaanxi Agricultural and Animal Husbandry Seed Farm, Fufeng,  
Shaanxi 722203, People’s Republic of China

Abstract
Pinan cattle, as the progeny of crossbreeding improvement between Nanyang cattle and Piedmontese, have 
attracted attention for their excellent growth performance. In this study, we constructed a copy number variation 
map by whole genome resequencing of 132 Pinan cattle. In the genome of Pinan cattle, deletion-type copy 
number variants occupied a higher proportion and only 3.31% of CNVRs overlapped with exonic regions. It showed 
that Pinan cattle was clearly distinguishable from other breeds and Pinan cattle was closer to Nanyang cattle by 
population genetic structure analysis based on CNVRs. The degree of inbreeding in the Pinan cattle population 
was explored by ROH analysis, which showed that the degree of inbreeding in Pinan cattle was lower than that 
in European beef cattle, suggesting that the risk of inbreeding was low. Candidate genes related to muscle 
development (CADM3, CNTFR, DOCK3), reproductive traits (SCAPER), embryonic development (RERE) and immune 
traits (CD84) were identified by VST selection analysis, ROH islands and iHS selection analysis, which provided a new 
scientific basis for the genetic basis of the excellent traits in Pinan cattle.
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important method to improve Nanyang cattle [4]. Then, 
Piedmontese were introduced to crossbreed with Nan-
yang cattle in Xinye county of Nanyang city. Through 
more than 30 years of crossbreeding improvement, Pinan 
cattle with outstanding growth performance have been 
bred. Copy number variants (CNVs) is a kind of copy 
number increase/decrease variations of DNA sequences 
longer than 50 bp [5–7], and the study of copy number 
variants can reflect important genomic features such 
as adaptation and selection of animals [8–10]. Runs of 
homozygosity (ROH) are formed when homozygous 
haplotypes are passed from parents to offspring, and to a 
certain extent, they can reflect the population history of 
the breed, the degree of inbreeding, and the situation of 
selection [11–14].

Currently, most of the genomic studies on Pinan cattle 
were based on SNPs, and the study of CNV in Pinan cat-
tle can enrich the mechanism study of the formation of 
excellent traits in Pinan cattle. Furthermore, the analysis 
of inbreeding degree is also an important part of breed-
ing beef cattle breeds.

In this study, we described the distribution characteris-
tics of CNVs and ROHs in Pinan cattle, and analyzed the 
population genetic structure and inbreeding degree of 
Pinan cattle. Moreover, we explored the relevant genomic 
selection regions related to the excellent traits of Pinan 
cattle, such as fast growth rate and strong meat produc-
tion capacity, and discovered the genes associated with 
the outstanding production performance of Pinan cattle. 
This study can provide a scientific and theoretical basis to 
Pinan cattle for future population breeding strategies and 
the improvement of key economic traits.

Results
142 new whole genome resequencing data (132 Pinan 
cattle and 10 Nanyang cattle) were generated in this 
study, among which a total of 659,832,685 paired-end 
reads were generated from Pinan cattle, with an average 
depth of 7.98× and an average alignment rate of 99.68%. 
The average depth of Nanyang cattle was 11.81×, and the 
average comparison rate was 99.85%. The average depth 
of Qinchuan cattle was 13.77×, and the average compari-
son rate was 99.75%.

We constructed a CNV set of Pinan cattle, and a 
total of 9,631 copy number variation regions (CNVRs) 
were detected on 28 autosomes. The total length was 
64,302,650  bp, accounting for 2.58% of the reference 
genome (ARS-UCD1.2), and the average length of CNVR 
was 6677  bp. Their distribution on chromosomes is 
shown in Fig. 1A, and it can be seen that the number and 
distribution of different types of CNVR on chromosomes 
are not consistent. We found that the deletion CNVRs 
were the most common in the genome of Pinan cattle, 
accounting for 77.85% in number and 63.12% in length. 

