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Abstract
Background  Growth traits are economically important traits in pig breeding. However, the genetic mechanism of 
growth traits is still unclear. Qinchuan Black (QCB) pigs are crossbred and produced by hybridizing Guanzhong Black 
(GZB) pigs and Large White (LW) pigs, its characteristics include fast growth and excellent meat quality. In this study, 
whole genome and transcriptome analyses revealed the candidate genes associated with growth traits in QCB pigs 
based on imputed low-coverage whole-genome resequencing data.

Results  In total, we used 197 low-depth whole-genome resequencing data with an average depth of 3.5X, and 
then the data were imputed to resequencing data using SWIM reference panel, the imputation accuracy parameters, 
allele frequency r2 and concordance rate were 0.86 and 95.83%, respectively. We used two methods to investigate 
the candidate genes affecting the growth traits of QCB pigs, a total of 371 PSGs were identified, which related to 
muscle tissue development, tissue development and system development. A total of 30,489,782 SNPs were retained. 
A GWAS of ten growth traits by using fixed and random model circulating probability unification (FarmCPU) model, 
was performed in QCB pigs. We discovered seven genome wide significant SNPs and eight genome wide suggestive 
significant SNPs associated with body weight at 2 months (2-BW), body length at 2 months (2-BL), body height at 
2 months (2-BH) and body height at 4 months (4-BH), and eighteen potential candidate genes were discovered. 
Transcriptomic data revealed that 18 differentially expression genes related to muscle and growth and development. 
Additionally, whole genome and transcriptome analyses found six genes (TENM3, CTNND2, RIMS1, PCDH7, ADGRL3 and 
CTNNA3) may affect the growth traits in Qinchuan Black pigs.

Conclusion  Our study shows that more candidate genes associated with pig growth traits can be identified by 
whole genome and transcriptome analyses. We found that six genes may be new key candidate genes affecting pig 
growth traits. In conclusion, this study elucidated the molecular genetic mechanisms of growth traits and identified 
new molecular breeding targets, offering a robust scientific basis for advancing breeding strategies and genetic 
investigations within this breed.

Keywords  Qinchuan black pig, Selection signal analysis, Genome-wide association studies, Differential expression 
analysis, Growth traits, Candidate genes
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Introduction
Pigs these days are significant agricultural animals with 
a long history of domestication and economic impor-
tance [1]. From early domestication to modern breeding 
practices, artificial selection for agricultural economic 
traits has shaped the genomes of domestic pigs and led 
to many breeds and populations worldwide [2]. Growth 
traits such as live backfat thickness (LBT), average daily 
gain (ADG), body length (BL), body height (BH), chest 
circumference (CC), and tube circumference (TC) play a 
crucial role in porcine breeding programs and overall pig 
production [3, 4]. The body character index is commonly 
used as a direct indicator of production in pig breeding 
[5]. Various factors, including genetic and non-genetic 
influences such as pig breed, feeding behavior, and nutri-
tion levels, impact the growth traits of pigs [6, 7].

While traditional breeding methods have improved 
pig growth performance over the years, growth traits are 
complex quantitative traits controlled by a combination 
of major and minor genes, making conventional breed-
ing methods limited in their effectiveness. With advance-
ments in molecular markers and the completion of the 
pig genome sequence, molecular breeding has emerged 
as an efficient approach to enhancing growth traits. As of 
August 25, 2024, the pig QTL database (​h​t​t​p​​s​:​/​​/​w​w​w​​.​a​​n​
i​m​​a​l​g​​e​n​o​m​​e​.​​o​r​g​​/​c​g​​i​-​b​i​​n​/​​Q​T​L​d​b​/​S​S​/​s​u​m​m​a​r​y) has ​d​o​c​u​
m​e​n​t​e​d 4,087 QTL related to growth traits. These discov-
eries have contributed a significant number of molecular 
markers to porcine breeding for growth traits.

The advancement of sequencing technology, coupled 
with its declining costs, has enabled numerous research-
ers to utilize low-depth resequencing for conducting rel-
evant studies [8]. However, the sequencing quality is too 
low. Genotype imputation is a highly effective approach 
in genome-wide association studies (GWAS) [9], widely 
employed in human genetics research [10, 11]. This 
method enhances the quantity and density of SNPs avail-
able for association analysis, thereby enabling the identi-
fication of novel candidate genes. In addition, selection 
signatures in the genome have been used frequently to 
understand the relationships between genotype and phe-
notype in pigs. For instance, strong selection signatures 
were found at three loci which were related to morpho-
logical changes in the domestic pigs using whole-genome 
resequencing [12]; evidence of artificial selection of lean 
muscle mass, fertility and immunization traits were 
revealed in Duroc pigs [13].

Recently, with the development of high-throughput 
sequencing technology, the genome and transcriptome 
technologies has become an important means and rou-
tine to analyze the molecular mechanism of agricultural 
complex traits in farm animals [14]. In this study, whole 
genome and transcriptome analyses identified candidate 
genes associated with growth traits in QCB pigs based 

on imputed low-depth whole-genome resequencing data. 
This result will understand the QCB pig’s genome char-
acteristics, and provide a molecular basis for accelerating 
the breeding process of QCB pigs.

Materials and methods
Ethics statement
The study was approved by the Institutional Animal 
Care and Use Committee of Northwest A&F Univer-
sity (Yangling, China), and all operations were carried 
out according to the university’s guidelines for animal 
research. All pigs were cared for and slaughtered accord-
ing to the guidelines of the Institutional Animal Care and 
Use Committee of Northwest A&F University (Yangling, 
China) [15].

Animals and phenotype
The pig population at the core breeding farm of North-
west A&F University (Yangling, China) was reared uni-
formly. Breeding information and lineage records of 
Qinchuan black (QCB) pigs from 2022 to 2023 were col-
lected. A total of 197 QCB pigs with complete pedigrees 
were included in the study. We collected ten growth 
traits, mainly include two months and four months body 
weight, body length, body height, chest circumference, 
and tube circumference. Body length was measured 
from the midpoint of the ear to the tail, body height from 
shoulder to ground, chest circumference by circling the 
trailing edge of the scapula, and tube circumference at 
the upper third of the anterior tube of the pig. All mea-
surements were taken on a flat surface with the pig in a 
natural standing posture.

