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Integrated analysis of transcriptome, small =

RNA, and degradome sequencing provides
insights into mango anthracnose resistance

Zongling Liu"%", Qiufei Ouyang', Sangui Yi?, Yuting Zhou?, Xiaona Xie'” and Zhengjie Zhu"

Abstract

Mango anthracnose is a major biotic stress that limits mango production worldwide. An integrated transcriptome,
small RNA (sRNA), and degradome sequencing analysis was conducted to determine the complex molecular mecha-
nisms of mango anthracnose resistance. The transcriptome sequencing of 12 samples from a mango anthracnose
resistant genotype under control and stress conditions on the 3rd and 5th day post inoculation identified 3,462

and 8,341 differentially expressed genes (DEGs), respectively, which were mainly involved in transcription factor
activity, defense response, an obsolete oxidation —reduction process, and flavonoid biosynthetic processes. The
SRNA sequencing of the samples identified 372 known and 104 novel miRNAs. A total of 81 differentially expressed
miRNAs were identified, of which three were differentially expressed at both the 3rd and 5th day post-inocula-

tion (dpi), including ath-MIR166e-p5_1ss15AC, mtr-miR156e, and csi-miR3954_L +1_2ss17CG21CT. According

to degradome sequencing, 2,274 targets were predicted for 341 miRNAs. The combined analysis of transcriptome
and sRNA sequencing identified 257 miRNA-mRNA interaction pairs. In these pairs, csi-miR3954_L +1_2ss17CG21CT
was up-regulated at both the 3rd and 5th dpi under stress, which could cleave multiple sites of an NAC gene
(LOC123212502) that was down-regulated under stress. Overall, these miRNAs and genes provide a molecular founda-
tion for the miRNA-mediated response to mango anthracnose stress and can be regarded as promising candidates
for mango improvement.
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Introduction
MicroRNA (miRNA) is a short, non-coding single single-
stranded RNA sequence that silences the complementary
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plant-derived miRNA can be transferred to pathogenic
fungi and then silence the virulence gene of fungi [7, 8].
Cotton can export miR166 and miR159 to Verticillium
dahliae hyphae by targeting the Clp-1 and HiC-15 genes
related to pathogenicity, respectively [9]. Compared with
other plant fungal diseases, the RNA silencing in mango
anthracnose has been less extensively studied.

Colletotrichum complexes that consist of several strains
pose a significant threat to mango, including Colletotri-
chum alienum, Colletotrichum fructicola, Colletotrichum
siamense, Colletotrichum tropicale, and Colletotrichum
asianum [14]. Colletotrichum siamense causes mango
anthracnose in China, Mexico, and Thailand [10-12]. It
infects the mango fruit before harvest or during the stor-
age period, causing massive yield losses and affecting
fruit quality. Black spots emerge and then enlarge and
fuse, followed by rotting. Synthetic pesticide applications
are currently used to prevent mango anthracnose [13].
However, the drug resistance of Colletotrichum com-
plexes has increased due to the long-term use of fungi-
cides, highlighting the need for environmentally friendly
and effective approaches to control mango anthracnose
[14, 15]. Recent studies have suggested that the over-
expression of miRNA precursors, which regulate the
expression of disease-resistance genes in plants through
the mechanism of RNA interference (RNAIi), can effec-
tively control plant diseases [3, 6]. Therefore, understand-
ing the regulatory role of miRNAs and their target genes
would enable the development of new approaches to con-
trol mango anthracnose.

In conclusion, numerous studies have demonstrated
that miRNAs are involved in the plant disease resistance
process; however, the role of miRNA in mango anthrac-
nose is not well understood. Studying the role that miR-
NAs play in mango anthracnose will lead to a better
understanding of the mechanism of mango’s resistance to
anthracnose. Therefore, this study conducted transcrip-
tome, small RNA (sRNA), and degradome sequencing
using a mango anthracnose-resistant genotype named
Jinhuang. A comprehensive and integrated analysis of the
resulting datasets identified the miRNA-mRNA regula-
tory network. The miRNA regulation of gene expression
was described under mango anthracnose stress, resulting
in a better understanding of mango anthracnose resist-
ance mechanisms.

