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Abstract 

Background The WRKY gene family plays important roles in plant growth, development, and response to various 
stresses. Despite the significance of Sainfoin (Onobrychis viciifolia) as an important forage legume species, WRKY genes 
in this species have not been studied thoroughly. The aim of this study was to identify WRKY genes family in Sainfoin 
genome, particularly those linked to response to drought, salt, and alkali stresses.

Results A total of 253 WRKY genes (OvWRKY) were identified in Sainfoin. Phylogenetic analysis and conserved 
domain analysis divided these genes into seven subfamilies with similar conserved motifs but different gene struc-
tures. Collinearity analysis identified 232 duplicated gene pairs, including four tandem repeat pairs, indicating role 
of segmental duplication in the expansion of the OvWRKY gene family. Transcriptome analysis revealed that highly 
expressed genes under drought, salt, and alkali stress mostly belonged to groups I, III, IId, IIa, and IIb. OvWRKY89 
was down-regulated, and OvWRKY147 was up-regulated by drought, salt, and alkali treatments. OvWRKY240 
and OvWRKY164 were down-regulated by both drought and salt stress, and OvWRKY36, OvWRKY107, OvWRKY65, 
and OvWRKY200 were down-regulated by both salt and alkali stress. Protein association network analysis using STRING 
suggested that OvWRKY89 is functionally associated with five other WRKY proteins and four stress-related proteins.

Conclusions In this study, we identified and analyzed the WRKY gene family members in Sainfoin for their physico-
chemical properties, gene structures, conserved motifs, phylogenetic relationships, and expression under drought, 
salt, and alkali stresses. Some key genes were identified based on enrichment analysis, potential protein network, 
and the expression under drought, salt, and alkali stress. This study provides insights into the diversity of the WRKY 
gene family and their roles in drought, salt, and alkali stress responses in Sainfoin.
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Background
Sainfoin (Onobrychis viciifolia) is a perennial forage 
belonging to the family Leguminosae [1, 2]. It is known 
for non-bloating, anthelmintic, and anti-methanogenic 
properties, as well as high resistance to alfalfa weevil. Its 
protein content is comparable to that of alfalfa (Medicago 
sativa) [3]. Furthermore, Sainfoin possesses a thick, deep 
taproot that harbors a significant population of rhizobia, 
facilitating biological nitrogen fixation, which enhances 
soil nutrient content and minimizes the leaching of inor-
ganic nitrogen into the environment [4]. These qualities 
render Sainfoin a promising candidate for high-quality 
forage production. Research on Sainfoin is primarily 
focused on aspects such as forage yield, genetic diversity, 
and morphological traits [5–9]. However, in recent years, 
significant advancements have been achieved in genome 
assembly, genetic marker development, and omics analy-
sis [10–13]. These advancements provide valuable tools 
for identifying resistance genes and elucidating the 
molecular mechanisms underlying stress responses at the 
genomic level in Sainfoin.

In light of rapid global climate change, drought has 
emerged as an important factor impacting the develop-
ment of grassland livestock [2]. Also, soil salinization is 
increasingly exacerbated by environmental factors and 
human activities, affecting the growth and productivity of 
plants and simultaneously reducing the value of the land 
[14]. In arid and semi-arid regions, salinity, alkali stress, 
and water scarcity are the primary factors affecting plant 
growth and development, leading to suboptimal quality 
and limited resource availability [15]. Plants harbor mul-
tiple stress adaptive mechanisms at molecular, cellular, 
physiological and biochemical levels, including transcrip-
tion factors (TF) such as the WRKY gene family, which 
regulate the expression of stress-induced genes [16, 17]. 
The plant WRKY TF family is characterized by the highly 
conserved heptapeptide sequence"WRKYGQK"located 
at the N-terminus, and a DNA-binding domain at the 
C-terminus, which consists of zinc fingers [18, 19]. In 
various signaling pathways, such as the MAPK signaling 
cascade pathway and ROS scavenging [20], WRKY TFs 
recognize the W-box (C/TTG ACC /T) within the core 
promoters and play important roles in regulating the 
expression of key genes involved in plant responses to 
drought, salt, and alkali stresses [18].

The WRKY gene family has been studied across various 
forage species, including elephant grass (Cenchrus pur-
pureus) [19], red clover (Trifolium pratense) [21], white 
clover (Trifolium repens) [22], alfalfa (Medicago sativa)
[23, 24], and Medicago truncatula [25]. MsWRKY11 
exhibits high expression levels in both stem and phloem 
tissues and has been shown to regulate drought resist-
ance in alfalfa by influencing stomatal density. It is also 

hypothesized that MsWRKY22 may be involved in the 
expression of MsWRKY11 through binding to the W-box 
in its promoter region[23]. Heterologous overexpression 
of GsWRKY20 in alfalfa enhanced drought resistance by 
increasing the thickness of the cuticle layer to minimize 
water loss [26]. Among the 346 WRKY genes identified 
in Tritipyrum, TtWRKY256 is sensitive to salt stress, and 
is on the same evolutionary branch as the salt tolerance 
genes AtWRKY25 and AtWRKY33 [27]. A specifically 
upregulated GsWRKY23 gene was identified in salt-toler-
ant Glycine soja, and was found to be important for the 
regulation of ion homeostasis in plants under salt stress 
and improvement of plant salt-alkali tolerance by main-
taining low  Na+/K+ and  Cl−/NO3

