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Introduction
Non-alcoholic fatty liver disease (NAFLD), recently rede-
fined as metabolic dysfunction-associated steatotic liver 
disease (MASLD) [1], is the most common liver disorder 
worldwide, affecting approximately 24% of the popula-
tion [2]. Meanwhile, its incidence is rising at an alarming 
and concerning pace [3]. NAFLD encompasses a dis-
ease spectrum progressing from non-alcoholic fatty liver 
(NAFL) and non-alcoholic steatohepatitis (NASH) to 
fibrosis/cirrhosis, with the potential to ultimately develop 
into hepatocellular carcinoma (HCC) [2, 4]. Compelling 
evidence also establishes connections between NAFLD 
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Abstract
Introduction  Non-alcoholic fatty liver disease (NAFLD) represents the most widespread liver disease globally, 
ranging from non-alcoholic fatty liver (NAFL) and steatohepatitis (NASH) to fibrosis/cirrhosis, with potential 
progression to hepatocellular carcinoma (HCC). Genome-wide association studies (GWASs) have identified several 
single nucleotide polymorphisms (SNPs) associated with NAFLD. However, numerous GWAS signals associated with 
NAFLD locate in non-coding regions, posing a challenge for interpreting their functional annotation.

Results  In this study, we utilized the Activity-by-Contact (ABC) model to construct the enhancer-gene maps of liver 
by integrating epigenomic data from 15 liver tissues and cell lines. We constructed the most comprehensive genome-
wide regulatory maps of the liver, identifying 543,486 enhancer-gene connections, including 267,857 enhancers and 
16,872 target genes. Enrichment analyses revealed that the ABC SNPs are significantly enriched in active chromatin 
regions and active chromatin state. By combining the ABC regulatory maps and NAFLD GWAS data, we systematically 
identified ABC SNPs associated with NAFLD risk. Through the functional annotations, such as pathway enrichment 
and drug-gene interaction analyses, we identified 6 genes (GGT1, ACTG1, SPP1, EPHA2, PROZ and SHMT1) as candidate 
NAFLD genes, with SHMT1 previously reported. Among the SNPs connected to the candidate genes, the ABC SNP 
rs2017869 (odds ratio [OR] for the C allele = 1.10, 95% CI = 1.04–1.16, P = 5.97 × 10− 4) had the highest ABC score. 
According to the ABC maps, rs2017869 links to GGT1, and several drugs targeting this gene, such as liothyronine, 
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and several other chronic diseases, including cardio-
vascular disease (CVD) [5, 6], type 2 diabetes mellitus 
(T2DM) [7], dyslipidemia [8], and chronic kidney disease 
(CKD) [9]. Consequently, NAFLD not only shortens life 
expectancy [10], but also imposes a significant economic 
burden [11]. Despite its growing impact, effective treat-
ments for NAFLD remain limited [12].

Identifying the risk factors for NAFLD is crucial 
for pinpointing patients who are most susceptible to 
increased morbidity and mortality, thereby guiding pre-
cision therapeutic strategies. Studies have shown that 
NAFLD arises from a combination of genetic predisposi-
tion and environmental factors [13]. Environmental con-
tributors, such as obesity, type 2 diabetes, hypertension, 
dyslipidemia, and other emerging conditions, have been 
implicated in the development of NAFLD [14]. In addi-
tion, the significant role of genetic factors in NAFLD risk 
cannot be overlooked. Genome-wide association stud-
ies (GWASs) have identified several single nucleotide 
polymorphisms (SNPs) associated with NAFLD. Among 
them, four common SNPs are robustly associated with 
NAFLD development: rs738409 (patatin-like phospholi-
pase domain-containing 3, PNPLA3) [15, 16], rs58542926 
(transmembrane 6 superfamily member 2, TM6SF2) 
[17–19], rs641738 (membrane-bound O-acyltransferase 
domain containing 7, MBOAT7) [20, 21], and rs1260326 
(glucokinase regulator, GCKR) [22, 23]. Additionally, 
GWASs have uncovered genetic variants implicated in 
NAFLD progression, such as rs72613567 (hydroxys-
teroid 17-beta dehydrogenase 13, HSD17B13) [24] 
and rs4374383 (MER proto-oncogene, tyrosine kinase, 
MERTK) [25]. Despite the abundance of GWAS find-
ings, numerous NAFLD-associated SNPs in non-coding 
regions such as enhancers and promoters remain chal-
lenging to functionally annotate [26], potentially leaving 
some susceptibility genes undetected.

To gain a deeper understanding of the impacts of non-
coding SNPs on gene expression and biological pathways, 
researchers have applied various molecular quantitative 
trait locus (xQTL) analyses, including expression QTL 
(eQTL) and splicing QTL (sQTL) studies. However, the 
existing xQTL datasets have explained only a small por-
tion of the GWAS heritability associated with diseases 
[27, 28], indicating that additional and varied functional 
genomic data, extending beyond gene transcription, are 

required to comprehensively unravel the mechanisms 
underlying the disease.

Tremendous efforts have been made to link GWAS 
signals to different mechanisms of gene regulation. 
Approaches such as predicting enhancers utilizing 
histone chromatin immunoprecipitation sequencing 
(ChIP-seq) data enriched for H3K27 acetylation marks 
(H3K27ac) and estimating 3D genome interactions using 
high-throughput chromosome conformation capture 
(Hi-C) data have been widely adopted [29]. To improve 
predictions of enhancer-gene interactions, Joseph et al. 
developed the Activity-by-Contact (ABC) model, which 
identifies non-coding SNPs situated within ABC enhanc-
ers and their target genes [30]. This approach has been 
shown to outperform previous methods in predicting 
regulatory elements and their associated target genes 
[30, 31]. Despite the establishment of ABC enhancer-
gene connections across various tissues and cell types, 
comprehensive enhancer-gene maps specific to the liver 
remain lacking. This gap poses a significant barrier to a 
more thorough exploration of NAFLD’s regulatory mech-
anisms using this approach.