Estimation of genetic parameters and genetic correlations
The variance and covariance components, along with 
genetic correlations for the ten traits, were estimated 
using ASREML (version 4.10) [16] software. The follow-
ing animal model was applied:

	 Y = Xb + Z1a + Z2c + e

In the model, Y represents the vector of phenotypic 
records; b denotes the vector of fixed effects, including 
farrowing year, farrowing season, gender, and parity; X is 
the design matrix linking b to Y; a is the vector of additive 
genetic effects; c is the vector of maternal effects; e is the 
vector of random residual effects; X, Z1, and Z2 are the 
corresponding incidence matrices for fixed effects, addi-
tive genetic effects, and maternal effects, respectively.

The genetic correlation was calculated as follows:

	
r12 = cov (a1, a2)

σa1σa2

https://www.animalgenome.org/cgi-bin/QTLdb/SS/summary
https://www.animalgenome.org/cgi-bin/QTLdb/SS/summary
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r12 is the genetic correlation between trait 1 and trait 2; 
a1 and a2 represent the additive genetic values of trait 
1 and trait 2 for the same individuals; cov (a1, a2) is the 
genetic covariance between the two traits; σa1, and σa2 
are the genetic standard deviations of trait 1 and trait 2, 
respectively.

Data set collection and generation
In this study, we collected ten growth traits data and ear 
tissue samples from third-generation 197 QCB pigs at 
the QCB Pig Breeding Farm of the Animal Husbandry 
Teaching and Experiment Base of Northwest A&F Uni-
versity, and extracted genomic DNA from these samples. 
The concentration and quality of the extracted DNA 
samples were measured using a NanoDrop2000 spec-
trophotometer, with the DNA quality range requiring 
an A260/280 ratio between 1.7 and 2.2, an A260/230 
ratio between 1.8 and 2.2, and ensuring a DNA concen-
tration greater than 50 ng/µL. This study was based on 
low-depth whole-genome resequencing conducted by 
BGI Genomics (Shenzhen) using their DNB sequencing 
platform, with a sequencing depth of approximately 3.5X 
for each individual. Furthermore, a total of 212 WGS-seq 
samples were collected from our previous sequenced and 
NCBI Sequence Read Archive, which including 11 wild 
boar breeds and 31 domestic pig breeds (Table S1).

Genotype imputation pipeline
Swine Imputation (SWIM 1.0) [17] reference panel is 
the reference panel for pigs, including 30,489,782 single 
nucleotide polymorphisms (SNPs) and 4,125,579 inser-
tions/deletions (indels). Due to the average sequencing 
depth being only 3.5X, we employed the SWIM refer-
ence panel with default parameter settings to perform 
genotype imputation, bridging the target and reference 
genotype data. We extracted 3.5X from 97 F2 generation 
QCB pigs with 10X high-depth resequencing to evaluate 
the accuracy before and after imputation. Additionally, 
because the common low-depth sequencing is 0.5X-1X, 
we also extracted 1X from the 97 F2 generation QCB 
pigs with 10X high-depth resequencing to evaluate the 
accuracy before and after imputation. We performed 
genotype imputation on the extracted 1X and 3.5X bam 
files using the SWIM reference panel via the QUILT 
(v1.0.5) [18] software, which the parameters are “--output 
dir --chr --region start --region end --buffer --bam list 
--sample names_file --output_filename”. We evaluated 
imputation accuracy using two widely accepted metrics: 
concordance rate, non-reference concordance rate, and 
r². The concordance rate is calculated as the percent-
age of individuals whose imputed genotypes match their 
observed genotypes. The r² metric represents the squared 
Pearson correlation coefficient between the observed 
and imputed genotypes. We calculated these metrics on 

a per-SNP basis and then averaged them across SNPs 
within minor allele frequency (MAF) bins or across the 
entire genome. After imputing, the 1X and 3.5X mean 
allelic concordance rate and squared correlation (r2) was 
95.55%, 95.83%, 0.85 and 0.86, respectively. The results 
showed a significant improvement in the accuracy of the 
3.5X after imputation compared to the 1X.

Genotype imputation of low depth sequencing data
The quality control for the 197 low-depth resequenc-
ing data was performed using fastp (v.0.20.1) [19] with 
default settings. The high-quality reads were aligned to 
the Sscrofa11.1 reference sequence using the Burrows-
Wheeler Aligner (BWA) software (v.0.7.8) with the 
parameters of “mem-t 10-k 32-M”. We then converted 
the mapping reads into bam file and sorted the files using 
SAMtools (v.1.10) [20]. Then we used the SWIM refer-
ence panel to impute the 197 low-depth resequencing 
individuals via the QUILT (v1.0.5) software. After impu-
tation, the VCF files of the 18 autosomes generated were 
merged for subsequent analysis.

Variation calling and annotation
The quality control for the 212 WGS-seq data was per-
formed using fastp (v.0.20.1) [19] with default settings. 
The high-quality reads were aligned to the Sscrofa11.1 
reference sequence using the Burrows-Wheeler Aligner 
(BWA) software (v.0.7.8) with the parameters of “mem-t 
10-k 32-M”. We then converted the mapping reads into 
bam file and sorted the files using SAMtools (v.1.10) [20]. 
Duplicates were removed by the MarkDuplicates mod-
ule in GATK (v.4.2.6.1) [21]. SNPs were called from the 
bam files by the GATK HaplotypeCaller module with 
the GATK best-practice recommendations. Raw GVCFs 
with the samples called individually were merged using 
the GenomicsDBImport and converted for SNPs into 
variants files using GenotypeGVCFs. We then selected 
the candidate SNPs created the selected SNPs data using 
the GATK module SelectVariants, which generated gen-
otype calls in Variant Call Formats (VCF). To exclude 
possible false positives, we filtered the variants accord-
ing to the strict filter criteria. High-quality SNPs were 
identified according to the filtering criteria: QUAL > 30.0, 
OD > 5.0, FS < 60.0, MQ > 40.0, MQRankSum > − 12.5, 
ReadPosRankSum > − 8.075.