Subsequently, 9,631 CNVRs were functionally anno-
tated, and the results showed that 53.88% of CNVRs were 
located in the intergenic region, 35.99% of the CNVRs 
were located in the intron region, and only 3.31% of the 
CNVRs were located in the exon region (Fig. 1B).

We divided CNVRs into five types according to length 
(< 5 kb, 5-10 kb, 10-20 kb, 20-50kb, > 50 kb). The results 
showed that CNVRs shorter than 5  kb were the most 
numerous and longest in total length (Fig.  1C). At the 
same time, we found that the duplication CNVRs with 
a length longer than 100 kb was the least numerous, but 
the total length was the longest among all duplication 
CNVRs (Fig. 1D).

Population structure analysis based on CNV
We constructed a CNVR set of all individuals of eight 
breeds and performed principal component analysis and 
ancestor component analysis based on the CNVs data-
set. In principal component analysis, the first and second 
principal components accounted for 27.4% and 9.7% of 
the variations (Fig. 2A). The PC2 will clearly divide all the 
individuals into two parts: one part is Pinan cattle and 
Nanyang cattle, and the other part is other Chinese native 
cattle and European beef cattle. PC1 can distinguish 
between Pinan cattle and Nanyang cattle. The results of 
ancestry analysis showed that three European beef cattle 
breeds had similar ancestral components. The four Chi-
nese native cattle breeds showed three types, and Jiaxian 
red cattle and Luxi cattle showed high consistency. When 
K = 5, the ancestral components of Pinan cattle and Nan-
yang cattle that were not found in other breeds appeared 
(Fig. 2B).

Selection analysis of Pinan cattle and Chinese native cattle
We calculated the VST values of Pinan cattle and Chi-
nese native cattle breeds, taking the top 1% of regions 
as strongly selected regions (Fig.  3A). Then, a total of 
356 candidate genes were annotated in these regions, 
and we screened for a number of genes associated with 
important economic traits, including muscle develop-
ment (TNNT2, NFIC, WNT7A, MMP9, CCND2, CASZ1, 
SPEG), adipogenesis (NPBWR2, WNT10A), trunk devel-
opment (NR6A1), reproduction (NR5A1, DKKL1). 
Then, KEGG pathway analysis was performed on these 
genes. Four pathways with corrected P-value < 0.05 were 
obtained: “Hypertrophic cardiomyopathy”, “Human pap-
illomavirus infection” (Corrected P-value = 0.0335), and 
“Hippo signaling pathway” (Corrected P-value = 0.0394), 
“MAPK signaling pathway” (Corrected P-value = 0.0477) 
(Fig. 3B).

We combined the top differentially expressed genes of 
the longissimus dorsi muscle of Pinan cattle and Nan-
yang cattle screened in the existing literature [15] and 
the annotated 356 genes to obtain two genes, CADM3 
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and CNTFR (Fig.  3C). We calculated the distribution 
frequency of CNV corresponding to the two genes in 
different populations. The results showed that the CNV 
corresponding to the CADM3 gene was deletion, which 
had a high frequency in European beef cattle breeds and 
Pinan cattle, and a low frequency in Chinese native cattle 
breeds. The CNV corresponding to the CNTFR gene was 
also deletional, with a high frequency in European beef 
cattle breeds and Pinan cattle, and a low frequency in 
Chinese native cattle breeds (Fig. 3D and E).

Runs of homozygosity detection and distribution studies
A total of 11,314 ROHs with a total length of 
9,964,170.13 kb were detected in this Pinan cattle popu-
lation, with the average length of 880.69 kb. The shortest 
ROH is 500.009  kb containing 5407 SNPs and the lon-
gest ROH is 12,760.034 kb containing 159,026 SNPs. The 
average number of ROHs per sample was 85. The average 

total length of ROHs in each sample was 75,486.14  kb, 
and the genome coverage of ROHs per sample was 
3.03%. Figure 4A shows the distribution of ROH on dif-
ferent chromosomes in the Pinan cattle population. The 
most distribution of ROHs is on BTA1 (810 ROHs) and 
the least distribution of ROHs is on BTA25 (50 ROHs), 
which is similar to the distribution in the previous study 
of Chinese Simmental beef cattle. The ROH coverage on 
BTA21 is the highest (4.50%), and the ROH coverage on 
BTA25 is the lowest (0.65%). Figure 4B depicted the total 
number and total length of ROHs for each individual. 
Individuals with a total length of ROH (> 200 Mb) are all 
European beef cattle or Pinan cattle.