− ratios [28]. Several 
candidate genes were reported for salt-alkali tolerance in 
Sorghum bicolor, which play pleiotropic regulatory roles 
in growth and development, stress response, forage value, 
and signaling network. It provided potential resources for 
genetic research in salt tolerance breeding [29].

In addition, several WRKY genes have been associated 
with drought, salt, and alkali stress tolerance across dif-
ferent forage species, such as LcWRKY5 in Sheepgrass 
(Leymus chinensis) [30], HvWRKY38 in Bahiagrass 
(Hordeum vulgare) [31], and FtWRKY6, 7, 31, and 74 
in Buckwheat (Fagopyrum tataricum) [32], DgWRKY 
in Orchardgrass (Dactylis glomerata) [33], WRKY41 in 
Annual ryegrass (Lolium multiflorum) [34], and WRKY72 
A in reed canary grass (Phalaris arundinacea L.) [35], 
GmWRKY16 in soybean (Glycine max) [36], MsWRKY33 
in alfalfa [37]. The functions of WRKY genes in Sainfoin 
remain largely unexplored, particularly under drought, 
salt, and alkali stresses.

In this study, we identified members of the WRKY gene 
family in the Sainfoin genome and conducted a com-
prehensive analysis of their physicochemical properties, 
chromosomal distribution, gene structures, conserved 
motifs, and phylogenetic relationships. Gene Ontology 
(GO) functional annotation and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
ses revealed their involvement in the metabolic pathways 
and signaling transduction pathways. Furthermore, we 
examined the expression levels of the OvWRKY gene 
family members under drought, salt, and alkali stresses. 
We identified drought, salt, and alkali stress-responsive 
WRKY genes, providing a theoretical foundation for 
further investigations into the molecular mechanisms 
underlying WRKY-mediated stress tolerance in Sainfoin.

Results
Identification and characterization of the OvWRKY gene 
family
Hidden Markov Model (HMM) and Blast based analysis 
identified a total of 253 putative OvWRKY genes in the 
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Sainfoin genome. These OvWRKY genes were designated 
as OvWRKY1 to OvWRKY253 based on their location 
(from top to bottom) on the chromosome Chr.1a-7d. 
The physicochemical properties of the OvWRKY gene 
family and their subcellular localization are summarized 
in Table S1. These OvWRKY genes encode proteins that 
range from 90 (OvWRKY209) to 762 (OvWRKY131) 
amino acids in length, with theoretical isoelectric 
point (pI) ranging from 4.8 (OvWRKY149) to 9.91 
(OvWRKY47, OvWRKY64, OvWRKY81, OvWRKY99, 
and OvWRKY100), with OvWRKY132 designated as 
a neutral protein (pI = 7). Notably, 57% of OvWRKY 
members are acidic (pI < 7.0). The instability index of 
members ranged from 26.23 (OvWRKY211) to 72.71 
(OvWRKY166), with 21 stable OvWRKY proteins (insta-
bility index < 40), while the aliphatic index varied from 
39.89 (OvWRKY209) and 105.05 (OvWRKY89). All iden-
tified proteins were hydrophilic except for OvWRKY54, 
OvWRKY70, OvWRKY88, and OvWRKY89, which 
exhibited hydrophobic characteristics (GRAVY > 0). 
Subcellular localization predictions indicated that 234 
OvWRKY proteins localize in the nucleus, while the 
remaining 19 were distributed in chloroplast, plasma 
membrane, peroxisomal, cytoplasm, and mitochondria 
(Table S1).

Chromosomal distribution and phylogenetic analysis 
of the OvWRKY gene family
Chromosomal localization analysis revealed that the 
distribution of 253 OvWRKY genes is uneven across 28 
chromosomes (Fig.  1). Notably, chromosome 2a-d har-
bors the highest number (72) of OvWRKY genes, while 
chromosome 3a-d contains the lowest (13). No correla-
tion was observed between chromosome length and the 
number of OvWRKY genes. However, the similarities in 
gene location and quantity on homologous chromosomes 
suggest a shared inheritance and genetic variation pro-
cess throughout evolution.

To investigate the OvWRKY gene family members, a 
phylogenetic tree comprising AtWRKYs and OvWRKYs 
(protein sequences) was constructed using MEGA11. The 
253 OvWRKY members were divided into three major 
groups (I-III); where group II was further subdivided into 
five subgroups (IIa, IIb, IIc, IId, IIe), containing 16, 34, 
62, 25, and 40 members, respectively (Fig. S1). Group I 
contained 48 OvWRKY genes (18.97% members), while 
group III includes 28 OvWRKY genes (10.27% members) 
(Table S1).