Materials and methods

Plant materials, stress treatment, and RNA extraction

The Jinhuang mango (anthracnose resistant genotype
[16]) was planted in a field at Baise, Guangxi Province,
China. Healthy and uniformly-sized mango fruits were
sterilized by soaking in 70% ethanol for 15 min twice,
and the fruits were then washed with sterilized water.
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Colletotrichum siamense is a major pathogen respon-
sible for mango anthracnose in China. The C. siamense
strain HN10, isolated from anthracnose on mango fruit
in Guangxi Province, China, was selected for subsequent
inoculation studies. A 6 mm-diameter punch was used
to make 2— 3 mm-deep holes on the surface of mango
fruits, then a 7-day C. siamense mycelium cake was
placed into a hole. Mangoes inoculated with PDA cakes
were used as the control. Inoculated mango fruits were
sampled at 3 d post-inoculation (3rd dpi), referred to
as T3 (treatment) and C3 (control), and 5 d post-inoc-
ulation (5 th dpi), referred to as T5 (treatment) and C5
(control). Two inoculated sites, from which the fungal
mycelium cake was removed, were used as samples for
a single biological replicate. There were three such bio-
logical replicate samples per treatment. All samples were
immediately frozen in liquid nitrogen and then stored
at —8°C for RNA extraction. Twelve RNA libraries and
twelve sRNA libraries of three biological replicates of
T3, T5, C3, and C5 were constructed. The Trizol Reagent
(Thermo Fisher Scientific, Waltham, MA, USA) was used
for RNA extraction following the manufacturer’s instruc-
tions. The NanoDrop ND-1000 (NanoDrop, Wilmington,
DE, USA) and Bioanalyzer 2100 (Agilent, Santa Clara,
CA, USA) were used to analyze the integrity and quality
of total RNA. The RNA integrity number (RIN) values of
the RNA are listed in Table S1.

Transcriptome sequencing and analysis

The mRNA was specifically captured using oligo(dT)
magnetic beads (Dynabeads Oligo (dT), cat.25-61,005,
Thermo Fisher Scientific), which were then fragmented
using a NEBNextR Magnesium RNA Fragmentation
Module (Thermo Fisher Scientific). The fragmented RNA
was reversed into complementary DNA (cDNA) using
Invitrogen SuperScriptTM II Reverse Transcriptase
(Thermo Fisher Scientific), following second-strand DNA
synthesis using DNA polymerase I and RNase H (Thermo
Fisher Scientific). After the heat-labile UDG enzyme
treatment of the second-stranded DNAs, the ligated
products were amplified with a polymerase chain reac-
tion (PCR). The average insert size for the final cDNA
libraries was 300 +50 bp. The 2Xx 150 bp paired-end
sequencing was performed on a Novaseq 6000 sequenc-
ing system (Illumina). The raw reads were filtered by Cut-
adapt v1.9 (https://cutadapt.readthedocs.io/en/stable/)
to obtain high-quality clean reads. The clean reads were
aligned to the mango genome (https://www.ncbi.nlm.nih.
gov/datasets/genome/GCF_011075055.1/), which was
indexed beforehand, using HISAT2 v2.2.1 (https://daehw
ankimlab.github.io/hisat2/). The expression levels of all
transcripts were estimated using StringTie v2.1.6 (http://
ccb.jhu.edu/software/stringtie/) and ballgown (http://
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www.bioconductor.org/packages/release/bioc/html/ballg
own.html). A differential expression analysis was per-
formed using DESeq2 with a false detection rate (FDR)
<0.05 and |log2 FC|> 1. The gene ontology (GO) enrich-
ment analysis of differentially expressed genes (DEGs)
was conducted using R package of GOseq.