To know the inbreeding level in the Pinan cattle pop-
ulation, we calculate the inbreeding coefficient for all 
populations, and the inbreeding coefficient for the Pinan 
population is 0.0303. It was found that the inbreed-
ing coefficient of Pinan cattle was lower than that of 

Fig. 1 Distribution characteristics of CNVR in Pinan cattle. A the CNVR map of Pinan cattle in autosomes. B Functional classification of the detected 
CNVRs. C Total number of different CNVR types. D Total length of different CNVR types
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Fig. 2 Population structure analysis. A Principal component analysis. B Ancestral component analysis (K = 2, 3, 4, 5)
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Fig. 3 Selection analysis based on CNVs and candidate genes analysis. A Manhattan plot of VST in Pinan cattle and Chinese native cattle. B KEGG pathways 
from the enrichment analysis. C Venn diagram of the candidate genes in this study and the DEGs in the previous study. D Frequency of CADM3-CNVRs in 
different populations. E Frequency of CNTFR-CNVRs in different populations
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Fig. 4 The total number and coverage of ROH on each autosomes in the genome of Pinan cattle. B Scatter plot of the total number of ROHs and the total 
length of ROHs for each individual within each breed. C Box plot of FROH in each breed
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European beef cattle breeds, and it was similar to that of 
Nanyang cattle (Fig.  4C). It’s shown that the inbreeding 
risk of Pinan cattle population was low, but there are also 
some individuals with high inbreeding level.

Analysis of selection characteristics of Pinan cattle
A total of 3,484 ROH islands were detected in the Pinan 
cattle. Among them, 38 high-frequency ROH enrichment 
regions (frequency greater than 25%) were found. In 
these 38 islands, 47 candidate genes and 64 QTLs asso-
ciated with important traits were identified (Fig. 5A). At 
the same time, we calculated the iHS (Integrated Haplo-
type Score) of the Pinan cattle population, and selected 
the top 1% regions as the strong selection regions 
(Fig. 5B). Then we obtained 52 selected genes after anno-
tation, and jointly screened four key candidate genes 
(SCAPER, CD84, RERE, DOCK3) (Fig. 5C).

Discussion
Genetic variation is a specific manifestation of artifi-
cial selection in the genome of domestic animals, and 
CNV is one of the main constituents. In recent years, 
CNV atlases of many livestock have been constructed 
[9, 10, 16–21], and a large number of CNVs associated 
with important traits in livestock have been identified 
[22–24]. In this study, 9,631 CNVRs were detected in 
the Pinan cattle population, and the CNV map of Pinan 
cattle is similar to that of the previous study in Chinese 
cattle, and it also showed that the deletion type was the 
majority [22]. It suggested that deletions are more likely 
to be present in the genome than duplications. This may 

be due to the fact that deletions are more likely to occur 
during DNA replication. It may also be affected by read 
depth and CNV detection software, which exhibits lower 
sensitivity for identifying duplication [25]. Previous stud-
ies have analyzed the population structure of Pinan cat-
tle based on SNP data, and have found that Pinan cattle 
are closer to Piedmontese [26], but the results of this 
study based on CNV show that Pinan cattle are closer 
to Nanyang cattle. It may relate to the different selection 
pressures of SNP and CNV in the process of artificial 
selection.