Conserved motifs and exon–intron structures of OvWRKY 
gene family
The OvWRKY family members were analyzed for con-
served domains and exon–intron architecture (Fig.  2). 

Our findings indicated that, compared to different 
groups/subgroups, genes within the same groups/sub-
groups exhibit identical/similar conserved motifs. The 
motif 1 (typical WRKY conserved sequence), motif 2, and 
motif 3 (both represent zinc finger motifs) were identi-
fied in nearly all OvWRKY proteins. The motif sequence 
is shown in supplementary Fig.  2. In addition, group 
I includes motif 9 as well as motif 6, which is also pre-
sent in OvWRKY196 (Group IIe members). All group IIa 
members contained both motif 7 and motif 4, and group 
IIb harbored motif 5, motif 8, and two repeated motif 
4. With the exception of OvWRKY41 and OvWRKY10, 
the remaining members of group IIb also included motif 
7. Furthermore, several group IIc members also har-
bor motif 5, and group IId members contain motif 10, 
also observed in most members of group III. There is a 
lack of fully conserved motifs in group IIe. The results 
suggest that the differences in motifs between different 
members of the groups/subgroups may cause functional 
differences.

For insights into the extent of divergence of OvWRKY 
genes, the UTR-exon–intron organization was compared 
based on the annotation (Table  S2). Among OvWRKY 
genes, the number of exons ranged from one to eight, 
while the intron counts ranged from zero to seven. Nota-
bly, four group IIe genes (OvWRKY53, OvWRKY70, 
OvWRKY87, and OvWRKY106), localized on homolo-
gous chromosome 2, possessed a single exon. Only 
OvWRKY150 contains eight exons, and OvWRKY128 
contains seven exons, and these two members of group 
I are located on homologous chromosome 4. The 
other OvWRKY genes showed two to six exons. Genes 
OvWRKY236 and OvWRKY242 contained five exons, 
compared to other group III members, which contained 
three exons.

Analysis of gene duplication in the OvWRKY gene family
To investigate the underlying duplication events of 
OvWRKY genes, collinearity relationship analysis of 
OvWRKY genes was performed within and between spe-
cies. After excluding 339 collinear gene pairs between 
homologous chromosomes, 232 collinear gene pairs were 
identified between non-homologous chromosomes, indi-
cating that segmental duplication events occur exten-
sively within the OvWRKY gene families. Most of these 
relationships involved one gene interacting with multiple 
genes, suggesting that gene duplication events occurred 
within this OvWRKY gene family (Fig.  3, Table  1, and 
Table  S3). The high frequency of segmental duplication 
occurred between chromosomes 1 and 2, which con-
tained 39 collinear gene pairs. There are 120 segmental 
duplication events between chromosome 1 and chromo-
somes 2, 4, 5, 6, and 7. Chromosome 3 and 2 showed only 
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7 segmental duplications. Interestingly, chromosome 3 
shared no segmental duplication events with chromo-
somes 1, 4, 5, 6, or 7, and no segmental duplication events 
occurred between chromosome 2 and chromosome 6, or 
between chromosome 4 and chromosome 7. Addition-
ally, only four pairs of tandem repeats were found, which 
included OvWRKY88 and OvWRKY89, OvWRKY99 
and OvWRKY100, OvWRKY107 and OvWRKY108, and 

OvWRKY112 and OvWRKY113. These results indicate 
that fragment duplication may play an important role in 
the diversity and expansion of WRKY gene families.

Evolutionary and lineage-specific expansion analysis of 
WRKY members in O. viciifolia, A. thaliana, and M. trun-
catula identified a total of 231 orthologous pairs between 
O. viciifolia and A. thaliana, and 343 orthologous pairs 
between O. viciifolia and M. truncatula (Fig. 4, Table 1, 

Fig. 1 Chromosomal locations of OvWRKY genes. Each chromosome number is shown in black font, the red font represents the putative WRKY 
genes, and the scale on the left is used to show the physical distance between chromosomes
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and Table S4). The collinearity analysis indicates a higher 
similarity between O. viciifolia and M. truncatula (both 
belong to the legume family) is compared to O. viciifolia 
and A. thaliana. There are only four collinear gene pairs 
between chromosome 3 of A. thaliana and chromosome 
3 of O. viciifolia, with no collinear gene pairs between 
chromosome 3 of O. viciifolia and chromosomes 1, 2, 4, 
and 5 of A. thaliana. There were 4 and 12 collinear gene 
pairs between chromosome 3 of O. viciifolia and chro-
mosome 4 and 2 of M. truncatula, respectively. But no 

collinear relationship with chromosomes 1, 3, 5, 6, 7, and 
8. Interestingly, there are no collinear WRKY gene pairs 
between chromosome 6 of M. truncatula and any chro-
mosome of O. viciifolia, indicating that the WRKY gene 
is replicated specifically in chromosome 6 of M. trun-
catula, which may be the functional specificity of the 
WRKY gene in M. truncatula. These results suggest that 
WRKY genes on these chromosomes play an important 
role in maintaining the stability and genetic diversity of 
functions during Sainfoin domestication, which may have 
influenced traits and adaptations specific to O. viciifolia.