Population genetic structure analysis and linkage 
disequilibrium
We used Bcftools (v.1.17) [19] to merge the two VCF files 
to produce a single VCF file that had 410 samples. The 
VCF file was quality controlled using PLINK (v.1.90) [22], 
and Minimal Allele Frequencies (MAF) less than 0.01, 
genotype detection rate less than 0.1, and Hardy-Wein-
berg equilibrium (HWE) less than 0.001 were excluded. 
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PLINK (v.1.90) was used to calculate the average share 
allele distance matrix between individuals (--distance-
matrix). The result of tree construction was displayed 
using MEGA11 [23] and iTOL [24]. Population structure 
was conducted by the program ADMIXTURE (v.1.3.0) 
[25] with the default settings. To reveal the relationships 
among the Eurasian pigs, a principal component analy-
sis (PCA) was performed using PLINK (v.1.90) and plot-
ted by in-house R scripts. We examined the patterns of 
LD decay within each species or population by random 
selection of three individuals to avoid biases by difference 
in sample sizes and using the Vcftools v0.1.16 to extract 
individual data for LD analysis. Pairwise LD estimates 
were measured as parameter r2 with a maximum distance 
of 500 kb using the PopLDdecay v.3.4.1 [26].

Analysis of genome‑wide selective sweep regions
Selection signatures analysis was performed by con-
structing genetic variation databases of QCB pigs and 
LW pigs with quality control using the parameters --geno 
0.1 --maf 0.05 --hwe 0.001. To identify candidate regions 
under positive selection in QCB pigs, we initially com-
puted fixation statistics (Fst) and population nucleotide 
diversity ratio (θπ) after a specified procedure. Using 
VCFtools (v.0.1.16), we calculated average Fst and θπ in 
50 kb sliding windows with a 25 kb step size, comparing 
QCB pigs with two control breeds. The top 5% ranked 
windows based on Fst and θπ scores were identified as 
candidate selective regions. Subsequently, after anno-
tation with Annovar software, common genes selected 
through both analyses were considered as positively 
selected genes.

Single-locus GWAS
The imputation VCF file of 197 individuals were quality 
controlled for all individual genotype data using PLINK 
v1.90 with the quality control parameters: --geno 0.05 
--maf 0.05 --hwe 1e-6, and the --indep --pairwise 100 10 
0.5 parameter, LD trimming was performed, and finally 
18 autosomes totaling 540,759 SNPs were retained for 
GWAS. We used FarmCPU model for GWAS in GAPIT3 
[27]. FarmCPU is a statistical model used for GWAS. In 
the FarmCPU model, fixed effects are typically used to 
describe the impact of known, controllable genetic varia-
tions on phenotypes, while random effects are employed 
to capture the influence of unknown, uncontrollable 
genetic variations on phenotypes. By integrating fixed 
and random effects, the FarmCPU model can more accu-
rately identify genetic variations associated with pheno-
types and reduce the occurrence of false positive results. 
In this study, candidate SNPs were identified using 
the Bonferroni correction method, with P < 1/N and 
P < 0.05/N representing the genome-wide suggestive and 
significance thresholds, respectively. Visualization of the 

results, including Manhattan plots and Q-Q plots, was 
performed using the R CMplot package (version 4.2.0) 
[28].

Multi-locus GWAS
FASTmrEMMA multi-locus GWAS approaches were 
employed using the R package “mrMLM”. The multi-
locus approach is divided into two stages. In the first step, 
SNPs effects were treated as random; a small number of 
SNPs were selected based on the prior premise that most 
SNPs should have no effect on the quantitative traits. In 
the second step, all selected SNPs in the first step were 
placed into multi-locus model. Among the multi-locus 
GWAS approach, all parameters were set at default val-
ues except for the critical P value in the first step. In the 
first step, the critical P value was set at 0.005 for FAST-
mrEMMA [29]. It is worth mentioning that the critical 
LOD scores of all models are set to 3.0 in the second step.

Candidate gene search
Candidate genes were identified using BedTools [30] by 
scanning regions 0.5  Mb upstream and downstream of 
the significant SNPs, aligned to the pig reference genome.

Differential genes expressed analysis
In this study, transcriptome data from six QCB pig and 
six small pig longissimus dorsi muscles, the small pig lon-
gissimus dorsi muscles were downloaded from the NCBI 
SRA: PRJNA309102 and PRJNA716984 and analyzed 
for differentially expressed genes. To process transcrip-
tome sequence data, fastp (v0.23.2) was used for quality 
filtering of the sequencing reads [19]. HISAT2 (v2.2.1) 
was used for a fast and accurate sequence aligned to the 
Sscrofa11.1 reference genome [31]. Finally, a transcrip-
tome gene expression count file was converted using 
Samtools (v1.15.1) and featureCounts (v2.0.3) to obtain 
the gene expression profile in each sample [20]. And dif-
ferentially expressed genes were identified by DESeq2 
(v.1.20) [32]. Genes with a corrected p-value < 0.05 and 
fold changes > 2 or < 0.5 were assigned as significantly dif-
ferential expressed.

Functional enrichment analyses
To enhance understanding of the biological processes 
and pathways related to the candidate genes, GO terms 
enrichment analyses and KEGG pathway analysis were 
conducted using g: Profiler. Terms with a P-value less 
than 0.05 were deemed statistically significant [33].

