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[8]. The rise of next generation sequencing technolo-
gies [9] enabled new approaches based on k-mer pro-
files or the counting of unique k-mers [10, 11]. JellyFish 
[11], Kmergenie [12], Tallymer [13], Kmerlight [14], and 
genomic character estimator (gce) [15] are dedicated 
tools to analyze k-mers in reads. But such k-mer-based 
estimation methods require a high sequencing cover-
age [16]. Next, genome sizes can be estimated based 
on unique k-mers or a complete k-mer profile. Many 
assemblers like SOAPdenovo [17] and ALLPATHS-LG 
[18] perform an internal estimation of the genome size 
to infer an expected assembly size. Dedicated tools for 
genome size estimation like GenomeScope2 [19, 20] and 
findGSE [21] were developed. Although the authors con-
sidered and addressed a plethora of issues with real data 
[19], results from different sequencing data sets for the 
same species can vary. While some proportion of this 
variation can be attributed to accession-specific differ-
ences as described e.g. for A. thaliana [21, 22], specific 
properties of a sequencing library might have an impact 
on the estimated genome size. For example, high levels 

Introduction
Nearly all parts of a plant are now tractable to measure, 
but assessing the size of a plant genome is still challeng-
ing. Although chromosome sizes can be measured under 
a microscope [1], the combined length of all DNA mol-
ecules in a single cell is usually unknown. About 25 years 
after the release of the first Arabidopsis thaliana genome 
sequence, this holds even true for one of the most impor-
tant model species. Initially, biochemical methods like 
reassociation kinetics [2], Feulgen photometry [3], quan-
titative gel blot hybridization [4], southern blotting [5], 
and flow cytometry [6, 7] were applied. Unfortunately, 
these experimental methods rely on a reference genome 
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of bacterial or fungal contamination could bias the result 
if not removed prior to the estimation process. Due to 
high accuracy requirements, k-mer-based approaches 
are usually restricted to high quality short reads and can-
not be applied to long reads of third generation sequenc-
ing technologies. The rapid development of long read 
sequencing technologies enables high contiguity assem-
blies for almost any species and is therefore becoming 
the standard for genome sequencing projects [23–25]. 
Nevertheless, some highly repetitive regions of plant 
genomes like nucleolus organizing region (NOR) and 
centromeres remain usually unassembled [22, 26, 27]. 
Therefore, the genome size cannot be inferred directly 
from the assembly size, but the assembly size can be con-
sidered a lower boundary when estimating genome sizes.

Extreme genome size estimates of A. thaliana, for 
example, 70 Mbp [2] or 211 Mbp [28], have been proven 
to be inaccurate based on insights from recent assemblies 
[22, 27, 29–32]. However, various methods still predict 
haploid genome sizes between 125 Mbp and 165 Mbp for 
A. thaliana accessions [29, 33–35]. Substantial technical 
variation is observed not only between methods, but also 
between different labs or instruments [36]. As described 
above, extreme examples for A. thaliana display 3 fold 
differences with respect to the estimated genome size. 
Since no assembly represents the complete genome, 
the true genome size remains unknown. An empirical 
approach, i.e. running different tools and comparing the 
results, might be a suitable strategy.

This work presents a conceptually different method for 
the estimation of genome sizes based on the mapping 
of reads to a high contiguity assembly. Mapping-based 
Genome Size Estimation (MGSE) is a Python script 
which processes the coverage information of a read map-
ping and predicts the size of the underlying genome. 
Since MGSE is a mapping-based method, it requires a 
genome sequence as reference for the read mapping pro-
cess. However, this is not a limitation. The reads used for 
the genome size estimation, could be used for the assem-
bly. We anticipate that future genome sequencing proj-
ects will utilize long read sequencing technologies and 
would easily generate assemblies of high quality which 
are more than appropriate for MGSE. Since MGSE relies 
on read mapping, it is able to support genome size esti-
mations based on long read datasets unlike the existing 
kmer-based tools. Further, MGSE’s applicability to long 
read datasets also helps tackle the issue of highly repeti-
tive regions that interfere with genome size estimation. 
This is because long reads can span entire repetitive 
regions, ensuring correct mapping of reads and accu-
rate coverage calculation required for optimal genome 
size estimation. MGSE is an orthogonal approach to the 
existing tools for genome size estimation with different 
challenges and advantages. It is also suitable for both 

short and long reads obtained from different sequencing 
technologies, making it a broadly applicable tool in plant 
genomics and beyond.