Fig. 2 Phylogenetic tree, conserved motif and gene structure of OvWRKY superfamily. (A) Evolutionary tree of OvWRKY genes family, with different 
colors representing different subfamilies, whose names are shown on the left. (B) Conserved motif visualization according to TBtools, with different 
colored boxes to indicated motifs 1–10. aa indicate protein length. (C) Gene structure visualization, green squares indicate the gene’s UTR, yellow 
squares indicate the gene’s exons, black lines indicate introns, bp indicate sequence length
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Estimation of nonsynonymous (Ka) to synonymous 
(Ks) ratios for WRKY gene pairs showed that 15 gene 
pairs had Ka/Ks ratios greater than 1 (Table  S5, green 
label font), indicating positive selection acting on these 
gene pairs. In addition, for another set of 15 gene pairs, 
Ka/Ks ratios were found to be zero (Table  S5, red label 
font), indicating that these gene pairs may have evolved 
mainly under the influence of neutral selection. 84.41% 
(482/571) of gene pairs had a Ka/Ks ratio less than 1, 

indicating that most OvWRKY genes have undergone 
purification selection post segmental duplication events, 
which may be beneficial for maintaining gene stability 
and function.

Enrichment analysis of OvWRKY gene family
The 253 OvWRKY gene family members were further 
investigated by Gene Ontology (GO) enrichment analysis 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Fig. 3 Duplication events analysis of OvWRKY gene family. Around the circle are the gene names, shown in black font. The two boxes represent 
chromosomes from outside to inside, gene density. The light gray lines in the inner circle represent all collinear gene pairs within the species, 
the dark gray and red lines represent collinear relationships of WRKY genes within homologous chromosomes and between different 
chromosomes, respectively
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enrichment analysis. OvWRKY genes were found to be 
primarily involved in 18 biological processes, 6 molecular 
functions, and 3 cellular component pathways (Fig.  5A, 
Table  S6). All OvWRKY genes were annotated in rela-
tion to the regulation of biological and metabolic pro-
cesses. Among them, 46 OvWRKY genes were enriched 

in response to stimulus; 20 OvWRKY genes were asso-
ciated with developmental process; while 17 OvWRKY 
genes functioned as negative regulation of biological pro-
cess. According to KEGG database enrichment classifi-
cations, 39 OvWRKY genes were found to be involved in 
the plant pathogen interaction pathway and 27 OvWRKY 

Table 1 Number of collinear gene pairs of WRKY genes between species

Species O. viciifolia

chromosome chr1 chr2 chr3 chr4 chr5 chr6 chr7 total

O. viciifolia chr1 52 39 0 32 22 15 12 172

chr2 - 99 7 13 9 0 0 128

chr3 - - 12 0 0 0 0 12

chr4 - - - 58 7 5 0 70

chr5 - - - - 36 29 10 75

chr6 - - - - - 51 32 83

chr7 - - - - - - 31 31

571

M. truncatula chr1 0 0 0 0 0 12 20 32

chr2 5 16 12 0 7 2 0 42

chr3 4 22 0 4 7 28 8 73

chr4 20 9 4 4 8 3 0 48

chr5 1 29 0 0 0 8 0 38

chr6 0 0 0 0 0 0 0 0

chr7 12 0 0 41 0 2 4 59

chr8 13 3 0 12 14 9 0 51

343

A. thaliana chr1 11 15 0 4 11 9 1 51

chr2 8 12 0 12 8 20 11 71

chr3 0 0 4 10 0 1 4 19

chr4 12 17 0 4 11 8 7 59

chr5 1 5 0 7 8 7 3 31

231

Fig. 4 Collinearity analysis between O. viciifolia and A. thaliana, and between O. viciifolia and M. truncatula. Red lines indicate the collinearity 
relationship of WRKY genes across different species
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genes were involved in the plant MAPK signaling path-
way response (Fig. 5B, Table S6).

Analyses of the expression levels of OvWRKY genes 
in response to drought, salt, and alkali stresses
We analyzed the expression patterns of the 253 OvWRKY 
genes under drought, salt, and alkali stress conditions 
using transcriptome data. As illustrated in Fig.  6 and 
Table  S7, this analysis revealed that expression lev-
els for subfamilies group IIc and IIe remained gener-
ally low across different treatments. In contrast, highly 
expressed genes predominantly belonged to groups I, III, 
IId, IIa, and IIb. Notably, these highly expressed genes, 

clustered together within the same branch, exhibited 
similar expression patterns. The transcriptome data also 
showed that the transcripts of 13, 10, and 9 genes were 
undetected under drought, salt, and alkali treatments, 
respectively.

