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Abstract 

Background  Fat metabolism plays an important role in animal health and economic benefits. However, the changes 
in gene expression and metabolites during fat metabolism have not been systematically studied in bovine.

Results  This study integrates transcriptomic and metabolomic strategies to delineate the metabolic and gene 
expression profiles during the adipogenesis of bovine preadipocytes in four different stages. Totally, we identified 328 
differentially expressed metabolites (DEMs) and 5257 differentially expressed genes (DEGs) during adipogenesis. Func-
tional enrichment of both DEMs and DEGs highlighted the important roles of fatty acid metabolic pathways. By inte-
grating transcriptomic and metabolomic data, we identified key genes potentially regulating fatty acid metabolism, 
including FADS2, ACOT7 and ACOT2. We further applied comparison for the functional differences between two FADS2 
isoforms (FADS2-T0 and FADS2-T2). The results proved that the lipid metabolism regulated by FADS2-2 has changed 
due to the loss of 46 amino acids with a transmembrane domain, which finally altering its promoting effect on bovine 
fat deposition.

Conclusions  In summary, our research provides important resources and key candidate genes for a systematic 
understanding of the changes in gene expression and lipid metabolism during the process of fat deposition.
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Background
Fat metabolism is integral to a multitude of life activi-
ties, encompassing body health in animal, which has 
been drawn wide attention. In livestock, it plays impor-
tant roles in enhancing breeding benefits, particularly 

with regard to meat quality, including the formation of 
marble patterns and the characteristics of fatty acids 
[1, 2]. Adipose tissue is a crucial region for fat stor-
age and metabolism [2, 3]. It also acts as an endocrine 
organ, influencing organ function through metabo-
lites. The composition and abundance of metabolites 
within adipose tissue, encompassing fatty acids, amino 
acids, aldehydes, and ketones etc. [4]. Previous stud-
ies have demonstrated a favorable link between beef ’s 
taste, nutritional profile, and economic affordability, 
particularly attributed to its rich unsaturated fatty acid 
content [5, 6].Adipocytes, the fundamental structural 
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units of adipose tissue, undergo a complex differentia-
tion process during lipogenesis [7, 8]. However, most 
research efforts have been directed towards the analy-
sis of metabolites from various tissues of bovine, the 
dynamic changes during the lipogenic differentiation 
of bovine preadipocytes and the cellular-level mecha-
nisms regulating metabolite homeostasis remain largely 
unexplored [9].

In the realm of adipose tissue metabolism, significant 
strides have been made in understanding the complex 
interplay of cellular and molecular mechanisms that 
regulate lipid homeostasis. By comparing the transcrip-
tomes of bovine mammary epithelial cells from high-fat 
and low-fat Holstein dairy cows, it has been inferred 
that CD44 may serve as a candidate gene affecting milk 
fat synthesis [10]. The KLFs family of transcription fac-
tors, which are recognized for their inhibitory role in 
adipogenesis, mediate their effects through intricate 
interactions with C/EBPs and PPARγ [11]. Despite the 
advancements in the field, adipogenesis remains a highly 
regulated and coordinated dynamic process, with the 
key genes orchestrating bovine fatty acid metabolism yet 
to be conclusively identified. The limitations of current 
research underscore the necessity for a more nuanced 
approach, advocating for a detailed and precise multi-
omics analysis at the cellular level to fully unravel the 
intricate regulatory mechanisms governing adipose tis-
sue metabolism in bovine.

The fatty acid desaturase gene (FADS2) encodes the 
rate-limiting enzyme for endogenous production of n-3 
long-chain polyunsaturated fatty acids, Delta-6 desatu-
rase (D6D). The function of the FADS2 gene is closely 
related to its role in lipid and glucose metabolism. Poly-
morphisms in the FADS2 gene and the activity of D6D 
are associated with insulin resistance, type 2 diabetes, 
dyslipidemia, and obesity [12]. Moreover, changes in the 
expression of the FADS2 gene and D6D activity may alter 
the expression of key regulators of the fatty acid desatu-
rase pathway, thus modifying lipid content in white adi-
pose tissue (WAT) [13]. There is also evidence suggesting 
that FADS2 gene polymorphisms may affect basal meta-
bolic rate and are related to arachidonic acid metabolism 
in pigs [14]. Another study expanded the known satu-
rated fatty acid substrates of FADS2 by demonstrating its 
involvement in the metabolism of branched-chain fatty 
acids (BCFA) and non-odd-chain fatty acids (n-OCFA), 
thereby highlighting its pivotal role in the synthesis of 
monounsaturated fatty acids (MUFA) [15]. It is not dif-
ficult to infer that FADS2 plays an important role in the 
regulation of adipogenesis, but the regulatory effect of 
FADS2 during the lipogenic differentiation of bovine 
preadipocytes is still unclear.