Small RNA sequencing and analysis

For sRNA sequencing, the sRNA libraries were con-
structed using TruSeq Small RNA Sample Preparation
(Ilumina) following the manufacturer’s instructions. The
50 bp single-end sequencing was performed on an Illu-
mina Hiseq2500 sequencing system. The inhouse pro-
gram ACGT101-miR v4.2 of LC Bio Technology CO. Ltd,
(Hangzhou, China) was used to filter raw reads by remov-
ing adapter dimers, junk (i.e., fragments that did not map
to the mango genome), low complexity reads (i.e., frag-
ments with repetitive patterns), common RNA families
(ribosomal RNA (rRNA), transfer RNA (tRNA), small
nuclear RNA (snRNA), small nucleolar RNA (snoRNAs)),
and repeats.

Identification of known and novel miRNAs

Unique sequences with lengths of 18 —25 nt were
mapped to known species precursors in miRbase 22.1
by a BLAST search to identify known miRNAs. The
unmapped sequences were subjected to a BLAST analy-
sis against the mango genome (https://www.ncbi.nlm.
nih.gov/datasets/genome/GCF_011075055.1/) and the
resulting hairpin RNA structures containing sequences
were predicted as novel miRNAs using RNAfold (http://
rna.tbi.univie.ac. at/cgi-bin/RNAfold.cgi). This was based
on the following criteria: (1) number of nucleotides in
one bulge in the stem (< 12), (2) number of base pairs in
the stem region of the predicted hairpin (> 16), (3) cutoff
of free energy (kCal/mol <-15), (4) length of hairpin (up
and down stems + terminal loop >50), (5) length of hair-
pin loop (< 200), (6) number of nucleotides in one bulge
in the mature region (< 4), (7) number of biased errors
in one bulge in the mature region (< 2), (8) number of
biased bulges in the mature region (< 2), (9) number of
errors in the mature region (< 4), (10) number of base
pairs in the mature region of the predicted hairpin (> 12),
and (11) percentage of mature regions in the stem (> 80).
The GSTAr v1.0 software was used to predict target genes
by identifying binding sites with default parameters. The
differential expression of miRNAs based on normalized
counts was determined using a Student’s t-test with p<
0.05 and |log2 FC|> 1.

Degradome sequencing and analysis
Equivalent amounts of RNA from the controls (C3 and
C5) and treatments (T3 and T5) were combined to
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generate two degradome libraries. The purified RNA
with polyA was mixed with biotinylated random primers
and ligated with 5’ adaptors. The cDNA was synthesized
with 3" adaptors followed by size selection with AMPur-
eXP beads and then used as a template for the PCR. The
INlumina Hiseq2500 was used to sequence the cDNA
library. Raw data were filtered using Trimmomatic v0.35,
then the reads mapped to rRNA, tRNA, snoRNAs, and
repeats were removed. The clean reads were mapped to
the mango transcriptome, and a degradome density file
was generated. GSTAr v1.0 was used to predict the target
genes of the miRNA. By combining the predicted target
genes of the miRNA and genes in the degradome density
file, the t-plots were generated.

Reverse-Transcription Quantitative PCR (RT-qPCR)

The RNA samples used for the RNA-seq were also
used in an RT-qPCR analysis. The qPCR primers were
designed using the primer-BLAST tool (https://www.
ncbinlm.nih.gov/tools/primer-blast/). Reverse transcrip-
tion and qPCR were conducted using ToloScript All-in-
one RT EasyMix for qPCR (22,107, Tolobio, Shanghai,
China) and 2 X Universal Blue SYBR Green qPCR Master
Mix (G3326-01, Servicebio, Wuhan, China) according to
each manufacturer’s instructions. The housekeeping gene
Actin was selected as an internal standard in the qPCR
analysis. Each sample was replicated three times. Expres-
sion data were analyzed using the 2722 method. All
primers are listed in Table S2.