According to the trend analysis, we obtained the four 
trends with the highest enrichment under different treat-
ments and the trend of continuous up-regulation and 
down-regulation of expression. Under drought treat-
ment (Fig. S3 A, Table S7), we observed three trends with 
the highest number of enriched genes containing 35, 33, 
and 30 genes, respectively; this was consistent with gene 
expression trends under salt treatment (Fig. S3B), albeit 

Fig. 5 Enrichment analysis of OvWRKY gene family. (A) GO enrichment analysis of OvWRKY genes. Yellow, blue, and red areas are indicated 
biological process, molecular function, and cell component, respectively. (B) KEGG enrichment analysis of OvWRKY genes
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differing in terms of gene enrichment numbers. At the 
same time, only the second trend feature showed the 
same expression trend change under alkali treatment 
(Fig. S3 C), while the other three trends under alkali 
treatment did not exhibit the same characteristics under 
drought and salt treatments, and the trend with the high-
est enrichment under alkali treatment showed a continu-
ously down-regulated expression condition, containing 
81 genes.

Venn analysis revealed 6, 28, and 10 common genes 
exhibiting more than a two-fold change under drought, 
salt, and alkali stress conditions, respectively (Fig.  7, 
Table  S8). Among them, only four genes (OvWRKY147, 
OvWRKY139, OvWRKY131, and OvWRKY154) were 
up-regulated, and the rest were down-regulated. Fur-
ther, the intergroup analysis of these genes (Fig. S4) 
identified two differentially expressed genes OvWRKY89 
(down-regulated under three stresses) and OvWRKY147 
(up-regulated under three stresses). Additionally, 
OvWRKY240 and OvWRKY164 were down-regu-
lated under both drought and salt stress, while four 
genes OvWRKY36, OvWRKY107, OvWRKY65, and 
OvWRKY200 were down-regulated under both salt and 
alkali stress (Table  S8). According to GO enrichment 
analysis (Table  S6), it was found that these eight genes 
were involved in the regulation of biological processes 
and metabolic processes. Among them, OvWRKY36 was 
annotated in the biological process of response to stim-
ulus. To validate the transcriptomic data, we designed 
specific primers for reverse transcription quantitative 
PCR (RT-qPCR) analysis. The results indicated that the 
expression patterns were generally consistent with the 
transcriptome data across different treatment conditions 
(Fig. 8).

Cis-acting elements were identified in the promoters of 
34 common genes into 25 different functions (Fig. 9, Fig. 
S5), mainly including abiotic and biotic stresses functions 
(drought and high-salinity stress responsive, drought 
inducibility, MYB binding sites, etc.), phytohormone 
response (abscisic acid responsiveness and auxin respon-
sive, etc.), and plant growth and development (light 
responsive and meristem expression, etc.). Most genes 
harbored MYB binding sites, including OvWRKY89 

Fig. 6 Analyses of the expression levels of OvWRKY genes 
under drought, salt, and alkali stress. The levels of gene expression 
are displayed by clustering based on subfamily members, 
with different colors of the phylogenetic tree branches representing 
different subfamilies. The gene names are shown on the far right, 
and different treatments are indicated at the bottom. The color 
scale shows fold-change values, with negative values representing 
down-regulated expressions in blue and positive values representing 
up-regulated expressions in red

◂
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Fig. 7 Venn analyses of stress responsive OvWRKY genes. The number of differentially expressed genes under drought (A), salt (B), and alkali (C) 
treatments, respectively. Different colors represent differentially expressed genes numbers within the treatment groups at 3 h, 6 h, 12 h, 24 h, and 48 
h. The overlaps illustrate the number of common and unique genes between different treatment groups
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with a drought induction response element, suggesting 
its involvement in drought stress response. It was also 
observed that OvWRKY124 contains one flavonoid bio-
synthesis-related element, suggesting a possible involve-
ment in the flavonoid synthesis, but its specific function 
requires further exploration.

Potential protein interaction analysis of the OvWRKY 
superfamily
We further analyzed the potential interaction protein 
network of these common genes (Fig.  10). OvWRKY89 
potentially interacts with nine other proteins and 
OvWRKY129 interacts with one protein. OvWRKY129, 
OvWRKY233, and OvWRKY239 are all involved in the 
response to stimulus process. According to annotation 
files [10], we found that LeOno02bG0229000 and LeOn-
o07aG0383900 are homologous to Arabidopsis TIFY10 
A (AT1G19180) and ZAT10 (AT1G27730). Furthermore, 
LeOno06aG0241700, LeOno07bG0394100, and LeOno07 
dG0402700 are homologous to Arabidopsis ZAT6 
(AT5G04340) within the C2H2 transcription factor fam-
ily. The identification of these specific pathways along 

with their associated genes provides valuable insights 
into further understanding the functional roles of WRKY 
gene family members.