Altering the expression of specific genes, such as 
ELOVL6 and ACSL1, has been proven to significantly 
influence fatty acid composition in bovine adipocytes, 
where ELOVL6 overexpression enhances the stearic to 
arachidonic acid ratio and ACSL1 is crucial for unsatu-
rated fatty acid synthesis and lipid droplet formation 
[6, 16]. In ruminants, adipose tissue is the primary site 
for fatty acid synthesis [17]. Given the established links 
between FADS2, D6D activity, and metabolic health, 
it’s hypothesized that in cellular models could clarify its 
impact on adipocyte differentiation and lipid accumula-
tion, particularly in livestock. As FADS2 facilitates the 
conversion of dietary fats into essential fatty acids, its 
enhanced activity might alter fatty acid profiles within 
adipose tissue, influencing both fat deposition and meta-
bolic outcomes. This approach could illuminate the role 
of FADS2 in lipid metabolism, offering insights into 
improving feed efficiency and meat quality in agricultural 
settings.

In this study, we uncovered variations in metabolites 
and gene expression by integrating metabolomic and 
transcriptomic data during adipogenesis of bovine adi-
pocytes on days 0, 2, 4, and 8. This study has unveiled 
FADS2 as a potential key player influencing the content 
of unsaturated fatty acids. Through the establishment 
of overexpression models for two distinct transcripts 
of FADS2 in mesenchymal stem cells, we further inves-
tigated their impact on the expression of key genes 
involved in adipogenesis in bovine preadipocytes and the 
content of fatty acids. This work sheds light on the mech-
anisms by which different transcripts of FADS2 regulate 
fatty acid metabolism and enhances our understanding 
of the molecular basis of fatty acid metabolism and its 
impact on adipose tissue development.

Results
Dataset generation for transcriptome, metabolome 
and lipid accumulation during bovine preadipocyte 
adipogenesis
In order to systematically understand the changes of gene 
expression, metabolites, lipid accumulation and their 
regulatory mechanisms in the process of fat deposition, 
we conducted transcriptome sequencing, evaluated the 
concentration of different metabolites, and recorded the 
changes of fat droplet size at the same time for bovine 
adipocytes induced on the day 0 (PA), day 2 (DA2), day 
4 (DA4) and day 8 (DA8) (Fig.  1A). Generally, we saw 
small lipid droplets on DA2 after inducing adipocytes, 
and the number of small lipid droplets increased and 
started to get larger on DA4. On DA8, large lipid droplets 
were widely observed (Fig. 1A and Figure S2). We applied 
UPLC—MS/MS to detect 962 metabolites in 22 groups 
in adipocytes on PA, DA2, DA4, and DA8 (3 replicates 
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per stage). The metabolites included acids and their 
metabolites, benzene and its derivatives, organic acids 
and their derivatives, fatty acyls (FA), nucleotides and 
their metabolites, glycerophosphates (GP), glycerolipids 
(GL), coenzymes and vitamins, and carbohydrates and 
their metabolites (Supplementary Fig. 2, Table S2). At the 
same time, the expression changes of 20,125 genes were 
evaluated for different adipogenesis stages using RNA-
sequencing method.

By applying PCA, cluster and correlation analysis, we 
evaluated the consistency among replicated samples 
and the quality of our datasets. Both PCA and cluster 
results showed that the replicated samples were clus-
tered together (Fig.  1B, C and Supplementary Fig.  3). 
Intra-stage inter-replicate correlations exceeded 0.89 for 
both transcriptomic and metabolomic datasets at each 
differentiation time point (Table S3). PCA demonstrated 
clear temporal separation along PC1 in both omics pro-
files during adipocyte differentiation. Overall, we have 

generated effective data that can accurately exhibit 
changes in transcriptome and metabolome during fat 
deposition.

Transcriptome and metabolome variations between each 
stage during lipid accumulation
Both the expression levels of genes and the concentra-
tions of metabolites showed highly diverse after the 
bovine preadipocyte induced to differentiation. Totally, 
we detected 328 DEMs (Variable Important in Projec-
tion, VIP ≥ 1) and 5,257 DEGs (False Discovery Rate, 
FDR < 0.05; Fold Change, FC ≥ 2 or ≤ 0.5) by compar-
ing two different adjacent stages (Fig.  1D, E, Table  S4 
and Table S5). The DEMs and DEGs varied a lot among 
different stages. Hierarchical clustering showed stage—
specific metabolite and gene expression variations (Sup-
plementary Fig.  3). In the initial stage of adipogenesis 
(PA to DA2), only 51 metabolites (5.30%) enriched in FA 
were significantly changed (Fig. 1D and Table S4). In the 

Fig. 1  A Phenomenon of preadipocytes across lipid differentiation stages. Lipid droplet area accumulation across adipogenic differentiation stages. 
B PCA analysis of metabolomic data during lipogenic differentiation of bovine preadipocytes. C PCA analysis of the transcriptome during lipogenic 
differentiation of bovine preadipocytes. D Alluvial plot illustrating the distribution of DEMs across adjacent differentiation stages, with counts 
indicating up-/down-regulated features. E Alluvial plot illustrating the distribution of DEGs across adjacent differentiation stages, with counts 
indicating up-/down-regulated features. F Bubble plot of KEGG pathway enrichment analysis for DEMs and DEGs, with node sizes representing 
gene/metabolite counts and colors indicating significance levels
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middle of the adipogenesis (DA2 to DA4), largest number 
(259, 26.92%) of metabolites were significantly changed 
(Fig. 1D and Table S4). Highly active lipid synthesis was 
in progress within cells during this period. This involved 
variation of metabolites enriched in amino acid and its 
metabolites, nucleotide and its metabolites, organic acid 
and its derivatives. In the final stage of adipogenesis 
(DA4 to DA8), cells mainly underwent the synthesis of 
small lipid droplets into large lipid droplets.