Methods
Data sets
Sequencing data sets of the A. thaliana accessions Colum-
bia-0 (Col-0) [32, 37–42] and Niederzenz-1 (Nd-1) [35] 
as well as several Beta vulgaris accessions [43–45] were 
retrieved from the Sequence Read Archive (Additional 
File 1). Only the paired-end fraction of the two included 
Nd-1 mate pair libraries was included in this analysis. 
Genome assembly versions TAIR9 [46], AthNd-1_v2 
[27], and RefBeet v1.5 [43, 47] served as references in 
the read mapping process. The A. thaliana assemblies, 
TAIR9 and Ath-Nd-1_v2, already included plastome 
and chondrome sequences. Plastome (KR230391.1 
[48]), and chondrome (BA000009.3 [49]), sequences 
were added to RefBeet v1.5 to allow proper placement 
of respective reads. Genome sequences of Brachypo-
dium distachyon strain Bd21 (GCF_000005505.3 [50]), 
Solanum lycopersicum (GCA_002954035.1 [51]), Vitis 
vinifera cultivar Chardonnay (QGNW01000001.1 
[52]), Oryza sativa ssp. japonica cultivar Nipponbare 
(GCA_034140825.1 [53]), Zea mays cultivar DK105 
(GCA_003709335.1 [54]), Fragaria x ananassa cultivar 
benihoppe (GCA_034370585.1 [55]), Gossypium hirsu-
tum (GCF_007990345.1 [56]), Saccharomyces cerevisiae 
strain S288C (GCF_000146045.2 [57]), Escherichia coli 
strain K-12 (GCF_000005845.2 [58]), and Caenorhabditis 
elegans strain Bristol N2 (GCF_000002985.6 [59]), were 
retrieved from the NCBI. Corresponding read data sets 
of Brachypodium distachyon ( [50]), Solanum lycopersi-
cum [51, 60–62], Vitis vinifera [52], Oryza sativa [53, 63], 
Zea mays ( [54]), Fragaria x ananassa, Gossypium hirsu-
tum, Saccharomyces cerevisiae [64], Escherichia coli [65], 
and Caenorhabditis elegans [66] were retrieved from the 
Sequence Read Archive (Additional File 1). These read 
datasets were chosen because they were derived from 
material similar to that used to generate the respective 
reference genome sequence. This was done to ensure that 
the genome size estimation is representative for the refer-
ence strain and is not deviating due to structural differ-
ences between different strains.

Genome size estimation
JellyFish2 v2.2.4 [11] was applied for the generation of 
k-mer profiles which were subjected to GenomeScope2 
[19]. Selected k-mer sizes ranged from 19 to 25. Results 
of different sequencing data sets and different k-mer sizes 
per accession were compared. Genomic character esti-
mator (gce) [15] and findGSE [21] were applied to infer 
genome sizes from the k-mer histograms. If tools failed 
to predict a value or if the prediction was extremely 
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unlikely, values were masked to allow meaningful com-
parison and accommodation in one figure. The number 
of displayed data points (i.e. successful predictions) is 
consequently a quality indicator.

Mapping-based genome size estimation.
Despite some known biases [67–69], the underlying 
assumption of MGSE is a nearly random fragmentation 
of the DNA and thus an equal distribution of sequencing 
reads over the complete sequence. If the sequencing cov-
erage per position (C) is known, the genome size (N) can 
be calculated by dividing the total amount of sequenced 
bases (L) by the average coverage value: N = L / C. The 
working concept of MGSE is explained in Fig. 1.

Underrepresented repeats and other regions like the 
unresolved paralogs of the SEC10 gene in the Arabidop-
sis thaliana genome sequence [70], display a higher cov-
erage, because reads originating from different genomic 
positions are mapped to the same sequence. The accu-
rate identification of the average coverage is crucial for 
a precise genome size calculation. Chloroplastic and 
mitochondrial sequences account for a substantial pro-
portion of reads in sequencing data sets, while contribut-
ing very little size compared to the nucleome. Therefore, 
sequences with very high coverage value, i.e., plastome 
and chondrome sequences are included during the map-
ping phase to allow correct placement of reads, but can 
be excluded from MGSE at a later stage. A user-provided 

list of reference regions is used to calculate the median or 
mean coverage based on all positions in these specified 
regions. Benchmarking Universal Single Copy Orthologs 
(BUSCO) [71, 72] can be deployed to identify such a set 
of bona fide single copy genes which should serve as suit-
able regions for the average coverage calculation. Since 
BUSCO is frequently applied to assess the completeness 
of a genome assembly, these files might be already avail-
able to users. GFF3 files generated by BUSCO can be 
concatenated and subjected to MGSE. As some BUSCOs 
might occur with more than one copy, MGSE provides 
an option to reduce the predicted gene set to the actual 
single copy genes among all identified BUSCOs.