High meat yield is an important goal for breeding of 
Pinan cattle. In the comparison of Pinan cattle and Chi-
nese native cattle breeds, we noticed that the “Hippo 
signaling pathway” and “MAPK signaling pathway” in 
the significant pathways of candidate genes are related 
to skeletal muscle development [27–30], suggesting that 
the two pathways may play an important role in the high 
meat yield traits of Pinan cattle. Among these candidate 
genes, we found some genes involved in muscle develop-
ment. WNT7A (Wingless-related integration site 7 A) is 
a member of the WNT family, and it has been found that 
intramuscular injection of WNT7A protein can increase 
muscle mass and muscle strength in mdx mice (a mouse 
model of Duchenne muscular dystrophy), and produce 
muscle fiber hypertrophy and decreased muscle fiber 
necrosis [31]. Subsequent deletion and salvage experi-
ments demonstrated that WNT7A is required for effec-
tive muscle regeneration in mdx mice [32]. As cellular 
transcription factors and DNA replication factors, the 
Nuclear factor I (NFI) family plays an important role in 

Fig. 5 A the ROH islands of Pinan cattle. B Selection analysis by integrated haplotype score (iHS). C Venn diagram of the candidate genes by ROH islands 
and iHS analysis
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mammalian development. There was a study found that 
NFIC gene was highly expressed in bovine muscle tissue, 
and knockdown of NFIC gene would promote the pro-
liferation of bovine myoblasts, and found that CENPF, 
as a downstream target gene of NFIC, could affect the 
expression of CDK1 and CCNB1, actively regulate cell 
cycle pathways and cell proliferation, and finally found 
that NFIC acts on the CENPF/CDK1 axis to regulate 
the mechanism of bovine myoblast proliferation [33]. 
Moreover, we noted two key candidate genes, CADM3 
and CNTFR, which were also found as the top differen-
tially expressed genes for the longissimus dorsi muscle of 
Pinan cattle and Nanyang cattle [15]. CADM3 is a mem-
ber of the cell adhesion factor family and plays a role pri-
marily in the development of neurons, regulating synapse 
formation [34–36]. The CNTFR gene encodes a member 
of the type 1 cytokine receptor family. The encoded pro-
tein is a ligand-specific component of the ciliary neuro-
trophin triple receptor and plays a key role in neuronal 
cell survival, differentiation, and gene expression. There 
was a previous study found that SNPs in CNTFR gene 
were associated with changes in muscle strength [37, 38]. 
A beef cattle SNP panel study found that CNTFR had an 
effect on increasing average daily gain (ADG) in beef cat-
tle [39]. These genes are likely to be associated with the 
high meat yield of Pinan cattle.

In the process of breeding livestock breeds, the genome 
is affected by factors such as parenting, selection inten-
sity, and mating mode, so the number, length and distri-
bution frequency of ROH in the population also show 
certain differences [12, 40–42]. In this study, the ROH 
length of European beef cattle breeds was longer than 
that of Chinese native cattle breeds, suggesting that Euro-
pean beef cattle breeds had been more strongly selected. 
There are large differences in the coverage of ROHs in dif-
ferent chromosomes, which indicates that different chro-
mosomes are subjected to different selection pressures. 
The calculation of inbreeding coefficient showed that the 
degree of inbreeding of Pinan cattle was lower than that 
of European beef cattle breeds, and it was similar to that 
of Nanyang cattle, and the risk of inbreeding was smaller, 
but there were still individuals with inbreeding. It also 
showed that the utilization rate of excellent individuals 
can be appropriately improved and the selection efforts 
can be strengthened in the breeding of Pinan cattle. Sev-
eral studies have confirmed that the homozygosity within 
the genome of livestock after selection has been greatly 
improved, resulting in more ROH-rich regions within 
the population, ROH islands [14, 43–45]. Based on these 
regions, QTL annotation was carried out, and four can-
didate genes were screened based on ROH islands and 
iHS. DOCK (dedicator of cytokinesis) is an 11-member 
family of typical guanine nucleotide exchange factors 
(GEFs) expressed in the brain, spinal cord, and skeletal 