Results

Transcriptome sequencing

In the study, 12 samples representing Jinhuang (anthrac-
nose resistant genotype) under control (non-inoculated)
and stress (C. siamense inoculated) conditions at two
time points (3rd and 5th dpi) (Fig. S1) were sequenced.
A total of 481.60 million reads were generated from the
pair-end sequencing of these 12 samples. After apply-
ing quality filters, 473.26 million clean reads (98.26%)
were obtained for further analysis. These reads were
mapped to the mango genome sequences, with an aver-
age of 402.77 million clean reads (85.10%) mapped to the
mango genome. The data statistics indicated high-quality
transcriptome sequencing (Table S3).

Differentially expressed genes under C. siamense infection

A differential expression analysis was performed to
identify DEGs. A total of 19,557 genes were found to be
expressed in at least one of the samples. At the 3rd and
5th dpi, 3,462 and 8,341 genes were found to show a sig-
nificant differential expression between the control and
stress samples (3rd dpi: 1,943 up-regulated and 1,519
down-regulated; 5th dpi: 4,325 up-regulated and 4,016
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down-regulated), respectively (Fig. 1A). According to a
Venn analysis, 2,606 common DEGs were identified in
T3_vs_C3 and T5_vs_C5 (Fig. 1B). The time trend of the
gene expression analysis revealed four clusters, with clus-
ter 4 containing 1,285 genes that showed a low expres-
sion level in the control and a high expression level under
stress (Fig. 1C). Overall, compared with the 3rd dpi,
mango showed a greater response to C. siamense infec-
tion at the 5th dpi. Three genes were selected to validate
the RNA-seq data. The RNA-seq and RT-qPCR data were
significantly correlated with R values of 0.943, 0.905, and
0.848 (p< 0.05) for each of the three genes (Fig. 2), indi-
cating that the RNA-seq data were reliable.

There were 113 and 69 enriched GO terms (Q value
<0.001) for the DEGs for T3_vs_C3 and T5_vs_C5,

Differentially Expressed Genes
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respectively (Tables S4 and S5). In T3_vs_C3, chlo-
roplast thylakoid membrane, thylakoid, chloroplast
thylakoid, chloroplast, obsolete oxidation-reduction
process, chloroplast envelope, flavonoid biosynthetic
process, chloroplast stroma, photosynthesis, and extra-
cellular region were the topl0 enriched GO terms
(Fig. 3A). In T5_vs_C5, rRNA transcription, transcrip-
tion factor binding, regulation of cellular respiration,
obsolete oxidation-reduction process, flavonoid bio-
synthetic process, defense response, DNA-binding
transcription factor activity, cell population prolifera-
tion, quercetin 3-O-glucosyltransferase activity, and
extracellular region were the topl0 enriched GO terms
(Fig. 3B). Obsolete oxidation-reduction process and
flavonoid biosynthetic process were the common GO
terms in both T3 _vs_C3 and T5_vs_C5.

Venn Diagram
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Fig. 1 An overview of the differentially expressed genes (DEGs) in the mango response to Colletotrichum siamense infection. A The number of DEGs
at the 3rd and 5th day post inoculation (dpi) under control and stress conditions. B Venn analysis of DEGs at the 3rd and 5 th dpi under control
and stress conditions. C Time trend of the gene expression analysis of DEGs at the 3rd and 5 th dpi under control and stress conditions
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were selected for an RT-qPCR analysis. Each treatment had three biological and three technical replicates. The RNA-seq (right-axis) and RT-qPCR
(left-axis) data representing the five genes were significantly correlated (p < 0.05)
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Fig. 3 Enriched gene ontology (GO) terms for the differentially expressed genes (DEGs) at the 3rd (A) and 5th (B) day post inoculation (dpi)

under control and stress conditions. The size of the circles indicates the number of hit genes. BP, CC, and MF represent biological process, cellular
component, and molecular function, respectively. A total of 113 and 69 GO terms were significantly enriched (FDR-value <0.001) at the 3rd and 5th
dpi, respectively. The details of the enriched GO terms are shown in Tables S4 and S5

Small RNA sequencing and miRNA identification

A total of 12 sRNA libraries were constructed, and
sequences for identifying C. siamense infection-related
miRNAs in mango were obtained. A total of 178.55 mil-
lion reads with an average of 14.87 million reads per sam-
ple were obtained. After filtering reads, a set of 127.96
million clean reads was obtained for the following analy-
sis. A total of 28.98 million validated reads were obtained
by removing repeat reads and clean reads mapping to
rRNA, tRNA, snRNA, and snoRNA (Table S6). The most
abundant length distribution of the unique sRNA reads
was 21 nt (52.39%) (Fig. S2), followed by 22 nt (14.89%),
20 nt (7.71%), and 19 nt (7.45%).