For short reads, BWA MEM v0.7 [73] was applied for 
the read mapping and MarkDuplicates (Picard tools 
v2.14) [74] was used to filter out reads originating from 
PCR duplicates. For long reads, minimap2 v2.24 [75, 76] 
was used for read mapping. Next, a previously described 
Python script [77] was deployed to generate coverage 
files from the BAM files, which provides information 
about the number of aligned sequencing reads covering 
each position of the reference sequence. This process 
involves bedtools v2.30.0 [78]. Finally, MGSE v3.1 (​h​t​t​p​​s​:​
/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​b​p​u​c​​k​e​​r​/​M​G​S​E) was run on these ​c​o​v​e​r​a​g​e 
files to predict genome sizes independently for each data 
set.

Fig. 1  Concept diagram showing the working logic behind read mapping-based genome size estimation. An assembly is required as a basis for the 
analysis, but does not have to be perfect
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Coverage threshold analysis
MGSE relies on coverage calculation for estimating the 
genome sizes. Hence, it is important to know the mini-
mum coverage that datasets provided to MGSE must 
have to obtain optimal results. For this, all the long and 
short read datasets of Arabidopsis thaliana, described 
earlier, were taken and sub-sampled into FASTQ files 
containing varying percentages of the reads − 100%, 75%, 
50%, 25%, 10%, 7.5%, 5%, 2.5%, 1%, and 0.5% using seqtk 
[79]. Then each of these different read files across all the 
samples were given to MGSE to obtain genome size esti-
mates. The number of sequenced bases in the read files 
given to MGSE and the genome sizes estimated by MGSE 
were correlated to determine the minimum coverage of 
long and short read datasets that MGSE can process. 
The above sub-sampled files were also given to Genome-
Scope2 to obtain a comparative coverage threshold value 
for short read datasets that can be handled by this kmer-
based tool.

Runtime analysis
Runtime is an important factor when users determine the 
resources needed for using a particular tool. Here, run-
time analyses were conducted by correlating the num-
ber of sequenced bases in the read files given to MGSE 
and the total time taken for a complete run including 
indexing, read mapping, coverage calculation, and the 
final genome size prediction. Since minimap2 is slightly 
more efficient than BWA-MEM, some long read datasets 
were subjected to MGSE runs with a single CPU. There-
after, the number of CPUs for the MGSE runs on short 
and long reads was set to be 10, to evaluate the runtimes 
with moderate resources. Since read mapping is already 
a part of most genome assembly processes, users might 
already have BAM files at hand that could serve as input 
for MGSE. Therefore, another set of runtime analyses 
was conducted by correlating the size of the input datas-
ets with only the time taken for coverage calculation and 
genome size prediction. These MGSE runtimes were then 
compared with GenomeScope2 runtimes for the same 
datasets carried out with 10 CPUs to benchmark and 
understand the performance of MGSE in direct compari-
son to a kmer-based tool.

Results & discussion
Arabidopsis thaliana genome size
MGSE was deployed to calculate the genome size of 
the two A. thaliana accessions Col-0 and Nd-1 (Fig.  2). 
In order to identify the best reference region set for the 
average coverage calculation, different reference region 
sets were tested. Manually selected single copy genes, 
all protein encoding genes, all protein encoding genes 
without transposable element related genes, only exons 
of these gene groups, and BUSCOs were evaluated 

(Additional File 2). The results were compared against 
predictions from GenomeScope2, gce, and findGSE for 
k-mer sizes 19, 21, 23, and 25.

Many estimation approaches predict a genome size for 
Col-0 that is below the largest reported assembly size of 
148 Mbp for Arabidopsis thaliana [81] and display sub-
stantial variation between samples. The BUSCO-based 
approaches with MGSE appeared promising due to 
low variation between different samples and a predic-
tion close to the average sizes of almost complete Col-0 
genome sequences. GenomeScope2 predicted a slightly 
higher genome size with greater variation between sam-
ples, while gce reported consistently much smaller val-
ues. findGSE predicted on average a substantially larger 
genome size. Finally, sample sizes below five (for Col-0) 
and below six (for Nd-1) indicated that prediction pro-
cesses failed for individual approaches e.g. due to insuf-
ficient read numbers.

Due to low variation between different samples and 
a plausible average genome size, the BUSCO-based 
approaches appeared promising for Nd-1 as well (Fig. 2b). 
The reported assembly size of 123.5 Mbp is known to be 
an underestimation of the true genome size of the Nd-1 
accession [27]. The genome size estimation of about 135 
Mbp inferred for Nd-1 through the BUSCO approach 
of MGSE is also slightly below previous estimations 
of about 146 Mbp [35]. Approximately 123.5 Mbp are 
assembled into pseudochromosomes which do not con-
tain complete NORs or centromeric regions [27]. Based 
on the read coverage of the assembled 45 S rDNA units, 
the NORs of Nd-1 are expected to account for approxi-
mately 2–4 Mbp [35]. Centromeric repeats which are 
only partially represented in the genome assembly [27] 
account for up to 11 Mbp [35]. In summary, the Nd-1 
genome size is expected to be around 138–140 Mbp. The 
single-copy BUSCO genes emerged as the best set of ref-
erence regions for MGSE based on further analyses using 
the Ath-Nd1_v2 assembly. In summary, MGSE (consid-
ering the BUSCO median estimation) and gce predicted 
reasonable genome sizes for Nd-1. The average predic-
tions by GenomeScope2 and findGSE are very unlikely, as 
they contradict most estimations of A. thaliana genome 
sizes [6, 21, 27, 35].