As for the variation in the transcriptome, there were 
2,857, 2,054, 2,761 significantly DEGs between PA 
to DA2, DA2 to DA4, and DA4 to DA8 (Fig.  1E and 
Table  S5). Similar with the variation of metabolite con-
centrations, expression patterns of genes in different 
processes were largely different (Supplementary Fig.  4). 
Only a small percentage of DEGs were shared for the 
three processes (Supplementary Fig.  5). Functions of 
DEGs were consistent with the metabolites variations 
(Table S6). Expression of TP53, EZH2, RB1, etc. related 
to negative regulation of transcription from RNA poly-
merase II promoter were significantly changed in the 
initial stage of adipogenesis (Table  S6). PPAR signal-
ing pathway and AMPK signaling pathway related genes 
were significantly enriched in the middle stage and the 
final stage of the adipogenesis, respectively (Table  S6). 
Moreover, we employed SUPPA to analyze alternative 
splicing events across transcriptome data at various time 
points. The results indicated that the highest number 
of alternative splicing events occurred at DA2, followed 
by DA4 and PA, with the fewest events detected at DA8 
(Supplementary Fig.  6). These results show significant 
changes in metabolite and transcriptomic profiles during 
adipogenic differentiation.

KEGG enrichment analysis revealed distinct temporal 
patterns in metabolic and transcriptional pathways dur-
ing adipogenic differentiation (Fig.  1F). Metabolomic 
profiling showed significant shifts in fatty acid and car-
bohydrate metabolism, with carbohydrate pathways 
underrepresented at early stages (PA-DA2) and fatty 
acid metabolism becoming dominant during DA2-DA4, 
coinciding with metabolite changes. Transcriptomic data 
highlighted dynamic enrichment of signaling pathways 
(e.g., Wnt, TNF, MAPK, PI3 K-Akt), with Wnt activation 
occurring despite limited DEGs in DA2-DA4, and multi-
ple pathways activated in DA2-DA8 alongside increased 
DEG numbers.

KEGG enrichment analysis demonstrated the distribu-
tion of differential genes and metabolites across biologi-
cal pathways (Fig. 1F). Key metabolic shifts occurred in 
fatty acid metabolism (DA2-DA4), with transcriptomic 
enrichment of Wnt signaling (DA2-DA4) and MAPK/
PI3 K-Akt pathways (DA4-DA8). Crucially, fatty acid 
metabolic changes (metabolome) temporally aligned 

with upstream regulatory pathway activation (transcrip-
tome) during DA2-DA4, suggesting a synergistic role of 
metabolic and transcriptional regulation in adipogenic 
differentiation.

Integrated analysis of DEMs and DMGs
Time-course expression analysis of differential metabo-
lites during the adipogenic differentiation process clas-
sified them into four distinct clusters (Fig. 2A). Clusters 
1, 2, and 4 exhibited an overall increasing trend and 
were predominantly composed of amino acids and their 
metabolites, as well as fatty acids. In contrast, Cluster 3 
showed a decreasing trend and had a relatively low com-
position of amino acids and their metabolites, as well as 
fatty acids. Instead, Cluster 3 was enriched in nucleotides 
and their metabolites. To further elucidate the biological 
significance of these metabolite clusters, we performed 
KEGG enrichment analysis. The results indicated that 
metabolites in Clusters 1, 2, and 4 were significantly 
enriched in pathways such as arachidonic acid metabo-
lism, biosynthesis of unsaturated fatty acids, fatty acid 
biosynthesis, and insulin resistance. In contrast, metab-
olites in Cluster 3 were significantly enriched in path-
ways related to the biosynthesis of cofactors, nucleotide 
metabolism, and purine metabolism (Supplementary 
Fig.  7). These findings highlight the distinct metabolic 
pathways associated with different stages of adipogenic 
differentiation, revealing the dynamic reprogramming 
of metabolic processes during this developmental 
transition.

To further explore the coordinated gene expression 
patterns during adipogenic differentiation, we con-
ducted Weighted Gene Co-expression Network Analy-
sis (WGCNA) on the transcriptomic data. This analysis 
identified a total of 13 distinct gene modules, each rep-
resenting a cluster of highly correlated genes (Fig. 2B and 
C). Notably, the blue module exhibited a high correla-
tion with the DA8 group, suggesting that it may contain 
genes that play important roles in lipid accumulation. 
We constructed a regulatory network of HubGenes and 
other lipid—accumulation related genes within the blue 
module, with PC as the hub gene. PC, which participates 
in metabolic pathways related to glucose homeosta-
sis, has strong co—expression relationships with genes 
like FADS2, SCD, ACSL4, CPT1 C, and PLIN1 (Fig. 2D). 
FADS2 is crucial for long-chain polyunsaturated fatty 
acid synthesis, and SCD encodes an enzyme for fatty 
acid biosynthesis. These genes are closely associated 
with fat—related pathways such as fatty acid production, 
suggesting their potential roles in lipid accumulation 
during the late stages of adipogenic differentiation. The 
constructed gene interaction network reveals potential 
lipid—accumulation related genes, providing a basis for 
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further exploration of the regulatory mechanisms of lipid 
accumulation.