muscle. DOCK3 is a member of DOCK family which 
play an important role in skeletal muscle development. 
The knockout of DOCK3 in mice showed that the mus-
cle structure of the knocked mice was damaged, muscle 
fiber regeneration was impaired and metabolic dysfunc-
tion was impaired, which proved the important role of 
DOCK3 in skeletal muscle [46]. S-phase cyclin A-asso-
ciated protein in the endoplasmic reticulum (SCAPER) 
interacts with cyclin A and functions as a feedback loop 
regulator in the G1/S and G2/M phases of the cell cycle 
[47]. SCAPER has been found to be associated with 
male sterility in multiple species (human, cattle, sheep, 
mice, fruit flies) [48–51]. It may be related to the stron-
ger reproductive performance of Pinan cattle. CD84-
mediated signaling regulates diverse immunological 
processes, including T cell cytokine secretion, natural 
killer cell cytotoxicity [52]. Previous studies have found 
that the region in which this gene is located is strongly 
selected in Chinese local cattle, suggesting that this gene 
may be related to better disease resistance in Chinese 
native cattle [53, 54]. Arginine-glutamic acid dipeptide 
repeats (RERE) is associated with embryonic develop-
ment, and mutations in RERE can lead to asymmetric 
defects in mouse embryos [55]. It is possible that these 
genes on ROH islands play important roles in the forma-
tion of excellent traits in Pinan cattle.

The detection of CNV, especially short fragments of 
CNVs and complex variants, was limited by depth of 
next-generation sequence. Long-read sequencing can be 
used to improve the accuracy of CNV identification and 
molecular experiments can further verify the function of 
genes in the next step. In addition, the identification of 
ROH can be affected by software parameters, and com-
parisons between different groups within a single study 
were relatively accurate. There is a need for uniform stan-
dard in ROH study of livestock.

Methods
Sample collection and whole genome sequencing
The 132 Pinan cattle in this study were females between 
2 and 6 years old selected from the core breeding area 
of Pinan Cattle in Xinye County, Nanyang City, Henan 
Province, China. DNAs were extracted from blood to 
construct a 300 bp library, which were sequenced by BGI 
for whole genome resequencing.

The study also used data from 10 Nanyang cattle and 
5 Qinchuan cattle collected by our lab. In addition, pub-
lic data of 2 Chinese native cattle breeds (14 Jiaxian red 
cattle and 5 Luxi cattle) and 3 South-central European 
beef cattle breeds (7 Piedmontese, 10 Simmental and 15 
Gelbvieh) were downloaded.
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Genomic data processing and CNVR identification
The raw data was filtered using Trimmomitic v0.38 with 
the parameters: “LEADING:20, TRAILING:20, SLID-
INGWINDWOE: 3:15, AVGQUAL:20, MINLEN:35, 
TOPHRED33” [56], followed by alignment of reads to 
the reference genome (ARS-UCD1.2) using BWA-MEM 
(version 0.7.13-r1126) with default parameters [57] and 
deduplication using the “BaseRecalibrator” and “Apply-
BQSR” modules in GATK (version 4.3.0.0). CNVcaller 
[58] was used to detect the CNVs. Subsequently, we used 
a 1500 bp window and a 750 bp step size to count the GC, 
repeat, and gap content of each window in the reference 
genome, and calculated the absolute copy number of 
each window for each individual to determine the bound-
aries of the CNV region (parameter: -f 0.1 -h 3 -r 0.3). 
CNVR is the region with a uniform boundary merged 
from CNVs originating from different individuals. We 
classified CNVRs into three types: deletion, duplication 
and both. The CNVRs were filtered by silhouette coeffi-
cient and length: (1) Length: the length of deletion and 
both CNVRs was ≤ 50 kb, and the length of duplication 
CNVRs was < 500  kb; (2) Silhouette coefficient: The sil-
houette coefficient of duplication and deletion is required 
to be higher than 0.25, and the group silhouette coef-
ficient of both is lower than 0.75. ANNOVAR [59] was 
used to annotate the function regions of CNVRs.