MGSE was also used to estimate the genome size of the 
Col-0 accession using long read data sets of 14 GABI-
Kat lines [32] (Fig. 3, Additional File 3). Since estimates 
relying on single copy BUSCO genes as reference regions 
were identified as the best approach in previous A. thali-
ana analyses, the same strategy was applied to datasets of 
all these GABI-Kat lines.

The MGSE BUSCO mean fits well into the expected 
genome size range of Col-0, while the median estimate 
is slightly higher than the largest reported assembly size 
considered here. This deviation could be attributed to 
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Fig. 2  Comparison of Arabidopsis thaliana genome size estimations. Genome sizes of the A. thaliana accessions Col-0 (a) and Nd-1 (b) were predicted by 
MGSE, GenomeScope2, gce, and findGSE. Different MGSE approaches were evaluated, differing by the set of regions for the average coverage calculation 
(e.g. all genes) and the methods for the calculation of this value (mean/median). Multiple read data sets (n) were analyzed by each tool/approach to infer 
an average genome size given as median (m, yellow line) and mean (black triangles), transposable elements = TE, without = wo. The blue region in (a) 
shows the expected genome size range. It has the near complete assembly size of Col-0 [80] as the lower boundary and one of the largest reported as-
sembly sizes of Arabidopsis thaliana [81] as the upper boundary (Additional File 8); The blue line in (b) represents the highest quality and largest reported 
assembly size for Nd-1 to date
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large numbers of InDels in long reads. There are a num-
ber of methods to reduce this bias in the input long read 
data, like the use of PacBio HiFi technology [82] and 
application of HERRO-correction to ONT reads [83], 
which could help improve the MGSE estimates. Never-
theless, the estimates still fall into the acceptable limits 
for Arabidopsis genome size estimates. This depicts that 
MGSE is able to process long read datasets unlike the 
kmer-based approaches, making it valuable as long read 
sequencing is gaining importance.

The feasibility of MGSE was further demonstrated by 
estimating the genome sizes of 1,028 A. thaliana acces-
sions (Fig.  4, Additional File 4) which were analyzed by 
re-sequencing as part of the 1001 genome project [84]. 
Most predictions by MGSE v0.55 are between 120 Mbp 
and 160 Mbp, while all other tools predict most genome 
sizes between 120 Mbp and 200 Mbp with some outliers 
showing very small or very large genome sizes. MGSE 

differs from all three tools when it comes to the number 
of failed or extremely low genome size predictions. All 
k-mer-based approaches predicted genome sizes below 
50 Mbp, which are most likely artifacts, possibly due to 
very low sequencing coverage. This comparison revealed 
systematic differences between findGSE, gce, and 
GenomeScope2 with respect to the average predicted 
genome size. findGSE tends to predict larger genome 
sizes than gce and GenomeScope2. Very large genome 
sizes could have biological explanations like polyploidiza-
tion events.

Beta vulgaris genome size
Different sequencing data sets of Beta vulgaris were 
analyzed via MGSE, GenomeScope2, gce, and find-
GSE to assess the applicability to larger and more com-
plex genomes (Fig.  5, Additional File 5). Different 
cultivars served as material source for the generation 

Fig. 3  MGSE estimations using long read sequencing data sets of 14 GABI-Kat lines (Col-0 accession). The blue region shows the expected genome size 
range with the near complete assembly size of Col-0 [80] as the lower boundary and one of the largest reported assembly sizes of Arabidopsis thaliana 
[81] as the upper boundary (Additional File 8)
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of the analyzed read data sets. Therefore, minor differ-
ences in the true genome size are expected. Moreover, 
sequence differences like single nucleotide variants, small 
insertions and deletions, as well as larger rearrange-
ments could influence the outcome of this analysis. The 
reference sequence RefBeet v1.5 already represented 567 
Mbp [43, 47], but an investigation of the repeat content 
indicates a larger genome size due to a high number of 
repeats that are not represented in the assembly [85]. 
The largest reported assembly of the reference accession 
KWS2320 has a size of 573 Mbp [86] thus all estimations 
below 573 Mbp can be considered as underestimations. 
The assembly size of the accession U2Bv is even slightly 
larger with 596 Mbp [86]. When assuming centromere 
sizes of only 2–3 Mbp per chromosome, the assembly 
size of 600 Mbp could be close to the true genome size. 
Previous genome size estimations reported 714–758 
Mbp [6] and 731 Mbp [43]. In summary, it appears likely 
that the true genome size of sugar beet is between about 
600 Mbp and 758 Mbp.