Integration analysis of DEGs and DEMs during lipid 
accumulation
We applied a comprehensive analysis to explore the 
relationship between gene expression and metabolite 
concentration during bovine preadipocyte lipogenic dif-
ferentiation. We totally detected 5257 genes and 328 
metabolites that significantly changed in at least one 
comparisons between two different adjacent stages. 
There were 9,309, 25,891 and 28,620 DEG-DEM pairs 
that showed a consistent changing trend, and 8,806, 
19,138 and 22,233 gene- metabolite pairs that showed an 
opposite changing trend for the comparisons according 
to the nine-quadrant plot analysis (Supplementary Fig. 8, 
Table  S7). We next performed correlation analysis for 
each DEG-DEM pair. The result showed that 93,543 pairs 
were highly correlated (|r|> 0.8 and p < 0.05) with each 
other for the three comparisons of different adpogeneisis 

stages (Fig. 3A). Among them, there were 11,691 correla-
tion events between DEGs and DEMs that were shared in 
at least two comparisons.

It’s of noted that most of correlated gene-metabolite 
pairs were saw in the final stage of adipogenesis. They 
were mostly enriched in the unsaturated fatty acid bio-
synthesis pathway including accumulation of arachi-
donic acid (AA), eicosapentaenoic acid (EPA), linoleic 
acid (LA), oleic acid, 11,14-eicosadienoic acid, and doc-
osahexaenoic acid (DHA). This was accompanied by 
the temporal upregulation of FADS2, SCD, ACOT2, and 
ACOT7 on DA4 and DA8, contrasting with the down-
regulation of ACOX1, ELOVL6, HACD2, HACD4, and 
SCP2 (Fig. 3B). To further explore the key genes regulat-
ing unsaturated fatty acid content in the unsaturated fatty 
acid biosynthetic pathway, we utilized Canonical Correla-
tion Analysis (CCA) to study the biosynthetic pathway of 
unsaturated fatty acids. The results indicated that FADS2, 
ACOT7, and ACOT2 exhibited strong associations with 
polyunsaturated fatty acids such as AA, EPA, LA, DHA, 

Fig. 2  A Time-series variation of DEMs. Pseudotime analysis divided DEMs into four clusters, showing the composition of metabolite types 
within each cluster. B Module-sample correlation heatmap of WGCNA. Heatmap displays correlation patterns between co-expression modules 
(columns) and samples (rows). C Correlation between sample and module. Heatmap illustrating pairwise correlations among different modules. D 
Regulatory network of partial genes of WGCNA blue module, showing interactions between hub genes in the blue module, with edge thickness 
representing the weight (correlation strength) between genes
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and FFA (20:2), as well as monounsaturated fatty acids 
like FFA(18:1) (Fig. 3C).

Structural and functional analysis of FADS2 alternative 
splicing isoforms
FADS2 displayed the highest correlation with AA, EPA, 
LA, and FFA (18:1) in the above results. We next focused 
on FADS2 to apply further research. In our previous 
study, two different isoforms produced by alternatively 
spliced events of FADS2 were identified [18]. The two 
FADS2 isoforms were named as FADS2-T0 and FADS2-
T2, separately. The 6 th and 7 th exon of FADS2-2 were 
alternatively skipped, which generated an isoform lost 
46 amino acids. This event was consistently observed in 
species from the orders Pholidota, Cetartiodactyla, and 
Carnivora, but was absent in some Artiodactyla and Pri-
mates (Supplementary Fig. 9). We conducted a structural 
and functional analysis to further explore potential dif-
ferent functions between the five FADS2 isoforms. By 
annotating the functional domain of FADS2-T0 using 
UniProt database, we discovered that the lost amino 
acid sequences generated by exon skipping events in 

FADS2-T2 were just located in the fatty acid desaturase 
domain (Fig.  4A). The three-dimensional conformation 
of the two FADS2 isoforms were predicted using Alpha-
Fold3. The results showed that the amino acid sequence 
variation between FADS2-T0 and FADS2-T2 caused the 
two alpha-helices and one random coil structure differ-
ences (Fig. 4B). Further function prediction using Deep-
TMHMM and Deeploc2 proved that this alternative 
protein structure was just changed the transmembrane 
domain in the endoplasmic reticulum (Fig. 4C, D). These 
results implied that the FADS2-T2 isoform might exhib-
its different functions during adipogenesis comparing to 
the FADS2-T0 isoform.

We overexpressed FADS2-T0 and FADS2-T2 isoforms 
in C3H10 T1/2 cells separately to examine their different 
roles during adipogenesis. Infection efficiency assessed 
by Flow cytometry assessed and overexpression levels 
assessed RT-qPCR for FADS2-T0 and FADS2-T2 were 
both supported that overexpression of the two kinds of 
isoforms were comparable (Supplementary Fig. 10, Sup-
plementary Fig. 11). Apoptosis assays revealed that over-
expression of either FADS2 T0 or T2 primarily would 