Results
Descriptive statistics and genetic parameters estimations
The maximum, minimum, mean, standard deviation, 
coefficient of variation (CV), and heritability of the ten 
growth traits are shown in Table  1. The mean of body 
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weight at 2 months (2-BW), body length at 2 months 
(2-BL), body height at 2 months (2-BH), chest circum-
ference at 2 months (2-CC), and tube circumference at 
2 months (2-TC) and body weight at 4 months (4-BW), 
body length at 4 months (4-BL), body height at 4 months 
(4-BH), chest circumference at 4 months (4-CC), and 
tube circumference at 4 months (4-TC) were 10.67, 50.18, 
32.58,48.95, 9.67, 26.74, 64.22, 44.07, 65.63 and 11.91, 
respectively. Except for 2-BW and 4-BW with a CV of 
20%, the CV of other growth parameters (2-BL, 2-BH, 
2-CC, 2-TC, 4-BL, 4-BH, 4-CC, 4-TC) were close to 
10%. The heritability of growth parameters ranged from 
0.0293 to 0.5049, among which 4-CC had the lowest heri-
tability of 0.0293 and 2-CC had the greatest heritability of 
0.5049. As can be seen, these traits are all medium-her-
itability traits. The phenotypic and genetic correlations 

of the growth parameters are presented in Fig. 1. For two 
months, the results showed a significant positive corre-
lation between BW and BL, BW and BH, BW and CC, 
BW and TC, BL and BH, BL and CC, BL and TC, BH 
and CC, BH and TC and CC and TC (Fig. 1A). For four 
months, the results showed a significant positive correla-
tion between BW and BL, BW and BH, BW and CC, BW 
and TC, BL and CC, BL and TC, BH and CC, BH and TC 
and CC and TC, whereas a significant negative correla-
tion was observed between BL and BH, BH and CC, and 
CC and TC (Fig. 1B).

Accuracy of genotype imputation
In this study, we extracted 1X and 3.5X from 97 F2 gen-
eration QCB pigs with 10X high-depth resequencing 
to evaluate the accuracy before and after imputation. 

Table 1  Descriptive statistics of growth traits
Traits Numbers Max Min Mean SD CV1 (%) Heritability
2-BW2(kg) 460 16.65 4.05 10.67 2.19 20.52% 0.43
2-BL3(cm) 460 63.00 35.50 50.18 4.55 9.07% 0.29
2-BH4(cm) 460 39.50 25.00 32.58 2.65 8.13% 0.24
2-CC5(cm) 460 60.50 37.00 48.95 4.07 8.31% 0.50
2-TC6(cm) 460 11.50 7.00 9.67 0.68 7.03% 0.25
4-BW7(kg) 282 43.35 13.40 26.74 5.40 20.19% 0.43
4-BL8(cm) 282 83.50 48.00 64.22 5.64 8.78% 0.25
4-BH9(cm) 282 51.00 35.30 44.07 3.25 7.37% 0.03
4-CC10(cm) 282 78.50 52.10 65.63 4.79 7.30% 0.03
4-TC11(cm) 282 14.00 10.00 11.91 0.77 6.47% 0.39
1CV: coefficient of variation; 22-BW: body weight at 2 months, 32-BL = body length at 2 months, 42-BH = body height at 2 months; 52-CC = chest circumference at 2 
months; 62-TC = tube circumference at 2 months; 74-BW = body weight at 4 months; 84-BL = body length at 4 months; 94-BH = body height at 4 months; 104-CC = chest 
circumference at 4 months; 114-TC = tube circumference at 4 months

Fig. 1  Phenotypic and genetic correlations between growth traits in Qinchuan black (QCB) pigs. (A) Phenotypic and genetic correlations between 
growth traits in QCB pigs at two months. (B) Phenotypic and genetic correlations between growth traits in QCB pigs at four months. The upper triangle 
represents genetic correlation, the lower triangle represents phenotypic correlation, and the numbers in the ellipse represent specific correlation coef-
ficients. Body weight (BW), Body length (BL), Body height (BH), Chest circumference (CC), and Tube circumference (TC)
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Through evaluation, we found that the 1X and 3.5X mean 
allelic concordance rate and squared correlation (r2) was 
60.85%, 83.96%, 0.13 and 0.52, respectively. After imputed 
by SWIM, the 1X and 3.5X mean allelic concordance rate 
and squared correlation (r2) was 95.55%, 95.83%, 0.85 and 
0.86, respectively (Fig. S1).

Population genetic structure and linkage disequilibrium
To assess the population structure and linkage disequi-
librium of QCB pigs, we used the hard quality control 
criteria described in methods. After quality control, 
5,034,676 SNPs were used to conduct population struc-
ture and linkage disequilibrium analyses. We examined 
the NJ tree of Asian pigs and European pigs and found 
that the two populations formed their own separate clus-
ters. Meanwhile, we found that QCB pigs were located 
in European pig clusters (Fig.  2A). Then, we performed 
PCA analysis and found that QCB pigs, Asian pigs and 
European pigs were effectively separated. PC1 and PC2 
explained approximately 24.4292% and 14.8725% of the 
total genetic variation, respectively (Fig. 2B). The breeds 
also indicated clearly separated clusters according to 
their geographical locations (Fig. 2D). Moreover, through 
analysis of LD, we discovered that a lower LD decay in 
QCB pigs than LW pigs, indicating that the selection 
caused the enhancement of LD degree in QCB pigs 
(Fig. 2C).

Identification of selection signatures in QCB
To identify gene loci that have undergone strong selec-
tion signatures during the domestication process shared 
by both QCB Pigs and LW Pigs. Two methods for 
genomic selection signature detection, including popu-
lation differentiation coefficient (Fst) and polymorphism 
levels statistic (θπ) were performed to detect the genomic 
regions under selection in QCB pigs by comparing with 
LW. In this study, only a region that was within the top 
5% of the Fst and θπ ratio could be identified as a selected 
region. A total of 7331 regions were identified in the top 
5% of the two statistics. The Manhattan plot of the two 
statistics across autosomes is shown in Fig. 3A, B. After 
combining the two statistics, 371 genes were identified 
in the selected regions (Fig.  3C). To assess the function 
of the positive selection genes (PSGs), GO terms were 
determined using g: profiler with a corrected P-value of 
less than 0.05 as significant. 371 positive selection genes 
(PSGs) under selection were utilized for the GO analy-
sis. The results revealed a significant enrichment of GO 
pathways such as muscle tissue development (EDNRA, 
SGCD), system development (SOX5, CTNND2, TENM3), 
and tissue development (EDNRA, SOX5, MAFB) etc. 
(Fig. 3D).