Population structure analysis
Principal component analysis was performed on all indi-
viduals using PLINK v1.9 (--pca 10) [60]. Ancestor com-
ponent analysis was performed using ADMIXTURE [61], 
with K values ranging from 2 to 5. Pophelper [62] was 
used for visualization of stacked graphs.

Selection analysis of Pinan cattle and Chinese native cattle 
breeds
We used a 50 kb window and a 20 kb step size to calcu-
late the VST for each window for the selected analysis of 
Pinan cattle and Chinese native cattle breeds. VST is a 
common method for interpopulation selection based on 
CNV, similar to FST. The formula is VST = (Vt-Vs) / Vt. 
Vt represents the standard deviation of the copy num-
ber size of the region for all samples, and Vs represents 
the value of standard deviation after each population 
weighted according to the size of their respective popula-
tions [9].

The top 1% of areas are defined as areas that have 
received strong selection. We used ANNOVAR [59] to 
annotate candidate genes involved in these regions. In 
order to screen the genes associated with the high meat 
yield of Pinan cattle, we intersected these candidate genes 
with the DEGs of the longissimus dorsi muscle of Pinan 
cattle and Nanyang cattle in the previous study [15], 
and obtained two key candidate genes, and examined 

the distribution of CNVs of these two genes in different 
populations.

ROH detection and inbreeding coefficient calculation
The detection and filtration of SNPs using GATK was 
based on the previous research of our team. PLINK was 
used to detect ROH on each individual autosome, and 
the following criteria were used: (1) a minimum length of 
ROH of 500 kb, (2) at least 1 SNP in the range of 50 kb 
in ROH, (3) a minimum of 50 SNPs in ROH, (4) a sliding 
window size of 50 SNPs, (5) a maximum of 3 SNPs in the 
sliding window that were heterozygous, and (6) a maxi-
mum of 5 SNP deletions in the sliding window.

All ROHs are divided into four types according to 
length: 500 kb − 1000 kb, 1000–2000 kb, 2000–4000 kb, 
> 4000 kb. Subsequently, the genomic inbreeding coeffi-
cient FROH within each population was calculated as the 
method in a previous study [63], as the following formula 
is FROH = LROH /LGenome. LROH is the length of all ROH, 
and LGenome is the length of all autosomes.

Identification and selection characteristics of ROH Islands
The ROH-enriched region in the genome of Pinan cat-
tle was detected by “--homozyg” in PLINK, and the top 
1% of the ROH-enriched region was selected as ROH 
regions, ROH islands with the high-frequency, and the 
threshold line was 25%. In order to better understand the 
selection characteristics of the genome of Pinan cattle, 
we used the selscan (version1.3) [64] to calculate the iHS 
on the genome of Pinan cattle using a 50 kb window and 
a 20 kb step size, and then normalized the scores using 
the norm module, and also selected the top 1% of regions 
as regions subject to strong selection for gene annotation.

Enrichment analysis and QTL annotation
In this study, KEGG and GO pathway analysis were per-
formed on the candidate genes and KOBAS3.0 [65] for 
these genes, and significant enrichment pathways were 
screened based on corrected p-values less than 0.05. 
Quantitative trait loci (QTL) data of cattle was obtained 
from AnimalQTLdb [66].

Conclusions
In this study, the CNVs and ROHs of Pinan cattle were 
analyzed by whole genome sequencing, and the CNV 
map of Pinan cattle was constructed, and the character-
istics of genome CNV and individual inbreeding degree 
of Pinan cattle population were understood. Candidate 
genes that may be related to excellent traits such as high 
meat yield, good disease resistance and strong fecundity 
of Pinan cattle were screened. Further molecular experi-
mentation is warranted to confirm the functional roles 
of these genes, which could serve as molecular genetic 
markers for improved Chinese native cattle in the future.
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