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Abstract 

Long-term geographical isolation and the different directions of domestication can cause a large number of genome 
variations. Population genetic analysis based on a single reference genome cannot capture all the variation infor-
mation. Pan-genome construction is an effective way to overcome this problem. Resequencing data from 683 
common bean landraces and breeding lines provided a pan-genome construction data resource. For the first time, 
for common bean pan-genome construction, 305 Mb non-reference contigs and 10,452 novel genes were identi-
fied. Among these new genes, 373 resistance gene analogs containing 372 variable genes were identified and used 
to narrow down the candidate genes in Pseudomonas syringae pv. phaseolicola resistance quantitative trait locus 
interval of the common bean. Transcriptome analysis of multiple biotic and abiotic stresses reveals that gene expres-
sion patterns are organ-, stress-, and gene conservation-specific. Core and shell genes may be co-expressed in all 
samples and may have functional complementarity to maintain the stability of plant growth. Within pathways, 8990 
and 30,272 mutual exclusivity and co-occurrence gene presence-absence variations (PAVs) were discovered respec-
tively, providing further insights into the functional complementarity of genes. In conclusion, our study provides 
a comprehensive genome resource, which will be useful for further common bean breeding and study.
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Introduction
Common beans are a group of legume crops grown and 
used by humans as a source of protein and other nutri-
ents [1]. Common bean (Phaseolus vulgaris L.) is the 
most widely grown bean in the Phaseolus genus because 
of its high protein content and low fat content. Common 
bean is grown in several countries, particularly in Asia 
and the USA, where domestication and environmental 
effects have resulted in the formation of many different 
varieties [2]. These varieties are landraces or breeding 
lines that have been improved from landraces. The use of 
these data resources requires large-scale collection and 
sequencing work. Wu et al. [3] performed whole-genome 
resequencing of 683 lines located worldwide, providing 
valuable data for common bean breeding.

*Correspondence:
Yang Sun
2018259@ahnu.edu.cn
Xiangdong Kong
xdkong@zju.edu.cn
1 Anhui Provincial Key Laboratory of the Conservation and Exploitation 
of Biological Resources, Key Laboratory of Biotic Environment 
and Ecological Safety in Anhui Province, College of Life Sciences, Anhui 
Normal University, Wuhu, Anhui 241000, China
2 Collaborative Innovation Center of Recovery and Reconstruction 
of Degraded Ecosystem in Wanjiang Basin Co-Founded By Anhui Province 
and Ministry of Education, School of Ecology and Environment, Anhui 
Normal University, Wuhu, Anhui, China
3 Key Laboratory of Zoological Systematics and Evolution, Institute 
of Zoology, Chinese Academy of Sciences, Beijing, China
4 JiguangGene Biotechnology Co. Ltd, Nanjing, China

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-025-11662-2&domain=pdf


Page 2 of 16Wang et al. BMC Genomics          (2025) 26:495 

For resequencing data analysis, most studies per-
formed single-nucleotide polymorphism (SNP) or inser-
tion and deletion (indel) calling based on the reference 
genome and used SNP as markers for a series of popu-
lation genetic analyses [4, 5]. However, the reference 
genome was obtained from a single strain within the 
species; for example, the reference genome of common 
bean was obtained by sequencing an inbred landrace 
line of P. vulgaris (G19833) from the Andean pool [6]. A 
single genome cannot capture the total genes of a spe-
cies; therefore, pan-genome construction could solve 
this problem. Currently, there are two main strategies 
for pan-genome construction: iterative assembly or de 
novo assembly using whole-genome resequencing data 
[7–9] and assembling multiple high-quality genomes by 
third-generation sequencing and HiC (a high-throughput 
chromosome conformation capture technique) sequenc-
ing to further construct a graphical pan-genome [10, 
11]. Because of the high cost of constructing multiple 
high-quality genomes, using next-generation sequencing 
(NGS) data to construct pan-genomes is a rapid and low-
cost method that offers the possibility of pan-genome 
sequencing in multiple species. Therefore, many second-
generation sequencing-based pan-genome construction 
tools have been developed [12–14].

Genes and genomic sequences that are lost in the ref-
erence genome can be identified by pan-genome con-
struction; for example, the pan-genome of mung bean 
has 287.73 Mb sequences, which contains 3337 protein-
encoding genes, absent in the reference genome [15]. 
Analysis of presence-absence variation (PAV) informa-
tion can reveal the absence of promoters and genes that 
may affect the phenotypes [16, 17] or explain the miss-
ing heritability [18]. In pan-genome studies, the gene 
absences identified in the population can also be used 
together with other variant types, such as a missense 
variant, to evaluate the selection pressure on a gene; 
for example, a candidate gene in a quantitative trait 
loci (QTL) interval can be further screened by popula-
tion-wide variation information [19, 20]. Therefore, the 
pan-genome is an important resource for species-wide 
studies, and many studies have constructed pan-genomic 
databases that provide such resources [21, 22].

In the present study, a common bean pan-genome 
containing 305 Mb non-reference contigs and 10,452 
protein-coding genes was constructed from the whole-
genome resequencing data of 683 common beans from 
the study by Wu et  al. [3]. The PAV information of all 
genes in the pan-genome was then constructed. Based 
on the gene PAV, the PAV of RGAs was analysed to pro-
vide a more comprehensive understanding of the muta-
tion numbers and types of RGAs in the resistance QTL 
interval to narrow down candidate genes. According to 

the transcriptional profiles of a variety of biotic and abi-
otic stresses, the relationship between PAV and stress-
responsive genes revealed the expression characteristics 
of core/softcore, shell, and cloud genes in different tis-
sues and growth environments. Finally, by identifying 
the mutual exclusivity and co-occurrence of gene PAVs 
within and between pathways, we can gain a more com-
prehensive understanding of functional complementarity 
and co-selection of genes. In conclusion, the pan-genome 
provides a valuable resource for further study and breed-
ing of common beans.