SNPs detected by single-locus GWAS
Phenotype data on growth traits of 197 were selected 
of 460 QCB pigs, The 197 low-depth whole-genome 

Fig. 2  Phylogenetic relationship and population structure of QCB pigs and other six breeds tested in this study. (A) Neighbor-joining phylogenetic tree 
constructed from SNP data among seven populations. (B) PCA plot of population structure showing the top two principal components. (C) ADMIXTURE 
analysis with seven populations (K = 2-3). (D) Represents the linkage disequilibrium decay plot for nine pig breeds. Asian domestic (AD), Asian wild (AW), 
Guanzhong black (GZB), European domestic (ED), European wild (EW), Large white (LW), and Qinchuan black (QCB)
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resequencing data were imputed to resequencing data 
using SWIM reference panel imputation databases. Fig-
ure 4 shows the results of Manhattan plots and Q-Q plots 
after imputation using SWIM reference panel imputa-
tion databases. GWAS was performed on 197 individu-
als using the FarmCPU model to identify candidate genes 
for growth traits in QCB pigs. The results show that 1, 

4 and 2 genome-wide significant SNPs [P < 9.25 × 10− 8

(0.05/540,759)] for 2-BL, 2-BH and 4-BH are identified, 
respectively (Table  2). Notably, 11 genes are identified 
as related to growth, including NPPC, HTR2B, PDE6D, 
DIS3L2, MCUR1, TBC1D7, RPS18, COL21A1, CTNND2, 
DTNBP1 and NEK10. According to the suggestive sig-
nificance threshold [P < 1.85 × 10− 6(1/540,759)], 2, 3, 

Fig. 3  Genome-wide distribution of selection signatures detected by Fst, θπ on 18 chromosomes from top to bottom. (A) Represents the Fst. (B) repre-
sents the θπ between QCB pigs and LW pigs. (C) Represent the gene number distribution of candidate signal intervals between QCB pigs and LW pigs 
populations screened by two methods. (D) Represents GO enrichment analysis of some significantly enriched genes in the selected region of QCB pigs
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1, and 2 SNPs were found to be associated with 2-BW, 
2-BL, 2-BH, and 4-BH, respectively (Table  3). And 7 
genes were identified as related to growth, including 
RIMS, KHDRBS3, TMED5, TENM3, ENPP1, ARG1 and 

PGM2L1. While there were no genome-wide significant 
SNPs for the six growth traits including 2-CC, 2-TC, 
4-BW, 4-BL, 4-CC, 4-TC (Fig. S2). In this study, candi-
date genes were found by searching 0.5 Mb upstream and 

Fig. 4  Manhattan and Q-Q plots of single-Locus GWAS based on imputation using SWIM reference panel for four growth traits. (A, C, E, G) Manhattan 
plots for 2-BW, 2-BL, 2-BH, 4-BH. (B, D, F, H) Quantitative-Quantitative (Q-Q) plots for 2-BW, 2-BL, 2-BH, 4-BH. The solid line represents the genome-wide 
significance level (9.25 × 10− 8); The dashed line represents the suggestive significance. Abbreviations: 2-BW = body weight at 2 months, 2-BL = body 
length at 2 months, 2-BH = body height at 2 months, and 4-BH = body height at 4 months
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downstream of the significant and suggestive significant 
SNPs using GWAS based on imputed databases (Table 
S2).

SNPs detected by multi-locus GWAS
A total of 123 significant SNPs (LOD score > 3) were 
detected (Table 4; Fig. 5, Fig. S3, Table S3) by multi-locus 
method, and the results show that 12, 17, 18, 18, 15, 12, 
7, 8, 5 and 11 significant SNPs (LOD score > 3) for 2-BW, 
2-BL, 2-BH 2-CC, 2-TC, 4-BW, 4-BL, 4-BH, 4-CC, and 
4-TC are identified, respectively. Interestingly, the SNP 
rs1154491 located on SSC 16 was detected by all two 
methods. And CTNND2 gene was all identified as related 
to 2-BH.

Differential expressed gene analysis
A total of 14,541 genes were obtained from RNA-seq 
analysis (Fig.  6A). After quality control, we found 1137 
DEGs between control and treatment, of which 307 
genes were up-regulated and 830 genes were down-reg-
ulated (Fig. 6A). A clear distinction between control and 

treatment comparisons was shown by clustering analy-
sis according to the DEGs (Fig. 6B). For the 1137 DEGs 
between control and treatment, the genes were mapped 
to GO and KEGG. The significant biological process 
(P < 0.05) that may be involved in growth were the muscle 
tissue development, muscle organ development, develop-
ment growth etc. (Fig. 6C, Table S4). The significant path-
ways (P < 0.05) that may be involved in growth were the 
MAPK, cAMP, Calcium, AMPK pathways etc. (Fig.  6D, 
Table S5).

Screening of candidate genes
Among the candidate genes identified by selection sig-
natures, GWAS and transcriptome analyses (Fig.  7A), 
the TENM3 gene were overlapped between the can-
didate gene from GWAS, PSGs and DEGs (Fig. S4A), 
the CTNNA2 gene was overlapped between the candi-
date gene from GWAS and PSGs, the RIMS1 gene was 
overlapped between the candidate gene from GWAS 
and DEGs (Fig.  7B, C), and the PCDH7, CTNNA3 and 
gene were overlapped between the candidate gene from 
PEGs and DEGs (Fig. 7D, E, Fig. S4B). Genotype analysis 
revealed that the genotype at the gene loci of some QCB 
pigs were consistent with those of LW pigs and GZB pigs. 
The PigBiobank analyses further validated that TENM3, 
CTNNA2, RIMS1, PCDH7, ADGRL3 and CTNNA3 gene 
are associated with growth traits (Fig. 7F-K).