To identify the known miRNAs in mango, the fil-
tered reads were mapped to the miRNAs of plant spe-
cies from miRBase (https://www.mirbase.org/), and 372
unique known miRNAs were identified from all samples.
The reads that could not be mapped to miRBase, were
mapped to the mango genome. Additionally, the pre-
cursor sequences were obtained by extending the full-
match mapped reads, which could fold into a potential
stem-loop, and a total of 104 unique novel miRNAs were
obtained.

Differentially expressed miRNAs under C. siamense
infection

To identify miRNA that responded to C. siamense infec-
tion, the expression patterns of all known and novel miR-
NAs were studied. All differentially expressed miRNAs
are shown in Fig. 4 and Table S7. At the 3rd dpi, 15 miR-
NAs showed a significant differential expression between
stress and control samples, of which two exhibited abso-
lute log2 FC values greater than 2. At the 5th dpi, 69
differentially expressed miRNAs were found under C.
siamense infection, of which 13 had absolute log2 FC

values greater than 2 (Table S7). A total of three miR-
NAs were identified in T3_vs_C3 and T5_vs_C5 accord-
ing to a Venn analysis, including ath-MIR166e-p5_1 ss15
AC, mtr-miR156e, and csi-miR3954 L +1 2 ss17 CG21
CT. Specifically, ath-MIR166e-p5_1 ss15 AC was down-
regulated, while mtr-miR156e and csi-miR3954_L +1_2
ss17 CG21 CT were up-regulated under stress. Based on
a GO enrichment analysis of the computationally pre-
dicted targets, eight and 26 GO terms were significantly
enriched (Q value <0.001) in T3_vs_C3 and T5_vs_C5,
respectively, including defense response and DNA-bind-
ing transcription factor activity (Tables S8 and S9). These
miRNAs were involved in the stress response under C.
siamense infection in mango.

Target prediction according to the degradome

A degradome analysis was conducted to identify the tar-
gets of plant miRNAs. A total of 26.21 million reads were
generated from control and treated samples, and 11.76
million unique reads were obtained, which were used for
the identification of cleavage sites (Table S10). A total of
257 and 269 non-redundant targets with p < 0.05 and cat-
egory <4 were identified in control and treated samples,
respectively, including a total of 127 (16 novel and 111
known) miRNAs (Table S11), which were represented in
target plots (T-plots).

According to the degradome sequencing of treated
samples, a total of 257 significant targets were identi-
fied, mainly belonging to transcription factors (TFs),
transporter genes, disease resistance genes (e.g., putative
disease resistance RPP13-like protein 1 and NBS-LRR
resistance protein), and cellular enzymes (e.g., casein
kinase and 3-ketoacyl-CoA thiolase). The TF encoding
genes represented a considerable proportion of the tar-
gets, including the NAC (52), HD-ZIP (24), TCP2 (18),
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ARF (16), MYB (3), ZF (2), and GRAS (2) families, as
shown in Fig. 5. A GO enrichment analysis was further
conducted to reveal the potential role of miRNA targets
in response to C. siamense stress in mango. The most
significant GO terms were transcription factor binding,
cytosol, double-stranded DNA binding, rRNA transcrip-
tion, and regulation of cellular respiration (Fig. S3).