In this study, a few samples were considered to be out-
liers as these samples showed low coverage values. It is 
possible that these samples belong to a different subspe-
cies which could explain a low mapping rate against the 
sugar beet reference. Nevertheless, MGSE, and findGSE 
performed best in estimating the genome sizes of B. vul-
garis. findGSE estimated extremely variable values, but 
mostly around the previously estimated genome sizes 
[6, 43]. It is noticeable that the findGSE analysis failed 
for a number of samples. It is also important to note 
that GenomeScope2 and gce underestimate the genome 
size. The prediction of less than 600 Mbp is an underes-
timation, because this value is below the size of available 
genome sequences. Looking at different MGSE modes, 
the non-BUSCO approaches gave extremely high esti-
mates and showed high variability between samples, the 
BUSCO-based approaches were in a plausible range. 
Therefore, the mean and median-based approaches 
relying on all genes or just the BUSCO genes as refer-
ence regions for the sequencing coverage estimation 

Fig. 4  Genome size estimations of Arabidopsis thaliana accessions. MGSE, findGSE, gce, and GenomeScope2 were deployed to predict the genome sizes 
of 1,028 A. thaliana accessions based on sequence read data sets (Additional File 4). Extreme outliers above 200 Mbp (MGSE) or 300 Mbp (other tools) are 
displayed at the plot edge to allow accommodation of all data points with sufficient resolution in the center
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outperformed all other approaches. When comparing the 
A. thaliana and B. vulgaris analyses, the calculation of an 
average coverage in all single-copy BUSCO genes appears 
to be the most promising approach. This aligns well with 
the assumption that single copy BUSCO genes should 
appear with exactly one copy in the genome and would 
be prime regions to infer the average sequencing cover-
age depth.

Oryza sativa genome size
Rice (Oryza sativa) is a major food grain and belongs 
to the monocot lineage. Given its importance as a food 
crop, there have been a lot of efforts dedicated to obtain-
ing a complete genome sequence of rice [87]. Recently, a 
complete genome sequence of Oryza sativa ssp. japonica 
cv. Nipponbare was reported with 385.7 Mbp [53]. It was 
obtained using a hybrid assembly approach combining 
reads from Illumina, ONT, and PacBio sequencing tech-
nologies with a Hi-C dataset [53].

MGSE was used to estimate the size of the rice genome 
using reads from different sequencing technologies 
(Illumina, ONT, and PacBio). Other tools like findGSE, 
gce, and GenomeScope2 were also used to estimate the 
genome size using the Illumina reads. As these tools are 

relying on k-mers, they have only been recommended for 
the use with short reads. The estimation results using rice 
Illumina reads are shown in Fig. 6a. The comparative esti-
mations by MGSE using short and long reads are shown 
in Fig. 6b.

While MGSE BUSCO median and findGSE estimate 
sizes very close to the size of the presumable complete 
genome sequence, BUSCO mean estimates of MGSE 
and GenomeScope2 underestimate the genome size. gce 
slightly overestimates the size.

In contrast to the other tools, MGSE can perform 
genome size predictions based on long reads. In fact, 
BUSCO median estimates with MGSE are very close to 
the expected genome size and they appear to be even 
more plausible than the estimations based on short reads.

Application to broad taxonomic range of species
After optimization of MGSE on A. thaliana (Rosids) 
and B. vulgaris (Caryophyllales), the tool was deployed 
to analyze data sets of different taxonomic groups thus 
demonstrating broad applicability. Brachypodium dis-
tachyon was selected as representative of grasses, Sola-
num lycopersicum represents the Asterids, Zea mays 
was included as monocot species with high transposable 