Discussion
Growth traits such as BW, BL, BH, CC, and TC are closely 
related to pig growth and are important quantitative indi-
cators of pig growth. It has been reported that the herita-
bility of growth traits is in the range of 0.13-0.73 [34, 35], 
which indicates a medium heritability. This is consistent 
with the results of our study, in which the heritability of 
growth parameters (BW, BL, TC) ranged from 0.2390 to 
0.5049, However, the heritability of 4-BH and 4-CC was 
different. In our study, the heritability of 4-BH and 4-CC 
was 0.0316 and 0.0293, this might be due to its growth 
not being stable during the breeding process in this study. 
In addition, genetic correlations between individual traits 
were analyzed, demonstrating significant positive rela-
tionships among BW, BL, BH, CC, and TC at two and 
four months. Except for 4-BL and 4-BH, 4-BH and 4-CC 
and 4-CC and 4-TC with negative correlation, the corre-
lation of other growth parameters ranging from 0.1507 to 
0.9208, this might be due to the external environmental 
factors and human factors have a certain impact on the 
growth and development of QCB pigs. This suggests that 
fewer traits can be selected to simplify breeding work.

With the rapid development of sequencing technolo-
gies, reduced costs, and increasing demand for high-den-
sity markers, genotype imputation has become a widely 
utilized tool in recent years. Its accuracy depends on the 

Table 2  Genome-wide significant SNPs for growth traits
Traits SNP1 Chr2 Position P- Value Candidate 

Gene
2-BL3 15: 

132,315,138
15 132,315,138 1.67E-10 NPPC 

HTR2B 
PDE6D 
DIS3L2

2-BH4 5: 70,115,422 5 70,115,422 6.16E-09 -
2-BH 7: 9,879,713 7 9,879,713 6.70E-08 MCUR1 

TBC1D7
2-BH 7: 29,282,528 7 29,282,528 8.35E-08 RPS18 

COL21A1
2-BH 16: 1,154,491 16 1,154,491 3.07E-08 CTNND2
4-BH5 7: 11,211,250 7 11,211,250 5.28E-12 DTNBP1
4-BH 13: 13,335,332 13 13,335,332 7.36E-08 NEK10
1SNP: single-nucleotide polymorphism; 2Chr: chromosome; 32-BL: body length 
at 2 months; 42-BH: body height at 2 months; 54-BH: body height at 4 months

Table 3  Genome-wide suggestive significant SNPs for growth 
traits
Traits SNP1 Chr2 Position P- Value Candidate 

Gene
2-BW3 15: 

129,809,430
15 129,809,430 1.82E-06 -

2-BW 15: 
129,888,533

15 129,888,533 5.48E-07 -

2-BL4 1: 52,055,241 1 52,055,241 1.79E-06 RIMS1
2-BL 4: 5,817,122 4 5,817,122 1.69E-06 KHDRBS3
2-BL 4: 124,246,502 4 124,246,502 8.59E-07 TMED5
2-BH5 15: 41,506,661 15 41,506,661 1.24E-07 TENM3
4-BH6 1: 31,679,073 1 31,679,073 8.22E-07 ENPP1 ARG1
4-BH 9: 8,996,518 9 8,996,518 6.94E-07 PGM2L1
1SNP: single-nucleotide polymorphism; 2Chr: chromosome; 32-BW: body 
wength at 2 months; 42-BL: body length at 2 months; 52-BH: body height at 2 
months; 64-BH: body height at 4 months
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Traits SNP1 Chr2 Position LOD score r2(%)3 Candidate Gene
2-BW4 1:6396933 1 6,396,933 7.29 4.25 AGPAT4
2-BW 1:71445572 1 71,445,572 4.18 2.01 LIN28B
2-BW 4:119264884 4 119,264,884 3.64 1.10 SNX7
2-BW 4:124914137 4 124,914,137 6.74 5.41 TGFBR3
2-BW 6:4331800 6 4,331,800 6.76 5.45 KCNG4
2-BW 7:19094139 7 19,094,139 6.10 5.22 KIAA0319
2-BW 11:70447343 11 70,447,343 3.90 1.26 FGF14
2-BW 13:103784734 13 103,784,734 8.14 4.70 -
2-BW 14:136754144 14 136,754,144 3.83 2.43 FAM196A
2-BW 15:132340482 15 132,340,482 7.42 6.18 NPPC
2-BW 16:29188289 16 29,188,289 4.46 3.31 FGF10
2-BW 17:59259520 17 59,259,520 3.15 1.67 CTSZ
2-BL5 4:7396038 4 7,396,038 3.07 1.06 ZFAT
2-BL 4:120486137 4 120,486,137 6.20 2.74 PTBP2
2-BL 4:121538115 4 121,538,115 6.29 2.39 PTBP2
2-BL 5:2278258 5 2,278,258 4.15 1.13 TBC1D22A
2-BL 6:3535262 6 3,535,262 10.11 5.91 IRF8
2-BL 7:17568079 7 17,568,079 5.72 2.15 PRL
2-BL 9:138483163 9 138,483,163 7.30 3.29 -
2-BL 10:68503232 10 68,503,232 8.75 4.22 WDR37
2-BL 11:10434854 11 10,434,854 4.46 1.34 RFC3
2-BL 11:19433095 11 19,433,095 4.15 1.45 MED4
2-BL 11:46552378 11 46,552,378 7.72 2.79 KLF12
2-BL 12:54143906 12 54,143,906 7.20 2.88 USP43
2-BL 13:85852217 13 85,852,217 6.70 2.85 -
2-BL 14:105024482 14 105,024,482 7.08 2.79 SLC35G1
2-BL 15:132873410 15 132,873,410 6.48 2.74 NPPC
2-BL 18:31038583 18 31,038,583 3.51 1.16 FOXP2
2-BL 18:35051931 18 35,051,931 7.06 3.34 IMMP2L
2-BH6 1:250878677 1 250,878,677 6.81 2.67 PTPN3
2-BH 1:273386165 1 273,386,165 11.26 4.79 VAV2
2-BH 2:10667280 2 10,667,280 4.89 1.88 DDB1
2-BH 2:36547982 2 36,547,982 7.01 1.82 GAS2
2-BH 2:132847827 2 132,847,827 3.67 1.22 CHSY3
2-BH 5:2545703 5 2,545,703 5.08 2.25 CERK
2-BH 5:99882722 5 99,882,722 4.26 1.79 ACSS3
2-BH 7:5179968 7 5,179,968 6.26 2.32 BMP6
2-BH 7:24919117 7 24,919,117 3.35 1.43 BMP5
2-BH 11:10434854 11 10,434,854 6.18 1.71 RFC3
2-BH 12:44345838 12 44,345,838 3.28 1.54 FOXN1
2-BH 13:25791420 13 25,791,420 7.23 3.53 KLHL40
2-BH 14:54246154 14 54,246,154 5.78 2.69 ACTN2
2-BH 14:96198734 14 96,198,734 7.78 4.18 PCDH15
2-BH 16:797534 16 797,534 7.28 4.40 CTNND2
2-BH 16:54503683 16 54,503,683 4.80 1.31 SLIT3
2-BH 17:811086 17 811,086 4.92 2.33 PRAG1
2-BH 17:42516390 17 42,516,390 4.44 1.99 DHX35
4-BH7 1:19829505 1 19,829,505 3.27 1.73 FBXO30
4-BH 1:38953464 1 38,953,464 7.15 6.34 TRDN
4-BH 2:9782979 2 9,782,979 6.38 6.14 FADS3
4-BH 2:72348683 2 72,348,683 4.29 3.15 INSR
4-BH 4:122434064 4 122,434,064 4.49 7.02 SLC44A3
4-BH 7:15360062 7 15,360,062 6.96 6.86 MBOAT1