Discussion
Sainfoin is an important forage crop that has attracted 
considerable attention due to its effectiveness in reduc-
ing the risk of bloat hazards in ruminants [38]. Also, its 
nutrient-rich profile and feed value are comparable to 
alfalfa, rendering it highly valuable within agricultural 
systems [3]. However, drought, salt, and alkali stress 
remain the primary constraints affecting its growth, 
biomass yield, and nutritive value potential [14, 39, 40]. 
In plants, the WRKY gene family is known to be impor-
tant for a number of stress responses [18], however as of 
now, the role of OvWRKY genes has not been studied in 
Sainfoin. Identification and analysis of stress responsive 
WRKY genes will help to understand their role in molec-
ular mechanisms in Sainfoin under drought, salt, and 
alkali conditions.

In this study, a total of 253 WRKY genes, designated as 
OvWRKY1-OvWRKY253 were identified in Sainfoin. The 

Fig. 8 Expression patterns of OvWRKY genes under drought, salt, and alkali stress conditions. The gray bar and red line chart represented 
RT-qPCR and RNA-seq, respectively. The lines on the bar chart represent the standard error lines, SPSS was used to calculate the significance level 
of the difference, and asterisks are used to represent (*, P ≤ 0.05; **, P ≤ 0.01)
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chromosomal distribution of OvWRKY genes reflects 
natural selection and functional constraints, and a trend 
indicative of more genes on longer chromosomes [41]. 
Although there seems to be no correlation between the 
number of OvWRKY genes and chromosome length, it 
is noteworthy that Sainfoin, being an autotetraploid [10], 
experiences genetic phenomena distinct from diploid 
species. Polyploids not only undergo gene recombina-
tion and loss of homologous genes but also exhibit biased 
gene expression patterns [42]. This genetic complexity 
provides a robust foundation for species adaptation to 
adverse environmental conditions [42–44]. Gene replica-
tion is essential for the expansion of gene families and the 
evolution of genomes [45]. We found that the position 
and number of OvWRKY genes within each homologous 
chromosomes were remarkably similar (Fig.  1), which 
may be attributed to evolutionary processes and fam-
ily expansion. Interestingly, transcriptome data revealed 
certain genes that are not expressed under treatment 
conditions; these unexpressed genes occupy very similar 

positions on different chromosomes within the homolo-
gous chromosomes, indicating skewed gene expression 
in polyploid species. Furthermore, different OvWRKY 
subfamilies showed similarities as well as differences in 
conserved motifs within and across subfamilies (Fig.  2), 
indicating their functional diversity. Moreover, their spe-
cific distribution contributes to functional differentiation 
within the OvWRKY gene family.

The MAPK signaling cascade, consisting of MAPKKK-
MAPKK-MAPK, is an essential mode of activation or 
inhibition of specific transcription factors (TFs) through 
phosphorylation, thereby regulating gene expression 
under drought, salt, and alkali stresses [46–50]. WRKY 
TFs function downstream of the MAPK signaling path-
way. In rice, OsWRKY30 is capable of interacting with 
OsMPK20-4 and OsMPK20-5, can be phosphorylated 
by OsMP3, OsMPK7, and OsMPK14 during response 
to drought [51]. It has also been shown that allogeneic 
overexpression of SbMPK14 inhibits the activities of ERF 
and WRKY TFs and enhances plant sensitivity to drought 

Fig. 9 Cis-elements analysis in the promoter region of the OvWRKY genes. Different color modules represent different functional annotations
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[52]. The GhMEKK3/8/31-GhMAPKK5-GhMAPK11/23 
signaling cascade can regulate the function of WRKY 
TFs under drought and salt stress [53]. Downregula-
tion of OcWRKY22 under salt stress played a role in the 
MAPK signaling pathway, reducing respiratory cell death 
[54]. Based on the KEGG database, 27 OvWRKY were 
found to be significantly enriched in the MAPK signal-
ing pathway (Fig.  5B). Interestingly, 14 of these genes 
belong to the group IIe subfamily and 13 to the group I 
family. Combined with transcriptome expression pattern 
analysis, these results suggest that the function of WRKY 
genes in Sainfoin may be mainly reflected in the group IIe 
and group I subfamilies, which are closely related to plant 
drought, salt, and alkali resistance.