Fig. 5  Comparison of Beta vulgaris genome size estimations. The genome size of B. vulgaris was predicted by MGSE, GenomeScope2, gce, and findGSE. 
Different MGSE approaches were evaluated differing by the set of regions for the average coverage calculation (e.g. all genes) and the methods for the 
calculation of this value (mean/median). Multiple read data sets (n) were analyzed by each tool and approach to infer an average genome size given as 
median (m, yellow line) and mean (black triangles). The blue region shows the expected genome size range with the largest reported assembly for Beta 
vulgaris [86] as the lower boundary and the largest previously estimated genome size of Beta vulgaris [6] as the upper boundary (Additional File 8)
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Fig. 6  (a) Comparison of Oryza sativa genome size estimations using short reads. (b) Comparison of MGSE genome size estimations on short and long 
reads of O. sativa. The blue region shows the expected genome size values (Additional File 8) representing the size of the near complete genome se-
quence of O. sativa as the lower boundary and the size of the largest reported assembly of O. sativa as the upper boundary [88]
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element content in the genome, Vitis vinifera was 
selected due to a very high heterozygosity, Fragaria x 
ananassa, Gossypium hirsutum were added to repre-
sent polyploid species, Escherichia coli, Saccharomyces 
cerevisiae, and Caenorhabditis elegans were chosen to 
represent bacterial, fungal and, animal genomes. The 
predictions of MGSE are generally in the same range 
as the predictions generated by GenomeScope2, gce, 
and findGSE (Additional File 5, Additional File 9, Addi-
tional File 10, Additional File 11, and Additional File 12). 
With an average prediction of 290 Mbp as genome size 
for B. distachyon, the MGSE prediction slightly exceeds 
the assembly size. The findGSE prediction also slightly 
exceeds the assembly size. GenomeScope2 and gce pre-
dict genome sizes below the assembly size (Additional 
File 7). The Z. mays genome size is underestimated by all 
four tools. However, MGSE outperforms GenomeScope2 
and gce on the analyzed data sets (Additional File 8). The 
S. lycopersicum genome size is underestimated by MGSE 
on most data sets. However, the compared tools failed to 
predict a genome size for multiple read data sets (Addi-
tional File 9). MGSE estimates for V. vinifera were well 
within the expected genome size range. findGSE and gce 
overestimated the genome size. GenomeScope2 underes-
timated the genome size of V. vinifera as evident from the 
assembly size exceeding the estimation (Additional File 
10).

To further assess MGSE’s applicability to complex poly-
ploid genomes, MGSE was deployed on Fragaria x anan-
assa and Gossypium hirsutum. Fragaria x ananassa was 
selected because it is a plant with high ploidy (octoploid) 
and an important crop of global relevance. From the 
MGSE results, it is evident that, selecting all the genes 
as well as BUSCO genes, as reference genes for coverage 
calculation gives optimal results for Fragaria ananassa, 
albeit with a slight overestimation of the median genome 
size (Additional File 13). But it is important to note that 
polyploid genomes have multiple copies of a region in 
different subgenomes, resulting in very high coverage 
values. Hence, it is recommended to select the ‘--ignore’ 
option to deactivate the blacklisting of high coverage 
contigs in the case of polyploids. Next, Gossypium hir-
sutum was selected, as it is an allotetraploid plant with 
a high degree of repeats and is also an important crop. 
While MGSE performs optimally when choosing all the 
genes for coverage calculation and selecting the ‘--ignore’ 
option for Gossypium hirsutum, it fails to predict plau-
sible genome sizes in the other cases (Additional File 14). 
This could be attributed to the high degree of repetitive 
genomic sequences in upland cotton [89, 90]. Hence, it is 
suggested to use MGSE with the ‘--ignore’ option, when 
deploying it on polyploid genomes, especially those with 
a high number of repeat elements.

Further, it is necessary to note here that MGSE predicts 
the genome size of the organism, based on the ploidy of 
the genome assembly provided by the user. To help the 
user assess the ploidy level of the assembly that they 
are providing and to facilitate the selection of optimal 
parameters for running MGSE, we developed an addi-
tional script. ‘busco2ploidy.py’ that estimates the assem-
bly’s ploidy by analyzing BUSCO results (i.e. BUSCO 
gene duplications) of the assembly. Alternatively, we 
recommend using tools like smudgeplot [20] which help 
infer the ploidy before deciding upon the best options for 
an MGSE run.

MGSE is suitable for organisms across a wide taxo-
nomic range as depicted for bacterial (Escherichia coli), 
fungal (Saccharomyces cerevisiae) and animal (Cae-
norhabditis elegans) genomes. The MGSE estimates 
for E. coli and C. elegans aligned well with the expected 
genome sizes of these organisms (Fig.  7a and c). But, 
MGSE slightly overestimates the yeast genome size 
when compared to the standard reference assembly size 
(Fig. 7b). However, there are some studies that reported 
yeast strains with additional genomic regions compared 
to the standard reference assembly [91]. Further, some 
recent studies also report a few genome assembly sizes 
of yeast strains to exceed the value of 12.1 Mb reported 
for the standard reference [92], potentially explaining the 
slightly higher MGSE estimates for yeast.

MGSE parameter selection and optimization
There are some MGSE parameter recommendations for 
optimal results. First, MGSE can accept different input 
types including both raw read files along with the refer-
ence assembly file, (sorted) BAM files, or coverage files. 
In many cases, BAM files are already available as a result 
of a typical genome assembly process which requires a 
read mapping to check the coverage of contigs as part of 
the quality control. Available BAM files avoid the com-
putationally intensive step of read mapping as a part of 
MGSE’s execution, making the run more efficient.

Second, selection of the optimal reference regions for 
coverage calculation is crucial. Based on results obtained 
for A. thaliana and more complex genomes, it became 
evident that BUSCO genes work well as reference regions 
in a wide range of application scenarios. The second best 
option would be all genes. MGSE leverages established 
methods for coverage calculation by running bedtools 
thus no optimization is required for this process.