Table 4  Description of significant SNPs identified by multi-locus method as associated with growth traits
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density of target SNPs, the platforms used for imputa-
tion, and the software employed [36]. Nowadays, there 
are increasing numbers of large reference panels used 
for effective phasing and imputation of whole-genome 
microarray chips and low-coverage sequencing data, 

such as the Pig Haplotype Reference Panel (PHARP) 
database and the Swine Reference [18] Haplotype Panel 
(SWIM) [17, 37]. Moreover, various genotype imputa-
tion software options are available, such as Beagle [38], 
PLINK [22], IMPUTE2 [9], Shapeit4 [39], STITCH [18] 

Fig. 5  Manhattan plots of multi-Locus GWAS based on imputation using SWIM reference panel for four growth traits. (A, B, C, D) Manhattan plots for 
2-BW, 2-BL, 2-BH, 4-BH. Manhattan plots indicate LOD scores for genome-wide SNPs (y-axis) plotted against their respective positions on each chromo-
some (x-axis), and the horizontal lines indicate the thresholds for significance (LOD score = 3). Abbreviations: 2-BW = body weight at 2 months, 2-BL = body 
length at 2 months, 2-BH = body height at 2 months, and 4-BH = body height at 4 months

 

Traits SNP1 Chr2 Position LOD score r2(%)3 Candidate Gene
4-BH 9:136718449 9 136,718,449 4.52 6.49 GRB10
4-BH 12:45097165 12 45,097,165 6.70 5.65 PHF12
1SNP: single-nucleotide polymorphism; 2Chr: chromosome; 32-BW: body weight at 2 months; 42-BL: body length at 2 months; 52-BH: body height at 2 months; 64-BH: 
body height at 4 months

Table 4  (continued) 
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and QUILT [40]. Teng et al. [14] leveraging a multibreed 
pig genomics reference panel (PGRP) consisting of 1,602 
WGS samples, imputed genotypes of samples with an 
imputation accuracy of 94% (concordance rate) and 0.82 
(genotype correlation, r2). In this study, we leveraged a 
reference panel of SWIM, imputed genotypes of samples 
with an imputation accuracy of 95.83% (concordance 
rate) and 0.86 (genotype correlation, r2), prove that our 
results are reliable. Additionally, there are no resequenc-
ing individuals of QCB pigs and GZB pigs in the SWIM 
reference panel, there is still improvement in imputation 
accuracy.

Genetic structure within populations undergo changes 
during the breeding process, influenced by factors like 
natural selection and artificial breeding [41]. This result 
in a loss of genetic diversity within the population, high-
lighting the importance of researching population genetic 

structure using molecular marker techniques [42]. To 
better understand the characteristics of the germplasm 
in QCB pigs, we sequenced 197 unrelated QCB pigs and 
obtained the whole genome variations. Afterward, a total 
of 44 pig breeds (410 samples) were combined to analyze 
the population structure. Through NJ tree, PCA, and 
Admixture showed distinct lineages between Asian pigs 
and European pigs. And the QCB pigs were closer to the 
LW pigs. This is likely due to QCB pigs being in the early 
stages of breeding, with their genetic lineage and traits 
still evolving. LD analysis indicated that QCB pigs display 
a greater level of genetic diversity similar to other local 
breeds, such as hybrids sheep [41], Licha black pigs [43], 
and Beijing black pigs [44].

Selection signatures help to identify the genes that 
natural selection has shaped and molded adaptive traits 
in different species, thus improving the understanding of 

Fig. 6  Differentially expressed genes (DEGs) between Control and Treatment. (A) Control vs. Treatment volcano plot. (B) Control vs. Treatment heat map. 
(C) Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of the differentially expressed genes (DEGs) between the Control vs. Treat-
ment. (D) (KEGG) enrichment analysis of the differentially expressed genes (DEGs) between the Control vs. Treatment

 



Page 13 of 16Wang et al. BMC Genomics          (2025) 26:469 

biological evolution and adaptation. Whereas different 
detection methods may have different results, we usually 
use multiple methods to eliminate the probability of gen-
erating false positives, so as to detect regions under selec-
tion and screen for candidate genes associated with their 
traits. In this study, we used Fst and θπ two methods. Fst, 
which is based on population differentiation, measures 
the degree of differentiation between populations by 
analyzing allele frequencies of individual SNPs [45-47]. 
θπ, based on nucleotide diversity, estimates population 

differentiation by assessing the level of nucleotide diver-
sity. Previous studies by Pan et al. [48] and Xu et al. [49] 
utilized similar methods in small pig breeds and sheep 
breeds, respectively, to identify candidate genes associ-
ated with various phenotype such as pig conformation, 
milk production, ear size, and body conformation. To 
investigate the candidate genes affecting the growth traits 
of QCB pigs, a total of 371 PSGs were identified in the 
selected regions, respectively. Functional enrichment 
analysis revealed that these genes were related to muscle 