Correlation analysis of miRNAs and their target'’s
expression profiles

According to the degradome results, the expression
profiles of both the C. siamense response miRNA and

their target genes were integrated and analyzed to
reveal the mediatory role of miRNA under C. siamense
infection in mango. Through a Pearson correlation
analysis, a total of 34 and 257 miRNA interaction pairs
were identified under stress conditions at the 3rd and
5th dpi, respectively. These correlations can be either
positive or negative. Of the 34 pairs, 19 were positive
correlations and 15 were negative correlations at the
3rd dpi. At the 5th dpi, 141 were positively correlated
and 116 pairs were negatively correlated (Fig. 6, Tables
S12 and S13). These results indicated the miRNA-medi-
ated C. siamense response at the 5th dpi was stronger
than that at the 3rd dpi.
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To determine the mechanism by which miRNA
degraded tmRNA, the negative pairs were further ana-
lyzed. At the 3rd dpi, 15 negative pairs consisting of
nine miRNAs and 10 genes were identified. Similarly, at
the 5th dpi, 116 negative pairs consisting of 46 miRNAs
and 74 genes were identified (Fig. 6, Tables S12 and
S$13). The number of genes was higher than that of miR-
NAs, which indicated that a single miRNA could cleave
multiple targets. We further focused on three miRNAs
(ath-MIR166e-p5_1 ss15 AC, mtr-miR156e, and csi-
miR3954_L +1_2 ss17 CG21 CT), which were signifi-
cantly differentially expressed at both the 3rd and 5th
dpi. Both ath-MIR166e-p5_1 ss15 AC and mtr-miR156e
had no significantly negatively expressed target genes,
while c¢si-miR3954_L +1_2 ss17 CG21 CT was sig-
nificantly up-regulated. Additionally, its target gene
LOC123212502, coding a NAC domain-containing pro-
tein, was significantly down-regulated at the 5th dpi.
The csi-miR3954 L +1_2 ss17 CG21 CT could cleave
several transcripts of LOC123212502 with multiple
sites (Fig. 7).

Discussion

High-throughput sequencing technologies enable the
molecular basis of plant responses to pathogens to be
better understood. In this study, we used three high-
throughput approaches, namely, transcriptome sequenc-
ing, sRNA sequencing, and degradome sequencing, to
determine the genetic and molecular responses behind
mango anthracnose resistance. A comprehensive tran-
scriptome analysis of the mango anthracnose-resistant
genotype was performed. The obsolete oxidation—reduc-
tion process and flavonoid biosynthetic process were
enriched in both T3 vs_C3 and T5 vs_C5. It has been
reported that ROS play a crucial role in the biotic stress
response [17], and the mango showed improved resist-
ance to Colletotrichum gloeosporioides by activating
ROS [18]. Flavonoid metabolites could scavenge ROS,
thus contributing to biotic stress response [19]. In this
study, the mango genotype Jinhuang may have scav-
enged ROS by synthesizing flavonoids to improve resist-
ance to mango anthracnose. Furthermore, the number
of DEGs at the 5th dpi was higher than that at the 3rd
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dpi (Fig. 1A), suggesting that the response at the 5th dpi
was more evident. We focused on the GO enrichment
terms at the 5th dpi, and four TF-related GO terms were
obtained from the top 10 enriched GO terms, implying
that TFs played a crucial role in mango resistance. Trans-
fer factors can regulate gene networks in the plant biotic
stress response [20]. It has been reported that NAC cod-
ing genes negatively regulate defense responses against
pathogens by suppressing pathogenesis-related (PR) cod-
ing genes [21, 22]. In this study, many NAC coding genes
were down-regulated at the 5th dpi, suggesting their
potential roles in mango anthracnose resistance.