Materials and methods
Resequencing and RNA‑seq data retrieval
Wu et  al. [3] resequenced 683 common bean samples, 
obtaining a total of 4.27 tera base pairs (bp) of NGS 
data. We obtained the raw whole genome sequencing 
data for all samples from the National Centre for Bio-
technology Information (NCBI) (PRJNA515107). In 
addition, biotic and abiotic stress-related RNA-seq data 
from NCBI (PRJNA288189, PRJNA648388, PRJNA691982, 
PRJNA746732, PRJNA793687, PRJNA311998, PRJNA656794, 
PRJNA741786, and PRJNA758821) were obtained (Table S1).

Pan‑genome construction
The raw paired-end WGS reads were trimmed by Fatsp 
v0.23.4 [23] with default parameters. Megahit v1.2.9 [24] 
was used to assemble the genome for each sample with 
default parameters. After removing contigs shorter than 
500 bp, a tool called nucmer in Mummer v4.0 [25] was 
used to align the remaining contigs with the reference 
genome with default parameters. The unaligned contigs 
were classified into two types: 1) fully unaligned contigs, 
meaning the contigs contained sequence identity and 
length exceeding 90% and 300 bp, respectively, with the 
reference genome; 2) partially unaligned contigs, mean-
ing the contigs contained regions that were longer than 
500 bp with an identity of < 90%. Unaligned sequences of 
partially unaligned contigs were extracted. All non-refer-
ences were compared to the NCBI NT database (https:// 
ftp. ncbi. nlm. nih. gov:/ blast/ db/ FASTA/ nt. gz) using blastn 
v2.14.1 + with parameters “-evalue 1E-5 -max_target_
seqs 1”, and sequences not belonging to Eukaryota or 
sequences belonging to Eukaryota but not Viridiplan-
tae were removed. Clean sequences were merged, and 
redundancy was removed using cd-hit v4.8.1 [26] with 
parameters “-i 0.9 -M 200000”. In addition, we used two 
other strategies to further remove redundancy: 1) blastn-
based all vs. all comparisons and 2) nucmer-based all vs. 
all comparisons. A threshold of 90% for regions with 90% 
sequence identity was used.

https://ftp.ncbi.nlm.nih.gov:/blast/db/FASTA/nt.gz
https://ftp.ncbi.nlm.nih.gov:/blast/db/FASTA/nt.gz
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Pan‑genome annotation
A de novo repeat sequence database was built using 
RepeatModeler v2.0.5 [27] with parameters “-engine 
ncbi”. RepeatMasker v4.1.7 was used to annotate non-
references based on the repeat sequence database 
[28]. RepeatProteinMask v4.1.7 was used to search for 
repeated sequences in the TE protein database with 
parameters “-engine ncbi -noLowSimple -pvalue 0.0001”. 
Tandem repeats finder version 3 was used to identify tan-
dem repeats in the non-reference contigs [29].

The MARKER2 v3.01.03 [30] was used to predict the 
gene structure of the genome based on repeat sequence-
masked contigs. We used Augustus v3.4.0 [31] for de 
novo gene prediction with default parameters, and the 
model was trained by the Phaseolus vulgaris reference 
annotation. RNA-seq data from 135 accessions (Table S2) 
were used as the evidence for transcription. Fastp v0.23.4 
was used to remove low quality sequences with default 
parameters [23]. We used hisat2 v2.2.1 [32] to map clean 
reads to non-reference contigs, and samtools v1.17 were 
used to extract reads that could be aligned with non-
reference sequences with parameters “-f 12/-f 68/-f 132” 
[33]. Trinity v2.15.2 [34] was used to de novo assemble 
reads that mapped to non-reference sequences in each 
sample with parameters “–seqType fq”. After merging the 
assembled transcript sequences, we used cd-hit-est [26] 
to remove redundancy (with default parameters). Finally, 
annotation of the non-reference sequence was obtained 
using maker2. We removed the genes which overlapped 
50% with the repeat annotations. Furthermore, Interpros-
can v5.55–88.0 [35] was used to annotate gene sequences 
with parameters “-t p -f gff3 -appl PfamA -goterms -pa 
-iprlookup”, and genes annotated with interpro domains 
were retained.

The predicted gene sequences were compared with the 
NT database using blastn and the NR, uniport, and swis-
sport databases using blastx. Simultaneously, GO and 
KEGG annotations were obtained through correspond-
ence between the databases.

Presence‑absence variation analysis
All the reference genome and non-reference sequences 
were merged into the common bean pan-genome 
sequence. Bwa was used to align the 683 resequencing 
data to the pan-genome. Ccov in HUPAN [36] was used 
to calculate the ratio of each gene to the coding sequence 
(CDS) region covered by the reads. A gene whose region 
was covered by the reads of a sample by > 80% and 
< 80% was considered to exist and not exist in the sam-
ple, respectively. As reported by Gao et  al. [16], genes 
that existed in all accessions were defined as core genes, 
genes that existed in 99%–100% of accessions (676–683 

accessions) were defined as softcore genes, genes that 
existed in 1%–99% of accessions (68–676 accessions) 
were defined as shell genes, and genes that existed in less 
than 1% of accessions (68 accessions) were defined as 
cloud genes.

RGA gene prediction and QTL integration
RGAugury pipeline [37] was used to identify RGAs in 
the common bean pan-genome with default param-
eters. RGA includes nucleotide-binding site-leucine-rich 
repeat (NBS-LRR), receptor-like kinases (RLK), recep-
tor-like proteins (RLP), and transmembrane coiled-coil 
domain protein (TM-CC) candidate genes, which can be 
divided into 12 subfamilies. These resistance genes were 
divided into two groups (core and variable genes) based 
on the results of the PAV analysis. SNP information of 
the common bean population was obtained (https:// doi. 
org/https:// doi. org/ 10. 5281/ zenodo. 32367 86) and anno-
tated using the Variant Effect Predictor v99 with parame-
ters “–fork 8 –force_overwrite –no_intergenic” [38]. The 
overlapping was determined using bedtools v2.16.2 inter-
sect [39]. González et al. [40] identified several intervals 
of resistance to Pseudomonas syringae pv. Phaseolicola 
based on QTL localisation, four of which contained RGA 
genes. Waterfall plots with SNP and PAV information 
were drawn using GenVisR v1.11.3 [41].