Fig. 3  A Correlation clustering heatmap of DEGs and DEMs. Hierarchical clustering analysis showing co-variation patterns between DEGs 
and DEMs. Color intensity represents Pearson correlation coefficients, with red indicating positive correlations and green negative correlations. B 
Expression patterns of unsaturated fatty acid biosynthesis components. C CCA of differential genes and differential metabolites of unsaturated fatty 
acid biosynthetic pathways. When genes and metabolites are located in the same region, those farther from the origin and closer to each other 
indicate stronger associations
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lead to minimal apoptosis (Supplementary Fig. 12). Addi-
tionally, cell proliferation assays showed that both FADS2 
T0 and T2 would promote cell proliferation (Supplemen-
tary Fig.  13). To evaluate the impact of the two FADS2 
isoforms on adipogenesis, we induced differentiation in 
these cells and performed Oil Red O staining at 8 th day. 
The results indicated that overexpression of FADS2-T0 
significantly promote the lipid formation than FADS2-T2 
(Fig. 4E). We compared the expression differences of nine 
important adipogenesis related genes (FASN, PCNA, 
GPDH, MAT2 A, SCD1, PPARG​, ACC1, LPL and FABP4) 
between overexpressed-FADS2-T0 and overexpressed-
FADS2-T2 cells. The expression patterns of most genes 
were similar in overexpressed-FADS2-T0 and overex-
pressed-FADS2-T2 cells, while the expression of SCD1 
and PPARG​ exhibited significantly different variation 
trends compared to the controls (Fig.  4F). The elevated 
SCD1 expression in FADS2-T2 cells may reflect compen-
satory upregulation of unsaturated fatty acid desaturases 
due to impaired polyunsaturated fatty acid biosynthesis 
capacity caused by the FADS2-T2 mutation. Concur-
rently, the heightened PPARG​ expression in FADS2-T2 
cells likely corresponds to active lipid droplet formation 

during the DA8 metabolic phase, where enhanced lipo-
genic activity drives transcriptional activation of this 
master adipogenic regulator.

Impact of FADS2‑T0 and FADS2‑T2 isoform on lipid 
metabolism
To explore the impact of different FADS2 isoforms on 
lipid metabolism, we performed a comprehensive lipi-
domics analysis on cells overexpressing FADS2-T0 and 
FADS2-T2. A total of 604 lipid metabolites were identi-
fied (Fig.  5A, Table  S8). PCA revealed distinct separa-
tion between the FADS2-T0 and FADS2-T2 groups, 
indicating potential differences in their lipid profiles 
(Fig.  5B). We totally identified 112 differentially pro-
duced lipid metabolites, with 109 showing higher lev-
els in the FADS2-T2 group (Fig.  5C, D, Supplementary 
Fig. 14). It’s of noted that 91 (83.48%) the 109 increased 
lipid metabolites in FADS2-T2 belong to glycerophos-
pholipids with different carbon chain lengths, and others 
were sphingolipids, and glycerolipids. Comparing to the 
FADS2-T0 cells, the FADS2-T2 cells downregulated Car-
nitine C3:1-2OH, Carnitine C4-OH, and PE(P-18:1_20:3) 
(Fig.  5D). KEGG enrichment analysis of the differential 

Fig. 4  A The transcript structure and domains of FADS2 gene. B The tertiary structure diagrams of FADS2-T0 and FADS2-T2. proteins 
and the structure of the exon deleted in FADS2-T2 is represented in magenta. C Transmembrane region prediction results. The second 
transmembrane region in FADS2-T2 exhibits a shortened length compared to FADS2-T0. D Distinct features of FADS2-T0 compared to FADS2-T2 
in endoplasmic reticulum. Exon deletion in FADS2-T2 induces amino acid changes within and adjacent to transmembrane domains. E Lipogenic 
differentiation of C3H10 T1/2 cells and oil red O staining. F qPCR for adipogenesis-related genes



Page 8 of 13Zhang et al. BMC Genomics          (2025) 26:457 

lipid metabolites highlighted pathways such as general 
metabolic pathways, glycerophospholipid metabolism, 
and ether lipid metabolism (Fig. 5E). We checked the FFA 
(free fatty acids) metabolites that had strong associations 
with FADS2. Notably, FFA(20:4), which is closely related 
to FADS2 function, was significantly higher in the FADS2 
T2 group (Supplementary Fig.  15). Overall, our result 
proved that overexpression of FADS2-T0 and FADS2-T2 
would cause different lipid metabolism processes during 
adipogenesis.

Discussion
In this study, we conducted a comprehensive metabo-
lomic analysis across different stages of adipogenesis, 
and identified 328 differential metabolites by comparing 
two different adjacent stages. Temporal analysis showed 
increases in amino acids, fatty acids, glycerophospholip-
ids, and glycerolipids, mirroring lipid droplet formation 
as observed previously [19]. KEGG enrichment analysis 
of these metabolites highlighted pathways like amino 
acid biosynthesis, general metabolism, and unsaturated 
fatty acid synthesis, consistent with earlier studies on adi-
pocyte metabolic reprogramming [20]. The link between 
the biosynthesis of unsaturated fatty acids and adipo-
genesis has been well-established in previous research 
[21, 22]. Our findings underscore the intricate metabolic 
reconfigurations that underpin adipocyte differentiation 

and highlight the importance of lipid metabolism in this 
process. However, metabolomics alone cannot provide 
a comprehensive analysis of the regulatory mechanisms 
underlying adipose deposition in bovine preadipocytes, 
additional methodologies are required to further eluci-
date this process.