Small non-coding RNAs, especially miRNAs, are
important modulators of gene expression at the post-
transcription level and are potential tools for crop
improvement [23]. Several miRNAs have been identi-
fied in the stress response of various plants using an
sRNA sequencing approach [24, 25]. In mango, temper-
ature-responsive miRNAs have been reported [26], but
the role of miRNA in C. siamense resistance has not yet
been characterized. In this study, we employed sRNA

sequencing of the C. siamense resistant mango at the 3rd
and 5th dpi, and identified 476 miRNAs, of which 104
were novel miRNAs. Novel miRNAs might be involved
in species-specific gene regulation. Similar to the tran-
scriptome results, the number of differentially expressed
miRNAs at the 5th dpi was more than that at the 3rd dpi,
indicating a stronger response at the 5th dpi. The GO
enrichment analysis highlighted that these targets were
mainly involved in TF-related GO terms, which was con-
sistent with the transcriptome results. These results indi-
cated that the miRNAs of mango Jinhuang responded to
C. siamense stress mainly by regulating TF coding genes.
Similarly, the miRNAs of chickpea regulate the resistance
to Ascochyta blight by targeting the WRKY, MYB, NAC,
and ARF TF families according to high-throughput tran-
scriptome and sRNA sequencing [24].

Degradome sequencing provides reliable insights into
miRNA-mRNA regulation networks. Based on the cur-
rent findings, a hypothetical scheme was postulated based
on the transcriptome, sSRNA, and degradome sequencing
results (Fig. 8). Notably, the LRR coding genes involved
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under stress at the 5th day post inoculation

in pathogen recognition were up-regulated and targeted
by bol-MIR9410-p5_2 ss5 TG18 TA (Fig. 8). Similarly,
miR482 targets NBS-LRR genes under fungal pathogen
stress in cotton [27]. Of the three differentially expressed
miRNAs at both the 3rd and 5th dpi under stress (Fig. 4),
csi-miR3954 L +1_2 ss17 CG21 CT could cleave several
transcripts of an NAC gene (LOC123212502) with mul-
tiple sites. The csi-miR3954 L +1_2 ss17 CG21 CT was
up-regulated under stress, while LOC123212502 was
down-regulated (Fig. 8). Similarly, miR164 regulates the
expression of NAC21/22 genes by controlling JA signal-
ing under apple leaf spot disease stress [4]. In mulberry,
Mno-miR164a and its target TF gene MnNACI100 manip-
ulate the defense response to Botrytis cinerea stress [28].
Additionally, bol-MIR9410-p5_2 ss5 TG18 TA regu-
lates the flavonol 4’-sulfotransferase gene (Fig. 8), which
is involved in the synthesis of the secondary metabo-
lite, flavonoid. The results were consistent with the GO
enrichment analysis of the transcriptome, implying that
flavonoid metabolites played an important role in C. sia-
mense resistance. Similarly, the miR172a-SNB module
controls multiple diseases via the accumulation of the
secondary metabolite lignin in rice [29]. The functional

characterization of the miRNA-mRNA regulatory role
under C. siamense stress will be determined in a future
study.

In summary, this study represents the first attempt
to integrate a transcriptome, sRNA, and degradome
sequencing analysis to identify key miRNA-mRNA reg-
ulation networks in the mango response to C. siamense.
A total of 3,462 and 8,341 DEGs were identified under
control and stress conditions in mango at the 3rd and
5th dpi, respectively, and they were mainly involved in
transcription factor activity, defense response, an obso-
lete oxidation—reduction process, and flavonoid biosyn-
thetic processes. A total of 81 differentially expressed
miRNAs were identified, of which three were differ-
entially expressed at both the 3rd and 5th dpi, includ-
ing ath-MIR166e-p5_1 ss15 AC, mtr-miR156e, and
csi-miR3954_L +1_2 ss17 CG21 CT. According to the
degradome sequencing, 2,274 targets were predicted
for 341 miRNAs. The combined transcriptome and
sRNA sequencing identified 257 miRNA-mRNA inter-
action pairs. Notably, csi-miR3954_ L +1_2 ss17 CG21
CT was up-regulated at both the 3rd and 5th dpi under
stress. This miRNA could cleave multiple sites of an
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NAC gene (LOC123212502) that was down-regulated
under stress. Overall, these miRNAs and genes provide
a molecular basis for the miRNA-mediated C. siamense
stress response in mango, and could serve as candidates
for developing C. siamense resistance in mango using a
genetic engineering approach.
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