Protease inhibitor gene cluster
The genomes of V. unguiculata, G. max and A. hypogaea 
were obtained from the NCBI under the acces-
sion numbers GCF_004118075, GCF_000004515 and 
GCF_003086295 respectively. With the keyword  “Pro-
tease inhibitor (PI), the PI sequences in the NR database 
were extracted. The legume protein sequences were com-
pared with the sequences for candidate PI gene identifi-
cation. Subsequently, the interproscan annotation was 
combined with the literature information, which was used 
to select genes that were supported as PI genes. Based on 
the identified candidate PI genes, a genome-wide scan 
of the legume genome was performed using an in-house 
perl script. A 150 kb window was used to scan for the 
presence of multiple PI genes, and the adjacent eligible 
genome regions were then merged. Mcscanx was used 
to identify the synteny or collinearity of this gene cluster 
across multiple species genomes [42] with default param-
eters. The CDS files and GFF format annotation files of V. 
unguiculata, G. max, A. hypogaea, and Phaseolus vulgaris 
L. were used for analysis. The Python version of Mcscanx 
was used in the present study, which was obtained from 
https:// github. com/ tangh aibao/ jcvi. The figure showing 
the genome synteny relationship was plotted using jcvi.

https://doi.org/
https://doi.org/
https://doi.org/10.5281/zenodo.3236786
https://github.com/tanghaibao/jcvi
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RNA‑seq data analysis
The raw paired-end reads were trimmed and quality was 
controlled by fatsp [23]. The clean reads were mapped to 
the reference genome using hisat2 [32]. To identify differ-
entially expressed genes (DEGs) between sample groups, 
DEseq2 was used [43] and | log2 Fold Change| of ≥ 1 and 
FDR of < 0.05 were used as a cut-off for significant dif-
ferential expression. HTSeq was performed to count the 
number of reads for each gene [44]. Gene expression lev-
els were calculated as fragments per kilobase of exon per 
million mapped reads (FRKM). The FPKM values of the 
DEGs were used to perform principal components analy-
sis (PCA) using the vegan R package [45].

All DEGs were used for weighted gene co-expression 
network analysis (WGCNA) analysis, and their expres-
sion was calculated using FPKM values [46]. The enrich-
ment significance of the PAV and GO terms of genes in 
each module was calculated using the hypergeometric 
distribution test.

Mutually exclusive and co‑occurrence PAV analysis
Using the binary gene PAV data, mutually exclusive and 
co-occurrences between PAVs were calculated using 
Rediscover [47]. Genes with mutually exclusive and co-
occurring PAVs within and between pathways were 
extracted based on the KEGG annotation information of 
the common bean pan-genome.

Results
Pan‑genome construction and PAV analysis
We obtained the 683 whole genome sequencing data 
from Wu et  al. [3] which were sequenced between 4.73 
× and 21.8x (Table  S3). All the samples were de novo 
assembled. After removing the reference sequences, 
decontamination, and redundancy, 305 Mb novel non-
reference contigs were obtained, and 10,452 protein-
coding genes were predicted in the novel sequences. 
In addition to the 473 Mb reference genome sequences 
and 28,125 reference genes, 778 Mb genome sequences 
and 38,577 genes in common bean pan-genomes were 
obtained.

As in the study by Gao et  al. [40], we classified genes 
into core (11,290), softcore (9809), shell (11,024), and 
cloud (6454) genes (Fig.  1A, D, Table  S4). The numbers 
of these gene types were related to the number of sam-
ples, particularly when the number of samples was small, 
changed rapidly with the number of samples, and stabi-
lised when the number of samples reached a high level. 
We constructed a phylogenetic tree of 683 samples 
based on the binary gene PAV information. The results 
showed that the tree constructed by gene PAV exhibited 
the same affinities of varieties as the SNP-based phylo-
genetic trees constructed by Wu et al. [3] (Fig. 1B). This 

indicates that gene-based PAV information can also be 
used to accurately analyse the relationships between vari-
eties. We also calculated gene frequencies in the Andean 
and Mesoamerican populations and used Fisher’s test to 
assess the significance of frequency differences between 
the two groups. The results showed that 842 genes had 
significantly higher frequencies in the Andean popula-
tion, while 1,662 genes had significantly lower frequen-
cies (Figure S2 A, Table S5). Genes with high frequencies 
in the Andean population were enriched in pathways 
such as flavone and flavonol biosynthesis and flavonoid 
biosynthesis (Figure S2B), indicating population-specific 
frequency differences in genes related to the synthesis 
of flavonoids and other secondary metabolites. These 
results provide insights for exploring phenotypic diver-
sity in common bean metabolic traits. With an increase 
in the number of samples, the number of pan-genome 
genes increased continually, whereas the number of core 
genes decreased continually (Fig.  1E). Shell genes were 
enriched in some pfam domains, such as polysaccharide 
biosynthesis and the carboxylesterase family (Fig. 1C).