Analysis of gene expression patterns and trends is use-
ful for a better understanding of the temporal and spatial 
rules of gene expression and their synergistic pathways. 
As shown in Figure S2 A, among these six trends, 15 
genes have been implicated in environmental adapta-
tion and signal transduction pathways. Notably, seven 
genes belong to the group IIe subfamily and the other 
eight genes belong to the group I family. Gene expression 
bias exists in polyploid species [42]. This further indi-
cates the conservation, functional stability, and expres-
sion bias of the WRKY gene family during the genetic 
evolution of Sainfoin. Overexpression of AtWRKY57 
significantly enhances drought resistance in Arabi-
dopsis [55]. TpWRKY46 was significantly induced by 

drought stress [21], while overexpression of MsWRKY11 
enhanced drought resistance in alfalfa [56]. Structure-
similar WRKY genes are induced by similar methods, 
with both AtWRKY25 and AtWRKY33 being responsive 
to salt, drought, and cold stresses [57]. GmWRKY54 may 
enhance the drought and salt tolerance of transgenic A. 
thaliana by regulating DREB2 A and STZ/Zat10 [58]. 
Among the DEGs common to three stresses, OvWRKY89 
was found to be homologous to AtWRKY33, which was in 
the center of the network and regulated cytochrome P450 
gene CYP94B1 through self-activation and phosphoryla-
tion of MAP kinase in response to salinity and other abi-
otic stresses [59, 60]. The specific genes identified in this 
study provide valuable insights for understanding their 
functions; however, their regulatory mechanisms need to 
be further investigated.

Protein–protein Interaction Networks (PPI) are crucial 
for identifying key interacting partners in multiple stress 
response pathways and can also reveal functional signifi-
cance [61–64]. PPI networks have been utilized to screen 
key antiretroviral factors such as AP2/ERF, WRKY, ZAT, 
MSI, and VRN in plants like red clover [63], alfalfa [64], 
and Vicia sativa [65]. Through the PPI network, we have 
screened several potentially interacting TFs, and the 
function of these TFs in adversity has been reported. 
AtTIFY10 A is involved in plant growth, development, 
and defense response [66]. Heterologous expression of 
TaWRKY increases salt and osmotic stress tolerance, 

Fig. 10 Protein interaction network analysis of OvWRKY family. Node: gene name (TF in pink, gene in blue). The larger the node, the stronger 
the connection. The line segment indicates the interaction between proteins
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accompanied by overexpression of ZAT10, and induces 
the expression of marker gene AtPR1 in transgenic A. 
thaliana [67]. Overexpression of AtZAT6 enhances salt 
stress tolerance via induction of CPK9 and CPK25, and 
antioxidant enzyme activity [68]. These studies provide 
strong evidence of our interaction results. At the same 
time, we found that OvWRKY233 and OvWRKY129 
might play a role in environmental stress responses, the 
interaction between these TFs needs to be further veri-
fied. These genes screened through the PPI network may 
play an important role in the functional evolution of 
the WRKY family, providing a reference for subsequent 
studies.

Conclusions
In this study, a total of 253 WRKY genes were identified 
in Sainfoin and analyzed for different characteristics, 
including phylogenetic analysis. Segmental duplication 
seems to be the main mode of expansion of the WRKY 
gene family in Sainfoin. KEGG enrichment and expres-
sion pattern analysis revealed that group IIe and group 
I families dominated the functional evolution in Sain-
foin. In addition, two OvWRKY genes, OvWRKY89 and 
OvWRKY147, were down-regulated and up-regulated, 
respectively, under drought, salt and alkali stresses. 
OvWRKY89 also showed potential interactions with 
multiple WRKYs, and other stress-related TFs based on 
the PPI network. In summary, this study provides valu-
able insights into the functional characteristics of the 
OvWRKY genes and contributes to the mining of key 
stress response genes in Sainfoin.

Materials and methods
Sequence retrieval and in silico analysis of characteristics 
of WRKY genes in Sainfoin
The Sainfoin genome sequence was obtained from lit-
erature [10]. To identify WRKY genes within the Sain-
foin genome, the Arabidopsis thaliana WRKY sequences 
were used as a reference (https:// www. arabi dopsis. org/ 
browse/ gene_ family/ WRKY). The Hidden Markov Model 
(HMM) profile of the WRKY domain (PF03106) was 
retrieved from the Pfam database (https:// www. ebi. ac. uk/ 
inter pro/ entry/ pfam/) and subsequently was employed 
in TBtools to identify OvWRKY family members [69]. 
Additionally, the native Blastp tool was employed to 
similarity search A. thaliana proteins, with the e-value 
threshold set at 1e-5 to obtain homologous proteins pre-
sent in the Sainfoin genome. For further verification CD-
search was done (https:// www. ncbi. nlm. nih. gov/ Struc 
ture/ bwrpsb/ bwrpsb. cgi) to confirm presence of WRKY 
domain among the OvWRKY members. The identified 
WRKY proteins underwent an analysis of their physi-
cal and chemical properties were analyzed by Protein 

Paramter Calc function of TBtools [69]. Subcellular 
localization was predicted on an online website (https:// 
wolfp sort. hgc. jp/). Finally, all identified sequences were 
systematically named according to their locations on the 
chromosome, with gene location visualization performed 
using TBtools [69].