Integrating transcriptomic and metabolomic data, as 
previous research suggests, is crucial for understanding 
adipocyte differentiation [23]. In our study, transcriptome 
sequencing of bovine preadipocytes identified 20,125 
genes. 5,257 DEGs were enriched in the unsaturated fatty 
acid biosynthesis pathway, consistent with metabolome 
results and previous studies [24, 25]. Canonical Correla-
tion Analysis of this pathway showed strong associations 
between FADS2, ACOT7, ACOT2 and polyunsaturated 
fatty acids. The identification of critical genes and their 
correlation with metabolites offers a foundation for 
future research aimed at enhancing adipose tissue devel-
opment and lipid metabolism in livestock.

FADS2 is recognized as the rate-limiting factor in 
mediating unsaturated fatty acid biosynthesis [26–28]. 
Research has shown that FADS2 gene polymorphisms 
influence the composition of fatty acids [29, 30]. To 
explore the critical function of the FADS2 gene in 
the intricate metabolic fluxes associated with adipo-
genic differentiation in bovine preadipocytes, we have 
established a C3H10 T1/2 cell line with stable FADS2 

Fig. 5  A The composition of lipid metabolites. B PCA analysis of lipid metabolites between FADS2-T0 and FADS2-T2. C Volcano plot of differential 
lipid metabolites between FADS2-T0 and FADS2-T2. D Network diagram of differential lipid correlations. E KEGG enrichment analysis of metabolites 
between the FADS2-T0 and FADS2-T2
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overexpression, thereby creating a robust in  vitro 
model for this purpose. Our research confirms that 
FADS2 overexpression markedly upregulates key 
lipogenic genes essential to lipid metabolism, such as 
ACC1, FABP4, FASN, GPDH, LPL, PPARG​, SCD1, and 
HACD2, findings consistent with existing literature 
[24, 25, 31].

Our study further investigated the impact of differ-
ent FADS2 isoforms on lipid metabolism. The FADS2-
T0 exhibited stronger lipid droplet accumulation in 
the later stages of adipogenesis, while the FADS2-T2 
showed higher levels of metabolites in glycerophospho-
lipids, sphingolipids, and glycerolipids. These obser-
vations were linked to the interactions of FADS2 with 
related proteins. The protein–protein interaction (PPI) 
network analysis via the STRING database (confidence 
score ≥ 0.7) identified FADS2 interactions with elon-
gases (ELOVL5, ELOVL6), phospholipases (PLA2G3, 
PLA2G16), and stearoyl-CoA desaturase (SCD), sug-
gesting a multifaceted regulatory axis in bovine lipid 
metabolism (Supplementary Fig.  16).The ELOVL fam-
ily enzymes are well-documented to catalyze fatty 
acid elongation, particularly for polyunsaturated fatty 
acids (PUFAs) [32]. PLA2G family members, such as 
PLA2G3 and PLA2G16, are involved in phospholipid 
hydrolysis and membrane remodeling [33]. Fatty acid 
β-oxidation is mediated by carnitine, with acyl-CoAs 
serving as substrates for this process [34]. The expres-
sion of SCD1 were detected differentially expressed 
when overexpressed FADS2-T0 and FADS2-T2 in our 
study. The elevated SCD1 expression in FADS2-T2 cells 
may reflect compensatory upregulation of unsaturated 
fatty acid desaturases due to impaired polyunsaturated 
fatty acid biosynthesis capacity caused by the FADS2-
T2 mutation. We propose that the observed changes in 
lipid metabolites could be related to the presence of dif-
ferent FADS2 splice variants.

Conclusion
This study firstly constructed a network for dynamic 
integration between gene expression and metabolite 
contents during bovine adipogenesis. Multi-omics 
identified FADS2 as a key regulator of UFA biosynthe-
sis, with overexpression experiments confirming its role 
in activating lipogenic genes. Study further uncovered 
that distinct FADS2 isoforms would drive divergent 
lipid metabolic outcomes, which might be responsi-
ble for different adipogenesis regulation through the 
variation of a 46-amino acid sequence. These findings 
advance mechanistic insights into lipid metabolism 
regulation, offering targets for optimizing livestock adi-
pose development.

Methods
Cell culture and processing
The bovine preadipocytes from subcutaneous adipose 
tissue were prepared as following. Briefly, all excised 
adipose tissues were cut into about 1 mm3 small sec-
tions, which were then digested in DMEM containing 1 
mg/ml Type I collagenase for 1 h at 37 °C with shaking 
at 15- cycles/min. The cell suspension was sequentially 
filtered through a 250 μm sterilized nylon mesh. The 
filtrate was centrifuged at 1000X g for 5 min. The pel-
leted cells with fibroblast morphology were resuspended 
in growth medium. Bovine preadipocytes and C3H10 
T1/2 cells were used to perform different experiments 
in our study. Both of them were cultured in a high glu-
cose DMEM medium (4.5 g/mL Glucose, 4.0 mM L-glu-
tamine, Cytiva) containing 10% FBS supplemented with 
1% penicillin–streptomycin at 37 °C and 5% CO2. The 
culture medium was changed every 48 h. Cells were pas-
saged at 80% density in medium dishes and passed to the 
fourth generation for induced differentiation. After cells 
reached confluence in 6-well plates, a medium containing 
1.0 μmol/L dexamethasone (DEX), 0.5 mmol/L 3-isobu-
tyl-1-methylxanthine (IBMX), 1.0 μmol/L rosiglitazone, 
and 10 mg/L insulin were used to induce cells for 48 h. 
Then, fresh medium containing 10 mg/L insulin and 1.0 
μmol/L rosiglitazone was used to maintain the differen-
tiation [35]. Cells were washed twice using phosphate 
buffer saline (PBS) before collection. Cells were collected 
using a cell scraper (LABSELECT) at the 0 th, 2nd, 4 th, 
and 8 th days of induced differentiation, snap frozen in 
liquid nitrogen for 20 min, and stored in a −80°C freezer, 
with three replicates for each period.