Identification of RGA genes in pan‑genome and QTL 
integration
RGAs play a crucial role in plant defense mechanisms, 
as they are often associated with responses to biotic 
stresses such as pathogen infection. A total of 1902 RGAs 
were identified in the pan-genome, of which 1529 were 
located on the reference and 373 on non-reference con-
tigs (Table  1). Of these RGAs, 806 were core genes and 
1096 were variable genes, and 372 of the 373 were located 
in non-reference contigs. This indicates that RGAs are 
frequently selected in the breeding process, with a large 
number of RGA genes gained and lost during the domes-
tication and breeding process. RGAs contain multiple 
resistance gene types, and the number of genes identified 
in each resistance gene family is inconsistent across the 
pan-genome owing to the different number of gene fam-
ily members. For example, 36 RLK genes were identified 
in the pan-genome additional contigs, and a total of 843 
were identified in the pan-genome, which contained 163 
variable genes (shell and cloud genes) and 680 core and 
softcore genes. Compared to 95.7% of RLK genes located 
in the reference genome, only 66.9% of NL-like resistance 
genes were found. Moreover, the number of core/softcore 
genes (99 genes) in the NL class of resistance genes was 
lower than the number of shell/cloud genes (49 genes). 
This suggests that different types of resistance genes have 
different conservation levels, which may be related to 
their functional differentiation. Additionally, the distri-
bution of resistance genes on the chromosomes was not 
uniform (Fig. 2A), which may be related to the different 
ways in which the genes replicated.
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González et  al. identified several QTL intervals for 
resistance to Pseudomonas syringae pv. phaseolicola, four 
of which contained RGAs. These four QTL intervals were 
located between 45.49 to 48.5 Mb for chr2, 45.7 to 48.3 
Mb for chr8, 15.1 to 16.7 Mb for chr9, and 0 to 1.5 Mb 
for chr11, respectively. The numbers of RGAs located in 
these four QTL intervals were 16, 6, 3, and 11, respec-
tively. Based on the variation information of RGAs within 
these QTL intervals, we found that the number and type 

of RGA variations were different. We ranked the effects 
of different variant types on genes, and the most influ-
ential variant type was gene loss; there were also stop 
gained, missense variants, synonymous variants, etc.

Within the QTL of chr2, the mutational load 
of the RGA genes varied greatly. For example, 
PHAVU_002G324000 g (SNRPD2, small nuclear ribonu-
cleoprotein D2), PHAVU_002G301900 g (Pkinase_Tyr, 
Protein tyrosine kinase), and PHAVU_002G3235001 

Fig. 1 Construction of the common bean pan-genome and presence-absence variations analysis. A PAV heatmap of core, softcore, shell, 
and cloud genes. B Phylogenetic tree construction based on binary PAV data. C Results of pfam enrichment analysis in shell genes. D Distribution 
of the number of core, softcore, shell, and cloud genes. E Trend of an increasing number of genes within the pan-genome and decreasing number 
of core genes in the pan-genome of common bean after increasing sample size
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g (TMVRN_NICGU, TMV resistance protein N) 
showed minor variation across the population, indi-
cating that they are conserved genes. The genes 
PHAVU_002G323200 g (RPP1, Probable disease resist-
ance protein) and PHAVU_002G323100 g (SNC1, Pro-
tein SUPPRESSOR OF npr1-1, CONSTITUTIVE 1) had 
extremely high mutation loads, and the variant types 
were mainly gene loss and missense variants, indicating 
that these genes were under strong positive selection 
pressure. There were also differences between samples; 
for example, samples on the right of Fig. 2B missed the 
genes PHAVU_002G323800 g (TMVRN_NICGU, TMV 
resistance protein N), PHAVU_002G323400 g (TAO1, 
Disease resistance protein), PHAVU_002G323300 g 
(TMVRN_NICGU, TMV resistance protein N), and 
PHAVU_002G323200 g (RPP1, Probable disease resist-
ance protein), whereas these genes in other samples 
were not missed. This suggests that the variant types 
in all the genes were different in all the samples. The 
mutational load of RGAs in the QTL intervals on chr8 
and chr9 was less than that of the QTL interval on 
chr2 (Fig. 2C); however, the types of variation in RGAs 
in this interval were mainly missense variants, indi-
cating positive selection in half of the samples. In the 
QTL interval on chr11, gene loss was the main variant 
type of PHAVU_011G014400 g (RPP13, Disease resist-
ance protein), PHAVU_011G014500 g (RPP13, Disease 
resistance protein), and PHAVU_011G008100 g (MIK2, 
MDIS1-interacting receptor like kinase 2) in the popu-
lation; however, the variant types of the other genes 
in this interval were mainly intron variants (Fig.  2D). 
The above results chiefly revealed the population vari-
ation of RGAs in the QTL interval for resistance in 

Pseudomonas syringae pv. phaseolicola and provided 
information for further screening of candidate genes.

Protease inhibitor gene clusters in the common bean 
genome
In plants, PIs are involved in defence response to phy-
tophagous and pathogen infestation; therefore, in this 
study, we analysed the PI genes of the common bean. A 
total of 152 candidate PI genes were identified within 
the reference genome of common bean. Among them, 
the number of genes with serpin (PF00079), trypsin and 
PI (PF00197), Bowman-Birk serine PI family (PF00228), 
potato inhibitor I family (PF00280), peptidase inhibitor 
I9 (PF05922), inhibitor_I29 (PF08246), and aspartic acid 
proteinase inhibitor (PF16845) domains was 1, 26, 5, 3, 
69, 37, and 11, respectively. By scanning the common 
bean genome with a sliding window size of 150 kb, we 
identified 10 genes containing the cathepsin propeptide 
inhibitor domain (PF08246) in the 29.4 Mb to 30.2 Mb 
interval of chr11.