Phylogenetic tree and duplication analysis of OvWRKYs
The Align by ClustalW function in the MEGA11 software 
[70] was used to analyze multiprotein sequence align-
ments of WRKY protein from both Sainfoin and Arabi-
dopsis to construct a distance matrix. The optimal model 
for phylogenetic analysis was selected using the Models 
function, neighbor-joining (NJ), with a bootstrap value 
set at 1000 to construct a phylogenetic tree. This phyloge-
netic tree was visualized using an online website (https:// 
itol. embl. de/ login. cgi). The Comparative Genomics func-
tion of TBtools software [69] was used to analyze the col-
linear gene pairs between genomes, and the Advanced 
Circos function was used to visualize the collinear gene 
pairs, and the Ka/Ks ratio between gene pairs was calcu-
lated using the Simple Ka/Ks Calculator function.

Gene structure and conserved motif analysis of OvWRKY 
genes
The MEME online tools were utilized to identify con-
served motifs within full-length protein sequences 
(https:// meme- suite. org/ meme/ index. html), with param-
eters set to detect a maximum of ten motifs. Both gene 
structure and these conserved motifs were subsequently 
visualized using the Gene Structure View function of 
TBtools software [69].

Cis‑acting elements analysis of OvWRKY genes
The 2,000 bp promoter region sequences upstream of the 
WRKY genes were extracted using Fasta Tools function 
of TBtools software [69] and used for identification of 
cis-acting elements at online PlantCare database (https:// 
bioin forma tics. psb. ugent. be/ webto ols/ plant care/ html/). 
R software was utilized for organizing tabular data, while 
TBtools was employed for visualization. Finally, Adobe 
Illustrator software was used to enhance the overall 
presentation.

Expression pattern and enrichment analysis of OvWRKY 
genes
The RNA-seq data of Sainfoin under drought, salt, 
and alkali stress treatments have been deposited in the 
National Center for Biotechnology Information database 
(Project: PRJNA1234881). According to the fold-change 
values of transcriptome data compared with CK at dif-
ferent times under drought, salt, and alkali treatment, 
the HeatMap function of TBtools software was used to 

https://www.arabidopsis.org/browse/gene_family/WRKY
https://www.arabidopsis.org/browse/gene_family/WRKY
https://www.ebi.ac.uk/interpro/entry/pfam/
https://www.ebi.ac.uk/interpro/entry/pfam/
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
https://wolfpsort.hgc.jp/
https://wolfpsort.hgc.jp/
https://itol.embl.de/login.cgi
https://itol.embl.de/login.cgi
https://meme-suite.org/meme/index.html
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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map gene expression heat map. By using ShortTime-
series Expression Miner (STEM) software, trend analy-
sis was performed according to the expression levels of 
all differential genes. Additionally, Gene Ontology (GO) 
enrichment analysis, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment and potential 
protein interaction network analysis were performed 
using the Gene Denovo analysis platform (https:// www. 
omics mart. com/).

Plant materials and treatments
In this study, the seeds of Onobrychis viciifolia cv. Gansu 
were deposited in Chinese Crop Germplasm Resources 
Information System (No. 17B026028), and they were 
identified by Professor Lili Nan (Gansu Agricultural Uni-
versity). They were provided by Gansu Agricultural Uni-
versity, China, and were potted in the Institute of Animal 
Science, Chinese Academy of Agricultural Sciences in 
Beijing (40°02ʹN, 116°28ʹE). After sprouting on moist fil-
ter paper, the seeds were cultivated in pots with nutrient-
rich soil. For 30 days, the seedlings were cultivated under 
controlled settings at 25℃ (16 h of light) and 23℃ (8 h of 
darkness). Following this growth period, the plants were 
subjected to treatments with −0.8 MPa polyethylene gly-
col (PEG-6000), 75 mM NaCl, or 75 mM a mixture of 
sodium bicarbonate to sodium carbonate at a ratio of 2:1 
 (NaHCO3:Na2CO3 = 2:1) to simulate drought, salt, and 
alkali stress, respectively. Leaves were collected at 0  h, 
3 h, 6 h, 12 h, 24 h, and 48 h post-treatment, and all sam-
ples were collected in three biological replicates.

RNA extraction and quantitative real‑time PCR
Total RNA was extracted using an RNA extraction kit 
(P134) and the first-strand cDNA was synthesized using 
a cDNA synthesis kit (A234) as described previously [71] 
with minor modifications. We used the SLAN-965 Real-
time PCR system and 2 × RealStar Fast SYBR qPCR Mix 
(Low ROX) kit (A304) for RT-qPCR experiments. All kits 
are provided by the Genstar, Beijing, China. The OvActin 
gene was used as a housekeeping gene [72]. The primer 
sequences used in this study are listed in Supplemental 
Table 9. The  2−ΔΔCt method [72] was used to calculate the 
relative expression of genes in different samples accord-
ing to Ct values, using the shiny APP quickQrtPCR pack-
age within R software (https:// github. com/ nongx inshe 
ngxin/ quick QrtPCR). Data were calculated from biologi-
cal triplicates with technical triplicates.
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