After choosing the regions for coverage calculation, it 
is necessary to filter out high coverage contigs that could 
distort the genome size estimations like contaminat-
ing sequences from microbes, mitochondrial sequences, 
and chloroplastic sequences. This blacklisting of high 
coverage contigs (> 1.5x of average coverage) is acti-
vated by default, but can be deactivated by using the 
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Fig. 7  MGSE genome size estimates of (a) Escherichia coli (b) Saccharomyces cerevisiae (c) Caenorhabditis elegans. The dotted blue lines denote the ge-
nome assembly sizes of the standard reference organisms. The y-axis was automatically set to a range that highlights differences between the genome 
size prediction approaches
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‘--ignore’ flag. However, there are some cases in which 
it is not recommended to blacklist high coverage con-
tigs, as shown for polyploids and organisms with a high 
degree of genomic repeats. Including the ‘--ignore’ flag 
can lead to better results in these cases. The user can run 
the busco2ploidy.py script to assess the apparent ploidy 
of the assembly before running MGSE, in order to decide 
upon the optimal parameters. This script provides a fre-
quency distribution plot of the BUSCO genes, and gives 
the user a ‘pseudo ploidy number’. Alternatively, the 
user can define the ‘--blacklist_factor’ instead of using 
the ‘--ignore’ option. To use this method, the user can 
set the ‘--blacklist_factor’ to be ‘1.5 times the pseudo 
ploidy number’, which raises the cutoff for high coverage 
sequences, making it suitable for polyploid genomes and 
ensuring that only sequences with unusually high cover-
age are removed.

Further, coverage of the input datasets to MGSE signifi-
cantly impacts the MGSE estimates. This is evident from 
the results of the coverage threshold analysis (Additional 
File 6). For Arabidopsis, the minimum number of bases 
(Mbp) required for optimal MGSE estimates from long 
reads was found to be 500 Mbp and the minimum num-
ber of bases required for optimal MGSE estimates from 
short reads was found to be 750 Mbp (Fig. 8a and b). For 
comparison, the minimum number of bases required for 
successful genome size prediction by GenomeScope2 
based on short reads turned out to be 2500 Mbp (Fig. 8c). 
Given that the expected genome size of A. thaliana is 
~ 150 Mbp, the minimum coverage of datasets for a suc-
cessful MGSE run based on long reads was found to be 
~ 3X, while that based on short reads was found to be 
~ 5X. These minimum coverage values were significantly 
lower than the minimum coverage of short read datasets 
needed for an optimal GenomeScope2 prediction, which 
was ~ 17X. MGSE’s applicability to both long and short 
reads coupled with its ability to predict genome sizes 
based on datasets with low coverage values, makes it a 
valuable tool in addition to the existing kmer-based tools.

Finally, the runtime analyses of MGSE and Genome-
Scope2 revealed interesting patterns (Additional File 7). 
When comparing MGSE and GenomeScope2 in terms of 
the total runtime and the size of the input dataset, MGSE 
had higher runtimes than GenomeScope2 (Fig. 9). How-
ever, the computationally intensive step is the read map-
ping and MGSE could also be started with precomputed 
BAM files. When only considering the runtimes of cov-
erage calculation and genome size prediction, the MGSE 
runtimes show a near plateau. For very large datasets, the 
MGSE and GenomeScope2 runtimes started to converge 
(Fig. 9). This indicates that MGSE can perform on par or 
even more efficiently than GenomeScope2 on very large 
datasets.

Considerations about performance and outlook
MGSE performs best on a high contiguity assembly and 
requires a mapping of short or long reads to this assem-
bly. Accurate coverage calculation for each position in 
the assembly is important and contigs display artificially 
low coverage values towards the ends. This is caused by a 
reduction in the number of possible ways in which reads 
can cover contig ends. The shorter a contig, the more 
the apparent coverage of this contig is reduced. Given 
that many modern assemblies are characterized by N50 
values of > 10Mbp, this effect can be neglected. Since a 
read mapping is required as input, MGSE might appear 
less convenient than classical k-mer-based approaches at 
first look. However, these input files are already available 
for many plant species, because such mappings are often 
part of the assembly (quality control) process [26, 27, 93, 
94]. Future genome sequencing projects are likely to gen-
erate high continuity assemblies [25] and read mappings 
in the polishing process.

One advantage of MGSE is the possibility to exclude 
reads originating from contaminating DNA even if the 
proportion of such DNA is high. Unless reads from bac-
terial or fungal contaminations were assembled and 
included in the reference sequence, the approach can 
handle such reads without identifying them explicitly. 
This is achieved by discarding unmapped reads from 
the genome size estimation. MGSE works best with a 
high contiguity assembly and assumes all single copy 
regions of the genome are resolved and all repeats are 
represented by at least one copy. Although the amount of 
contamination in reads is usually low, such reads are fre-
quently observed due to the high sensitivity of next gen-
eration sequencing methods [35, 95–97].