Synteny analysis of the genomes of V. unguiculata, 
G. max, and A. hypogaea revealed that the cluster of 
PI genes present in the common bean genome was dif-
ferent in other legumes (Fig. 3A). The synteny region of 
the V. unguiculata genome was located at 26.81–27.41 
Mb of chr11, and only four PI genes of the common 
bean were homologous to genes within this region in 
V. unguiculata. Tandem duplication of genes occurred 
in the homologues of PvCPi in V. unguiculata. Two 
PI genes in this genomic region of V. unguiculata were 
homologous to G. max genes. As shown in the synteny 
plot, tandem duplication of multiple PI genes occurred 
within 46.71–46.54 Mb of chr6 of G. max, with a total of 
seven PI genes. There was only one PI gene in the corre-
sponding synteny region of A. hypogaea. These phenom-
ena suggest that the gene clusters identified in common 
beans may arise after species divergence from other leg-
umes. In the 683 common bean samples, the absence rate 
of PI genes was calculated in the gene cluster, and only 
PHAVU_011G131700 g (SAG39, Senescence-specific 
cysteine protease) and PHAVU_011G132000 g (SAG39, 
Senescence-specific cysteine protease) had high gene loss 
rates within this gene cluster (Fig. 3B). This suggests that 
the PI gene PAV was not under strong selection during 
domestication and breeding improvement.

Stress response atlas of common bean
The study of biotic and abiotic stresses is important for all 
crops. RNA-seq data for a wide range of common beans 
in response to biotic and abiotic stresses were collected 
from NCBI (Table  S1). First, we selected transcriptome 
sequencing data that had three biological replicates and 
were all based on the pair-end sequencing strategy of the 

Table 1 The number of different types of resistance gene 
analog (RGA) candidates and subfamilies found on the reference 
genomes and pan-genome additional contigs

RGAs Reference Pangenome 
additional contigs

Pangenome

CN 13 (12, 1) 36 (36, 0) 49 (48, 1)

CNL 172 (99, 73) 81 (81, 0) 253 (180, 73)

NBS 7 (4, 3) 40 (40, 0) 47 (44, 3)

NL 99 (50, 49) 49 (49, 0) 148 (99, 49)

RLK 807 (128, 679) 36 (35, 1) 843 (163, 680)

RLP 132 (60, 72) 51 (51, 0) 183 (111, 72)

TMCC 159 (16, 143) 28 (28, 0) 187 (44, 143)

TN 15 (8, 7) 6 (6, 0) 21 (14, 7)

TNL 73 (30, 43) 6 (6, 0) 79 (36, 43)

TX 31 (21, 10) 40 (40, 0) 71 (61, 10)

OTHER 21 (6, 15) 0 (0, 0) 21 (6, 15)

Total 1529 (434,1095) 373 (372,1) 1902 (806,1096)
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Illumina sequencing platform. These data included the 
biotic stresses of M. incognita infestation, Xanthomonas 
infestation, arbuscular mycorrhizal fungi infestation and 
Xanthomonas axonopodis infestation and the abiotic 
stresses of salt stress, low temperature, and high  CO2 
concentration. After calculating the mean FPKM values 
for all the groups, the samples were classified using PCA. 
The first principal component (PC1) (explained 50.38% 
of variance) and second principal component (PC2) 
(explained 15.86% of variance) were able to distinguish 
between different tissues and stress types (Fig. 4B). This 
suggests that genes are specifically expressed in different 
tissues, growth periods, and growth environments. The 
heatmap of expression showed that different tissues had 
specific high and low gene expression (Fig. 4A). Among 

the abiotic stresses, 2685 response genes were com-
mon to salt stress, low-temperature stress, and drought 
stress, and a large number of response genes were stress-
specific. For example, 3864 response genes were specific 
to low-temperature stress. There were only 38 response 
genes that were common to different sources of patho-
gen infestation, majority of which were specific (Fig. 4C). 
Hence, the gene response patterns provide a reference for 
further mining of broad-spectrum and specific resistance 
genes.

Based on PAV analysis, we found that the core, soft-
core, shell, and cloud genes had different expression 
levels and responded to multiple stresses. The core 
genes had the highest expression level, the softcore 
gene had a similar expression level to that of the core 

Fig. 2 Identification and analysis of RGA genes within the common bean pan-genome. A The distribution density of identified RGA genes on 11 
chromosomes of common bean. B-D, Mutation analysis of RGA genes within the QTL interval for resistance to Pseudomonas syringae pv. phaseolicola 
located on chr2 (B), chr8 and chr9 (C), chr11 (D)
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gene, the shell gene had a significantly lower expres-
sion level than that of the core and softcore genes, and 
the cloud gene had an extremely low expression level 
(Fig.  4 F). These results suggest that core and soft-
core genes play an important role in maintaining the 
essential life activities of the common bean at a high 
level of expression. Core and softcore genes are not 
only expressed at high levels overall but also play a 
key role in biotic and abiotic stresses, accounting for 
the majority of stress-responsive genes (Fig. 4E). This 

suggests that most of the important functional genes 
are conserved, and only a few genes with PAV may be 
involved in shaping the phenotypic diversity of the dif-
ferent varieties. In the present study, analysis of the 
BHLH gene family in the common bean revealed that 
certain similar genes in one family were either core, 
softcore, or shell genes. As shown in Fig. 4D, these five 
gene family members were co-expressed, suggesting 
that they had similar expression patterns and func-
tional complementarity.

Fig. 3 Analysis of protease inhibitor gene clusters based on the reference genome of common bean. A Analysis of synteny between the protease 
inhibitor gene cluster on chromosome 11 of Phaseolus vulgaris L. and V. unguiculata as well as G. max and A. hypogaea. B PI genes 
within the protease inhibitor gene cluster on the common bean genome in the landrace and breeding lines
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The gene expression module of common bean 
is functional‑, organ‑, and PAV‑specific
The DEGs in response to each stress were analysed using 
WGCNA, and a total of 14 co-expression modules were 
identified. Ten of the 14 modules were organ specific 
(Fig.  5). The blue module was specifically expressed in 

both leaves and radicles, and the genes in this module 
were enriched in photosynthesis (Q-value = 9.6e-53), 
which is closely related to leaf function. The genes in this 
module were also enriched in shell genes, suggesting that 
these genes may have been selected during domestica-
tion. Genes in the red, magenta, tan, salmon, turquois, 