Sample preparation and LC–MS analysis
The sample stored at liquid nitrogen was thawed on ice. A 
500 μL solution (Methanol:Water = 4:1, V/V) containing 
internal standard (L-2-chlorophenylalanine, [2H5]-Hip-
puric Acid and [2H5]-Phenoxy acetic Acid) was added 
into the cell sample and vortexed for 3 min [36]. The sam-
ple was placed in liquid nitrogen for 5 min and on dry ice 
for 5 min, and then thawed on ice and vortexed for 2 min. 
This freeze–thaw circle was repeated three times in total. 
The sample was centrifuged at 12,000 rpm for 10 min (4 
°C). A 300 μL of supernatant was collected and placed at 
−20°C for 30 min. The sample was then centrifuged at 
12,000 rpm for 3 min (4 °C). A 200 μL aliquots of super-
natant were transferred for the UPLC-MS/MS analysis.

T3 UPLC Conditions: The sample extracts were ana-
lyzed using an LC–ESI–MS/MS system (UPLC, ExionLC 
AD, https://​www.​sciex.​com.​cn/; MS, QTRAP® System, 
https://​www.​sciex.​com/). The analytical conditions were 
as follows, UPLC: column, Waters ACQUITY UPLC HSS 
T3 C18 (1.8μm, 2.1 mm*100 mm); column temperature, 

https://www.sciex.com.cn/
https://www.sciex.com/
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40 °C; flow rate, 0.4 mL/min; injection volume, 2μL or 
5μL; solvent system, water (0.1% formic acid): acetonitrile 
(0.1% formic acid); gradient program, 95:5 V/V at 0 min, 
10:90 V/V at 10.0 min, 10:90 V/V at 11.0 min, 95:5 V/V at 
11.1 min, 95:5 V/V at 14.0 min.

The Triple TOF mass spectrometer was used for its 
ability to acquire MS/MS spectra on an information-
dependent basis (IDA) during an LC/MS experiment. In 
this mode, the acquisition software (TripleTOF 6600, AB 
SCIEX) continuously evaluates the full scan survey MS 
data as it collects and triggers the acquisition of MS/MS 
spectra depending on preselected criteria. In each cycle, 
12 precursor ions whose intensity is greater than 100 
were chosen for fragmentation at collision energy (CE) 
of 30 V (12 MS/MS events with product ion accumula-
tion time of 50 ms each). ESI source conditions were set 
as follows: Ion source gas 1 as 50 Psi, Ion source gas 2 as 
50 Psi, Curtain gas as 25 Psi, source temperature 500 °C, 
Ion Spray Voltage Floating (ISVF) 5500 V or −4500 V in 
positive or negative modes, respectively.

LIT and triple quadrupole (QQQ) scans were acquired 
on a triple quadrupole-linear ion trap mass spectrometer 
(QTRAP), QTRAP® LC–MS/MS System, equipped with 
an ESI Turbo Ion-Spray interface, operating in positive 
and negative ion modes and controlled by Analyst 1.6.3 
software (Sciex). The ESI source operation parameters 
were as follows: source temperature 500 °C; ion spray 
voltage (IS) 5500 V (positive), −4500 V (negative); ion 
source gas I (GSI), gas II (GSII), curtain gas (CUR) were 
set at 50, 50, and 25.0 psi, respectively; the collision gas 
(CAD) was high. Instrument tuning and mass calibration 
were performed with 10 and 100 μmol/L polypropylene 
glycol solutions in QQQ and LIT modes, respectively. A 
specific set of MRM transitions was monitored for each 
period according to the metabolites eluted within this 
period.

Quantification of lipid droplets
To investigate the cellular changes at different time 
points, nuclei were stained with DAPI (Solarbio, Beijing, 
China), while lipid droplets were labeled with BODIPY 
493/503 (MedChemExpress, New Jersey, USA). Subse-
quently, the stained cells were imaged using the Opera 
Phenix high-content confocal imaging system (Perki-
nElmer, Massachusetts, USA). The acquired images were 
processed with the Harmony software, and phenotypic 
data related to lipid droplets were analyzed using ImageJ.

Oil Red O staining was performed using the Oil Red O 
staining kit (Solarbio, Beijing, China). Images of Oil Red 
O-stained adipocytes were acquired using a Nikon imag-
ing system (Nikon, TE2000-U, Tokyo, Japan) at 10 × and 
20 × magnification for cells induced.