Reads originating from PCR duplicates could impact 
k-mer profiles and also predictions based on these pro-
files if not filtered out. After reads are mapped to a 
reference sequence, read pairs originating from PCR 
duplicates can be identified and removed based on identi-
cal start and end positions as well as identical sequences. 
This results in the genome size prediction by MGSE 
being independent of the library diversity. If the cover-
age is close to the read length or the length of sequenced 
fragments, reads originating from PCR duplicates can-
not be distinguished from bona fide identical DNA frag-
ments. Although MGSE results get more accurate with 
higher coverage, after exceeding an optimal coverage the 
removal of apparent PCR duplicates could become an 
issue. Thus, a substantially higher number of reads origi-
nating from PCR-free libraries could be used if duplicate 
removal is omitted. Depending on the sequencing library 
diversity, completely skipping the PCR duplicate removal 
step might be an option for further improvement. As 
long as these PCR duplicates are mapped equally across 
the genome, MGSE can tolerate these artifacts. This is in 
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Fig. 8  Coverage threshold analyses of (a) MGSE on long read datasets, (b) MGSE on short read datasets, and (c) GenomeScope2 on short read datasets. 
The dotted black line indicates the minimum coverage required for reliable genome size estimation
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fact shown by the MGSE estimates of E. coli, S. cerevisiae, 
and C. elegans based on short read datasets. Removal of 
PCR duplicates from these datasets does not impact the 
MGSE size estimates (Fig. 7).

All methods are affected by DNA of the plastome and 
chondrome integrated into the nuclear chromosomes 
[98, 99]. K-mers originating from these sequences are 
probably ignored in many k-mer-based approaches, 
because they appear to originate from the chondrome or 
plastome, i.e., k-mers occur with very high frequencies. 
The apparent coverage in the mapping-based calculation 
is biased due to high numbers of reads which are errone-
ously mapped to these sequences instead of the plastome 
or chondrome sequence.

Differences in the GC content of genomic regions were 
previously reported to have an impact on the sequencing 
coverage [100, 101]. Both, extremely GC-rich and AT-
rich fragments, respectively, are underrepresented in the 
sequencing output mainly due to biases introduced by 
PCR [102, 103]. Sophisticated methods were developed 
to correct coverage values based on the GC content of 
the underlying sequence [103–105]. The GC content of 
genes selected as reference regions for the coverage esti-
mation is likely to be above the 36.3% average GC con-
tent of plants [77]. This becomes worse when only exons 
are selected due to the even higher proportion of coding 
sequence. Although a species-specific codon usage can 
lead to some variation, constraints of the genetic code 
determine a GC content of approximately 50% in coding 
regions. The selection of a large set of reference regions 
with a GC content close to the expected overall GC con-
tent of a genome would be ideal. However, the overall GC 
content is usually unknown, as the GC content of regions 
missing in the reference sequence is not known and can-
not be reliably inferred from the reads. As a result, the 

average sequencing coverage could be overestimated 
leading to an underestimation of the genome size. Future 
investigations would be necessary to develop a correction 
factor for this GC bias of short reads to further optimize 
the genome size prediction.

Many plant genomes pose an additional challenge due 
to recent polyploidy or high heterozygosity. Once high 
contiguity long read assemblies become available for 
these complex genomes, a mapping-based approach is 
feasible. As long as the different haplophases are properly 
resolved, the assessment of coverage values should reveal 
a good estimation of the genome size. Even the genomes 
of species which have recently undergone polyploidiza-
tion could be investigated with moderate adjustments to 
the workflow. Reference regions need to be selected to 
reflect the degree of ploidy in their copy number.

With the widespread adoption of long read sequenc-
ing technologies in plant genomics, MGSE can turn out 
to be an important tool for genome size estimation. The 
major issue when developing tools for genome size pre-
diction is the absence of a gold standard. In this study, 
predictions were compared against the best available 
genome sequences for the respective species. Several of 
these genome sequences should be very close to a perfect 
representation of the genome and thus have the potential 
to reveal the true genome size. Predictions generated by 
MGSE were constantly close to the sizes of these almost 
complete genome sequences. Moreover, MGSE is able 
to handle low coverage datasets of both short and long 
reads, and still return reasonable genome size estima-
tions. Finally, MGSE is universally applicable to all spe-
cies and is not restricted to plants.

Fig. 9  (a) Comparative analysis between total MGSE and GenomeScope2 runtimes. (b) Comparative analysis between coverage calculation combined 
with MGSE genome size estimation runtimes and GenomeScope2 total runtimes
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