Fig. 4 Response atlas of biotic and abiotic stresses in common bean. A Expression heatmap of differentially expressed genes in each experimental 
design for stress response. B Results of PCA analysis based on average FPKM values of samples from each group. Colours represent different tissues 
of the common bean. C Venn plot of differentially expressed genes in the common bean under biotic and abiotic stresses. D Co-expression network 
of five genes in the bHLH gene family. The shape of the nodes represents the type of gene (core, softcore, and shell genes), and the thickness 
of the connecting lines represents the degree of correlation between the two genes. E Proportion of core, softcore, shell, and cloud genes response 
to different biotic and abiotic stresses. The types of response are classified as positive (upregulated in stress samples) and negative (downregulated 
in stress samples). F Box plot of the expression level of core, softcore, shell, and cloud genes in the common bean genome (FPKM). Each point 
represents the mean value of the expression of the gene in one group
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and yellow modules were expressed specifically in the 
root. In addition to the salmon module, the other mod-
ules were enriched in shell genes. GO enrichment analy-
sis revealed that genes in the red, tan, salmon, and yellow 
modules were enriched in response to abiotic stimuli, 
alcohol dehydrogenase activity, senescence-associated 
vacuoles, and secondary metabolic processes, which are 
involved in stress responses.

A series of similar GO terms were enriched in magenta 
or turquoise modules; for example, many anti-oxidation-
related GO terms were enriched in the magenta mod-
ule, and some basic metabolism-related processes were 
enriched in turquoise. Genes in the purple and brown 
modules were specifically expressed in the lower hypoc-
otyl, and genes in the brown module were enriched in 
response to biotic stimuli. The above results indicate that 
genes in different expression modules have tissue speci-
ficity as well as functional and conservation specificity.

PAV is prevalent in pathways
We performed pathway annotation based on the KEGG 
database for all pan-genome genes and assigned 29,462 
genes to 410 pathways. Of the genes that could be 
assigned to pathways, 9579 were core genes, 7136 were 
softcore genes, 6951 were shell genes, and 5796 were 
cloud genes. Many varieties have lost some reference 

genes on some nodes of the pathway but have gained 
some new genes during domestication, leaving some 
nodes of the pathway with many homologous genes 
located on pan-genome additional contigs. There were 
21 pathways with no variable gene expression, which 
indicates that these pathways are conservative and that 
the process of artificial selection does not exert selection 
pressure on these pathways. The peroxidase (K00430) in 
the phenylpropanoid biosynthesis (map00940) pathway 
has the most paralogous homologs (60) on pan-genome 
additional contigs, and this phenomenon of intra-species 
expansion of family members may be related to the selec-
tion pressure caused by the process of breeding for spe-
cific traits in common beans.

Eight selected pathways had high average gene absence 
rates, with genes only in the top 15 absence rates in each 
pathway (Fig.  6). Genes may have high absence rates 
owing to the fact that genomes of some samples gaining 
non-reference novel genes have very low gene frequen-
cies in the population, resulting in a high average absence 
rate at one node of the pathway. The results showed that 
the PAV of the genes in each pathway and the expansion 
of the family had multiple patterns. For example, ALDO 
in glycolysis and gluconeogenesis; although the aver-
age gene absence rate of all homologues of this gene was 
88.2% in 683 samples, 31 of its homologues were located 

Fig. 5 Gene expression modules were obtained from co-expression analysis using WGCNA. Each colour represents an expression module. The 
figure of the organ near the module indicates that the genes within the module are specific to the expression of that organ. The squares and circles 
next to the modules indicate that the genes within the module are significantly enriched in shell genes or softcore genes. In addition, the functional 
descriptions next to the module represent the GO terms for the gene enrichment within the module
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in non-reference contigs. All 31 genes were shell genes, 
indicating that these expansions occur only in some vari-
eties. The gene absence rate of the top 15 genes in both 
pathways, photosynthesis and carbon metabolism, was 
very high at over 76.3%. However, the top 15 genes in 
photosynthesis were all photosystem-related and may 
have some functional complementarity, whereas the 
top 15 genes in carbon metabolism belonged to a differ-
ent gene family. Among the eight pathways in Fig. 6, the 
genes in two pathways, plant-pathogen interaction and 
plant hormone signal transduction, were relatively con-
served, with an average gene absence rate of 16.5% and 
18.3% for homologues of the 15 th gene.

Mutual exclusivity and co‑occurrence of gene PAV 
within and between pathways
Based on the pan-genome constructed in this study, 
we were able to identify an abundance of gene PAV, 

and finding the type of relationships that exist between 
these variants is a research worthy of further study. We 
calculated the significance of mutual exclusivity and co-
occurrence between gene pairs in each pairing pattern 
within and between all the pathways. Using a p-value 
of < 0.05 as the threshold, we identified a total of 8990 
pairs of genes with mutual exclusivity and 30,272 pairs 
of genes with co-occurrence of PAVs within the path-
way (Table S8, 9). A total of 136,887 and 314,888 pairs 
of genes were identified as mutually exclusive and co-
occurring between pathways, respectively (Table  S10, 
11). There were both mutual exclusivity and co-occur-
rence gene PAVs within the same pathway; for example, 
56 and 43 pairs of mutual exclusivity and co-occur-
rence gene PAVs in flavonoid biosynthesis, respectively 
(Fig. 7A). Some pathways have more mutually exclusive 
gene pairs than co-occurrence gene pairs, such as flavo-
noid biosynthesis, and some have more co-occurrence 

Fig. 6 Absence rates of genes on each KO node and the number of genes on non-reference in each of the eight pathways selected. The 
first column is the abbreviated name of the protein for that KO, the second column indicates the absence rate of the homologous gene 
encoding the protein in 683 individual beans, and the third column indicates the number of homologous genes encoding the protein located 
on non-reference contigs. The genes with the top 15 absence rates in each pathway are shown in the figure, and information on the other 
complete gene sets is illustrated in table S6. Abbreviations of all the proteins in this figure are defined in the attached table S7