RNA extraction and qPCR assay
Total RNA was extracted from cultured the fourth gen-
eration bovine preadipocytes using the FastPure Cell/
Tissue Total RNA Isolation Kit V2 (Vazyme, Nanjing, 
China). Complementary DNA (cDNA) was reverse-
transcribed from total RNA (1 µg) (Vazyme, China). 
Quantitative analysis of gene expression was performed 
by qPCR according to the SYBR Green I chimeric flu-
orescence kit (Vazyme, China) on the CFX Connect 
Real-Time PCR platform (BIO-RAD). Primers used 
in this study are shown in Table  S1. The qPCR condi-
tions were as follows: 5 min at 95 °C, 10 min at 95 °C, 
40 cycles, 10 s at 95 °C, 10 s at 60 °C, and 15 s at 72 
°C. The mRNA expression was normalized by com-
parison with the bovine cytoskeleton actin gene ACTB 
(NM_173979.3). The 2−ΔΔCT method was employed to 
analyze the qPCR result.

RNA sequencing
Total RNA from the induced differentiated cells in the 
0 th, 2nd, 4 th, and 8 th days were extracted using TRI-
zol (Invitrogen, Carlsbad, CA, USA) according to the 
Manufacturer’s instructions. We measured the quan-
tity and purity of RNA using a NanoDrop 8000 Spec-
trophotometer (NanoDrop Technologies, Wilmington, 
DE, USA) and Agilent 2100 Bioanalyzer System (Agi-
lent Technologies, Santa Clara, CA, USA). Libraries 
were constructed and sequenced using the DNBSeq-T7 
platform with paired-end (150 bp) reads.

NGSQCToolkit v2.3.3 was used to trim adapter 
sequences, and low-quality reads [37]. The clean reads 
were aligned on the reference genome (ARS-UCD1.2) 
along with gene annotation from the Ensembl website 
(https://​www.​ensem​bl.​org/​index.​html, June 25, 2021) 
using the HISAT2 v2.1.0 with the default parameters 
[38]. The spliced reads were assembled into transcripts 
using the StringTie v1.3.3 software. DEG were meas-
ured using DESeq2 v3.15 [39]. Gene functional anno-
tation analyses were applied using the online DAVID 
software (https://​david.​ncifc​rf.​gov/, July 30, 2021) [40]. 
Gene enrichment in annotation terms was assessed 
using Fisher’s exact test. The p-values were subjected to 
FDR correction for multiple comparisons. We analyzed 
alternative splicing events including alternative 3’ splice 
site (A3), alternative 5’ splice site (A5), alternative first 
exon (AF), alternative last exon (AL), mutually exclu-
sive exons (MX), retained intron (RI), and skipping 
exon (SE) using SUPPA [41, 42]. Local splicing events 
were generated from Ensembl annotations (ARS-
UCD1.2), and transcript abundance estimates (TPM) 
from StringTie were processed to compute PSI values. 

https://www.ensembl.org/index.html
https://david.ncifcrf.gov/
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Differential splicing analysis across differentiation time 
points was performed, using default parameters.

DEMs and DEGs
VIP values were extracted from the OPLS-DA results, 
which also contained score plots and permutation plots 
generated using the R package MetaboAnalystR. The data 
were log-transformed (log2) and mean-centered before 
OPLS-DA. To avoid overfitting, a permutation test (200 
permutations) was performed. DEMs between groups 
were filtered by VIP ≥ 1 and absolute Log2 FC ≥ 1. Sig-
nificant DEGs between groups were filtered by absolute 
Log2 FC ≥ 1 and FDR < 0.05.

Lentiviral packaging and infection
The pCDH-CMV-MCS-EF1-copGFP-T2 A-Puro was 
selected as the lentiviral core plasmid, and pMD2.G and 
psPAX2 were selected as the packaging helper plasmid 
for the three-plasmid expression system for lentiviral 
packaging. pCDH-CMV-MCS-EF1-copGFP-T2 A-Puro 
has all accessory genes of the packaging plasmid except 
for vif, vpu, vpr, and nef, which increased the safety of the 
vector without affecting the titer and transfection abil-
ity of the virus. Among them, pCDH-CMV-MCS-EF1-
copGFP-T2 A-Puro contains a separate EF1 start 
sequence to activate the expression of green fluorescent 
protein (COPGFP), and it carries puromycin (PURO) 
resistance gene and ampicillin (Ampicillin) resistance 
gene, offering flexibility and options during the screen-
ing process. The 293 T cell was inoculated in a six-well 
cell culture plate. Three different plasmids (pMD2.G, 
psPAX2, core plasmid) were mixed according to the 
ratio of 2:3:4. The mixed plasmids were then introduced 
into the 293 T cells to package lentivirus using the jet-
PRIME®. The lentivirus was collected at 48 h and used to 
infect C3H10 T1/2 cells.

Protein functional prediction
To predict the functions of proteins translated from 
transcripts, we utilized AlphaFold for three-dimensional 
structure prediction [43]. We employed the UniProt 
database to analyze the structural domains of proteins 
encoded by FADS2 transcripts [44]. Additionally, we 
utilized DeepTMHMM for predicting protein trans-
membrane regions and Deeploc2 for determining the 
subcellular localization of these proteins [45, 46]. We 
collected translated protein sequences from various spe-
cies in the NCBI database, performed multiple sequence 
alignments using the muscle software, and visualized the 
results with ENDscript2 [47, 48]. To explore potential 
protein–protein interactions, we employed the STRING 
database [49].
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