Fig. 7  Identification of the candidate genes. (A) Venn diagram of three methods to identify candidate genes. (B) The genotype of the CTNND2 gene. (C) 
The genotype of the RIMS1 gene. (D) The genotype of the PCDH7 gene. (E) The genotype of the CTNNA3 gene. (F) Phenome-wide association (PheWAS) 
analysis of TENM3 with the top 10 production traits. (G) Phenome-wide association (PheWAS) analysis of CTNND2 with the top 10 production traits. (H) 
Phenome-wide association (PheWAS) analysis of RIMS1 with the top 10 production traits. (I) Phenome-wide association (PheWAS) analysis of PCDH7 with 
the top 10 production traits. (J) Phenome-wide association (PheWAS) analysis of CTNNA3 with the top 9 production traits. (K) Phenome-wide association 
(PheWAS) analysis of ADGRL3 with the top 8 production traits
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tissue development, tissue development and system 
development.

The sequencing data of 197 QCB pigs were analyzed 
using the FarmCPU model for GWAS of 10 growth traits. 
The FarmCPU model has a faster computational speed, 
while being able to fully utilize the population genome 
information to reduce errors and improve accuracy. A 
total of 18 candidate genes were identified for the growth 
traits. Unfortunately, no potential SNP was identified 
for the other six growth traits, probably due to the small 
size of the population and the high number of missing 
phenotype data points. Despite its simplicity and speed, 
single-locus analysis makes a strong assumption that only 
one QTL has an effect. This is largely valid for polygenic 
traits, where QTLs other than the one being tested can 
be properly accounted for by the polygenic term. In this 
study, we used both the single-locus analysis and multi-
locus analysis to overcome some of the limitations in 
single-locus analysis. Standard multi-locus GWAS has 
two stages. In the first stage, a candidate subset of mark-
ers is selected through single-locus MLM. After this 
stage, putative markers are added to the model iteratively 
until a certain selection criterion is met [50]. Such multi-
locus model can reduce bias in the effect estimates and 
improve power to detect associations [51, 52]. By com-
bining both single-locus and multi-locus methods, we 
all found CTNND2 candidate gene that associated with 
growth trait. In general, our study demonstrated that 
improved efficiency and accuracy could be achieved by a 
combination of the single-locus and multi-locus GWAS 
for identification of growth-related QTLs in QCB pigs.

In recent years, the use of transcriptomic to identify 
differentially expressed genes affecting economically 
important traits has also become a mainstream approach. 
The longissimus dorsi muscle is closely related to the 
growth and development of animals. We collected QCB 
pig and small pig longissimus dorsi muscle s. To further 
explore the genes related to growth traits, a total of 1137 
DEGs were identified by differentially expressed gene 
analysis of RNA-seq data from control and treatment 
groups, including 307 up-regulated genes and 830 down-
regulated genes. A total of 18 DEGs were involved in the 
significantly enriched GO and KEGG pathways closely 
related to muscle and growth and development, in which 
five genes were overlapped between the candidate genes 
from GWAS, PSGs and DEGs: TENM3, RIMS1, PCDH7, 
ADGRL3 and CTNNA3.

The genome and transcriptome technologies could ana-
lyze the molecular mechanism of complex traits in pigs, 
which have advantages such as high resolution, good 
quantitation, and deep coverage. Liu et al. [53] integrative 
analysis of GWAS loci, eQTL and QTL demonstrated 
GALNT15/GALNTL2 and HTATIP2 as strong candidate 
genes for drip loss and pH drop from postmortem 45 min 

to 24  h, respectively. Ibragimov et al. [54] search for 
quantitative trait loci (QTL), candidate genes, and bio-
logical pathways associated with FE using both genotype 
and RNA-seq data. However, less studies have been con-
ducted to analyze the growth of pigs with genome and 
transcriptome data. In our study, these PSGs, GWAS and 
DEGs (TENM3, CTNND2, RIMS1, PCDH7, ADGRL3 
and CTNNA3) may affect the growth traits in QCB pigs. 
TENM3 gene encodes highly conserved type II trans-
membrane glycoprotein, and it has been proposed that 
mutations in this gene cause a slowed chondrogenesis 
and slow growth [55].CTNND2 gene belongs to the actin 
alpha interferon/intrinsic protein alpha interferon family, 
and this gene has been studied in pig body size and litter 
weight, which plays a key role in growth, development, 
and energy metabolism [5, 56]. RIMS1 is a member of the 
Ras gene superfamily and autosomal dominant conosone 
dystrophy 7 (CORD7) was originally associated with the 
RIMS1 gene [57]. PCDH7 belongs to the protocadherin 
gene family, and was performed for growth traits at each 
growth stage in Simmental beef cattle [58]. ADGRL3 is a 
member of the latrophilin subfamily that encodes G pro-
tein-coupled receptors (GPCRs), the gene was involved 
in cell differentiation and energy metabolism, which 
associated with growth, efficiency and carcass traits in 
Sant-Ynez sheep [59]. CTNNA3 is a key protein in epi-
thelial cell adhesion junction complexes, and CTNNA3 
mutation (g.2018018  A > G) was significantly associated 
with weight, height, body length and chest circumference 
in Hu sheep [60].

The primary limitation of this study lies in the breeding 
population is still in its early developmental stages. We 
plan to continue data collection in the future. To enhance 
the reliability of our findings, we employed multiple 
approaches to jointly identify candidate genes associated 
with growth traits.

Conclusion
In this study, population structure, selection signa-
tures and GWAS of QCB pigs were analyzed using the 
imputed low-depth whole-genome resequencing data 
for the first time. A total of six candidate genes (TENM3, 
CTNND2, RIMS1, PCDH7, ADGRL3 and CTNNA3) 
related to growth traits were identified in this study. Our 
findings will improve breeding, analyze the genetic basis 
of growth traits and provide a theoretical basis for accel-
erating the breeding of QCB pigs.
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