Page 12 of 16Wang et al. BMC Genomics          (2025) 26:495 

gene pairs than mutual exclusive gene pairs, such as 
the plant-pathogen interaction, where there are 32 
mutual exclusivity PAV pairs and 17 co-occurrence 
gene PAV pairs. Many gene pairs belong to the same 
gene family, such as the ALDO and ENO families of 
the glycolysis/gluconeogenesis pathway. These family 
members with mutual exclusivity and co-occurrence 
gene PAVs were close in the phylogenetic tree (Figure 
S1), suggesting that their functions were similar. This 
may reveal some functional gene complementation in 
common bean during domestication. Mutual exclusiv-
ity and co-occurrence gene PAVs were not only found 
within pathways but were also widespread between 
pathways (Fig.  7B); for example, between the endocy-
tosis and flavone and flavonol biosynthesis pathways, 
seven co-occurrence and 14 pairs of mutual exclusiv-
ity gene PAVs were present (Fig. 7C), which reveals the 

complexity of biological activity. Furthermore, differ-
ent pathways need to be linked to study the patterns of 
genetic mutations.

Discussion
The genome of a single strain does not represent the 
entire set of genes within a species; hence, reference 
genomes cannot be used to study the complete variation 
in a given population. Therefore, many studies have con-
structed pan-genomes using second or third generation 
population sequencing. The construction of a large num-
ber of linear and graph-based genomes has greatly facili-
tated the discovery of structural variation and gPAV for 
crop and animal researches [11, 17, 48]. Based on domes-
tication and geographical isolation, the common bean 
has formed two centres of diversity for cultivated com-
mon beans in the Andes and Central America [49]. To 

Fig. 7 Mutual exclusivity and co-occurrence of gene PAVs within and between pathways calculated based on PAV information in 683 samples 
of common bean. A Mutual exclusivity and co-occurrence of genes present within pathways. The numbers in the figure represent the number 
of gene pairs. The middle figure is the p-value of the mutual exclusivity and co-occurrence between genes in phenylalanine metabolism 
(map00360). B Mutual exclusivity and co-occurrence of genes between pathways. The numbers in the figure represent the number of gene pairs. C 
The p-value of the mutual exclusivity and co-occurrence of gene PAVs between Glycolysis/Gluconeogenesis (map00010) and flavonoid biosynthesis 
(map00941) pathways



Page 13 of 16Wang et al. BMC Genomics          (2025) 26:495  

investigate the genetic diversity of these common bean 
lines, 683 common beans were sequenced by Wu et  al. 
[3], which contained landraces and breeding lines from 
different localities. These samples contained abundant 
variation information, and the pan-genome constructed 
based on these samples contained 10,452 non-reference 
genes, which are important for candidate gene mining. 
Of the 38,577 genes in the common pan-genome, 11,024 
and 6454 were shell and cloud genes, respectively, sug-
gesting that there is a rich diversity of genes lost and 
obtained in the bean population owing to domestication 
or genetic drift. The Andean and Mesoamerican popu-
lations of common bean were separated in the phyloge-
netic tree based on the PAV information. This indicates 
that the PAV information identified in this study is accu-
rate and can also be found in other pan-genomic studies 
such as Brassica napus and tomato [16, 22], which are 
important for further analyses.

Achieving greater resistance is a common goal in all 
crop breeding programs, and RGAs are important can-
didate genes for resistance breeding. Sufficient RGAs 
can be found in the pan-genome on further analysis 
using a robust RGA-identification pipeline [19, 20, 50]. 
The RGAs located on non-reference contigs identified 
in this study are an important addition to the resistance 
gene resources of the common bean. Of the 373 novel 
RGAs, 372 were variable genes (Table  S12), suggesting 
that a large number of resistance genes were lost and 
gained during domestication and geographic isolation. 
During the breeding process that focuses on one trait, 
the genome is likely to lose genes associated with other 
traits [51] and may gain new genes owing to structural 
variation. Owing to the domestication of common beans 
in different regions with different breeding objectives, 
the genome of G19833 in the Andean pool is no longer 
available as a reference for all RGAs; additionally, 434 
of the 1529 RGAs in the G19833 genome are variable 
genes. Regarding resistance, an important agronomic 
trait, numerous quantitative genetic studies have identi-
fied QTL for resistance, such as anthracnose resistance, 
bacterial blight resistance, and Pseudomonas syringae 
pv. phaseolicola resistance [40, 52, 53]. Many QTL stud-
ies have identified several genes within the interval, and 
resolving the variation in these genes can provide new 
insights into the selection of multiple candidate genes. 
For example, the 36 RGAs identified in the present study 
in Pseudomonas syringae pv. phaseolicola resistance QTL 
intervals had different variation patterns, including gene 
absence, which may help to understand the mutation 
load and impact of mutations in different RGAs. RGAs 
with higher mutation loads and gene loss, stop-gain, and 
missense variants may have been under higher selection 

pressure, and their variation may impact the resistance of 
different varieties.

Since plants are subject to infestation by pathogens, 
parasitic plants, and herbivores during growth, plant-
derived PIs are promising defences for crop improve-
ment and pest management [54]. Of the 152 candidate 
PI genes identified in this study, 10 cysteine proteinase 
inhibitor genes were clustered by tandem or segmental 
replication, which may play an important role in plant 
resistance [55, 56]. Comparative genomic analyses of 
common beans and other legumes suggest that the for-
mation of the cysteine proteinase inhibitor gene cluster 
in common beans occurred after they diverged from a 
common ancestor. This may be related to the different 
biotic stresses encountered by different legumes, as dif-
ferent PIs may target different biotic stressors. Absence 
rates were very low for eight of the 10 genes in the gene 
cluster but were higher in all breeding lines than in lan-
draces, suggesting that most breeding goals may have 
overlooked selection for PI gene-related traits. Two PI 
genes with high absence rates, PHAVU_011G131700 
g (SAG39, Senescence-specific cysteine protease) and 
PHAVU_011G132000 g (SAG39, Senescence-specific 
cysteine protease), were also abundant in the breeding 
lines than in the landraces. These two genes are candi-
dates for further study in insect and disease resistance 
breeding.

RGAs and PI genes are associated with biotic stresses; 
however, abiotic stresses are also important for plants 
that need to be addressed during growth. In this study, 
transcriptomes generated from nine independent biotic 
and abiotic stresses were analysed to obtain a more 
comprehensive stress response atlas for common beans. 
This part of the analysis revealed not only the organ and 
stress specificity of gene expression but also the rela-
tionship between gene PAVs and the specific expres-
sion of genes. For example, some expression modules 
showed multiple dimensions of enrichment, including 
gene function, organ, and gene PAV, which provides 
more information for further mining and exploitation 
of the genetic resources of common bean. Using the 
co-expression network, functional complementarity 
of genes in one gene family can be studied; for exam-
ple, expression correlation between shell and core genes 
within the BHLH family exists, which indicates that 
they have similar expression patterns. When a shell 
gene is absent in some individuals, the core gene can 
compensate for its function. If both shell and core genes 
are present, the function of this gene may be enhanced, 
which is important for the developmental robustness 
of the plant and the alteration of traits owing to the 
enhanced functionality of a specific gene [57].
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Pathways are an important avenue for biological 
research that integrates genes into a system. Variations in 
one node may affect the action of the entire pathway. To 
study gene mutations in pathways, we analysed the gene 
PAVs of all pathways and found inconsistencies in con-
servation between pathways. Gene family expansions are 
common in plants and can affect the synthesis of second-
ary metabolites or other pathways [58]. However, most 
gene family expansion studies are based on reference 
genome comparisons of each species, which can reveal 
species-specific gene family expansions [59]. Several new 
genes can be annotated in pan-genomes, providing a 
basis for studying the expansion of gene families within a 
species. For example, many RGAs not present in the ref-
erence genome have been identified in the pan-genomes 
of both Brassica oleracea and Brassia napus, providing 
additional resources for mining functional genes [19, 20]. 
Our analysis revealed a large number of non-reference 
novel genes in pathways associated with plant resistance 
and secondary metabolite synthesis. Majority of these 
new genes are variable genes, suggesting that their repli-
cation has only occurred in some varieties. For example, 
phenylpropanoid biosynthesis—a pathway important for 
growth and development, stress response, and nutritional 
value [60, 61]—has 60 novel peroxidase (E1.11.1.7) genes 
on non-reference contigs. The duplication of genes often 
leads to divergence in gene function [62], and a large 
number of gene duplications in peroxidase may result in 
unique traits in many varieties. Further analysis of these 
gene families could lead to more possibilities for com-
mon bean breeding.

In tumours, the mutual exclusivity and co-occur-
rence of somatic mutations reflect functional inter-
actions between genes [63]. Several tumour driver 
mutations exhibit mutual exclusivity between them, pos-
sibly because of the redundancy of functions between 
these genes [64]. Co-occurring mutations represent the 
possibility that mutations in these genes may simulta-
neously activate different pathways and alter the phe-
notype, reflecting collaboration between gene functions 
[65]. However, the study of mutual exclusivity and co-
occurrence should not be limited to the field of tumour 
research, as the large number of gene PAVs identified in 
the present study also requires the analysis of their rela-
tionships. By calculating the mutual exclusivity and co-
occurrence between gene PAVs in the pathway, we found 
that a large number of mutually exclusive or co-occur-
rence relationships occurred between different members 
within a single gene family. In the stress response atlas 
section of this study, we found the co-expression of dif-
ferent members of the BHLH family with both core and 
shell genes. The combination of these two components 
suggests that members of the gene family have complex 

collaborative relationships with each other, as they partic-
ipate in plant growth, development, and stress response. 
A study by Kwon et  al. [66] on stem cell development 
in plant stem tips found that mutations in the stem cell 
regulator CLV3 caused an excessive proliferation of flo-
ral organs in many plants, and a paralogous homolog of 
the CLV3 gene in tomato was able to partially suppress 
this abnormal phenotype. This suggests that many genes 
function more robustly in the presence of a ‘spare gene’. 
However, these mutually exclusive genes may cause sig-
nificant phenotypic changes if both the genes are absent; 
thus, the mutually exclusive PAV gene family members 
may contain such ‘spare genes’. This provides a new per-
spective on the expansion of genes in a pan-genomic 
context and the redundancy of functions between these 
genes as well as may aid in certain researches, such as 
gene editing. Furthermore, if editing of target genes is 
performed to study their function, it is best to consider 
these genes with mutually exclusive PAV relationships. In 
contrast, co-occurrence of the gene PAVs provides alter-
native perspective on the results, where different genes or 
pathways have to be altered simultaneously to undergo a 
phenotypic change when the plant is adapted to different 
environments or under different selection pressures. This 
relationship between mutations has been further studied 
in tumours and, to a lesser extent, in plants; for example 
in Amaranthus palmeri, where G399 A was found to be 
most likely to co-occur with other ppo2 mutations in 
the same allele [67]. This suggests that there are many 
complex links between mutations in gene pairs and that 
the functions of genes may be multifaceted and may be 
involved in different pathways. When a candidate gene 
is identified in a population or an individual strain that 
forms a great phenotype, analysis of the genes and path-
ways that have a co-occurring PAV relationship is a great 
reference for a deeper understanding of gene function 
and better breeding work. In conclusion, this study is the 
first to construct a common bean pan-genome, providing 
a richer genetic resource for the study of common bean. 
It also provides a basis for further understanding of the 
gene PAV in common beans during domestication and 
breeding by examining various aspects of the relation-
ship between insect resistance, stress resistance, and gene 
PAVs in the pathway.
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