The objective of this study was to advance the under-
standing of the regulatory mechanisms underlying 
NAFLD pathogenesis through integrative analyses of 
genome-wide enhancer-gene maps, GWAS data, and 
eQTL data. Our study linked non-coding SNPs to 
NAFLD biological mechanisms and identified novel sus-
ceptibility genes. The most comprehensive enhancer-
gene maps of the liver to date provide an essential 
resource for understanding gene regulation and the 
genetic basis of NAFLD and other liver diseases.

Methods
Epigenomic profiling of liver tissues and cell lines
To construct Activity-by-Contact (ABC) maps for liver 
tissues and cell lines, we curated published epigenomic 
data, including DNase I hypersensitive sites sequencing 
(DNase-seq), assay for transposase-accessible chroma-
tin using sequencing (ATAC-seq), H3K27ac chromatin 
immunoprecipitation sequencing (H3K27ac ChIP-seq) 
and high-throughput chromosome conformation capture 
(Hi-C) data from ENCODE [32] and the Roadmap Epig-
enomics Project [33]. In total, we achieved data from 15 
liver tissues and cell lines, and the sources of data for each 

showed potential benefits to patients with NAFLD. Furthermore, we identified that another novel gene, EPHA2, may 
play a crucial role in NAFLD by regulating the GGT levels.

Conclusions  Our study provides the most comprehensive ABC regulatory maps of the liver to date. This resource 
offers a valuable reference for identifying regulatory variants and prioritizing susceptibility genes of liver diseases, such 
as NAFLD.
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biosample are detailed in Table S1. First, we retrieved the 
BAM files for DNase-seq, ATAC-seq, H3K27ac ChIP-
seq, and Hi-C from both ENCODE and the Roadmap 
Epigenomics Project (accessible at ​h​t​t​p​​s​:​/​​/​e​g​g​​2​.​​w​u​s​​t​l​.​​e​
d​u​/​​r​o​​a​d​m​​a​p​/​​d​a​t​a​​/​b​​y​F​i​​l​e​T​​y​p​e​/​​a​l​​i​g​n​m​e​n​t​s​/​c​o​n​s​o​l​i​d​a​t​e​d​
/). For the BAM files sourced from ENCODE, we chose 
those that were aligned to the hg38 reference genome, 
marked as “released”, and did not have flags indicating 
“unfiltered”, “extremely low spot score”, “extremely low 
read depth”, “not compliant”, or “insufficient read depth”. 
These files were employed as the input data for the ABC 
model. Finally, considering previous research has demon-
strated that averaged Hi-C data from multiple cell-type 
specific Hi-C matrices produces results that are compa-
rable to those derived from cell-type specific promoter 
capture Hi-C data [30, 34], we downloaded the average 
Hi-C data (​h​t​t​p​​s​:​/​​/​w​w​w​​.​e​​n​c​o​​d​e​p​​r​o​j​e​​c​t​​.​o​r​​g​/​f​​i​l​e​s​​/​E​​N​C​F​​
F​1​3​​4​P​U​N​​/​@​​@​d​o​​w​n​l​​o​a​d​/​​E​N​​C​F​F​1​3​4​P​U​N​.​b​e​d​.​g​z) and 
used it in analyses for biosamples where cell-type specific 
Hi-C data was not available.

ABC model construction
To predict enhancer-gene connections in liver tissues 
and cell lines, we utilized the ABC model (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​
b​.​c​​o​m​/​​b​r​o​a​​d​i​​n​s​t​​i​t​u​​t​e​/​A​​B​C​​-​E​n​​h​a​n​​c​e​r​-​​G​e​​n​e​-​P​r​e​d​i​c​t​i​o​n) 
by integrating data from chromatin accessibility assays 
(ATAC-seq or DNase-seq), histone modification profiles 
(H3K27ac ChIP-seq), and chromatin conformation cap-
ture (Hi-C) [30, 34].

Briefly, for each biosample, we constructed the ABC 
model by adhering to these steps using python (v3.10.13): 
(1) Peaks in the chromatin accessibility data were called 
using MACS2 with a lenient p-value cutoff of 0.1; (2) 
Chromatin accessibility reads were counted for each 
peak, and the top 150,000 peaks with the highest read 
counts were retained. Each peak was resized to 500  bp, 
centered on the peak summit. We also included 500  bp 
regions centered on all gene transcription start sites 
(TSSs) and excluded any peaks overlapping blacklisted 
regions. Overlapping peaks were merged, resulting in 
a final set of candidate regions; (3) Element activity was 
determined by counting the reads in each candidate 
region from both chromatin accessibility and H3K27ac 
ChIP-seq datasets, followed by computing the geometric 
mean of these two measurements; (4) The ABC score for 
each element-gene pair was computed as the normalized 
product of activity and contact, where normalization was 
achieved by dividing by the product of activity and con-
tact for all other elements located within a 5 Mb region 
surrounding that gene [30]. To identify significant gene 
regulatory effects, the best threshold of ABC score was 
automatically chosen based on the input [34]. Element-
gene pairs that surpassed this threshold were classified as 
“enhancer-gene connections”, whereas elements that were 

predicted to regulate at least one gene were labeled as 
“ABC enhancers”.

Genome-wide association study (GWAS) data collection
To investigate the associations between SNPs in ABC 
enhancers and NAFLD susceptibility, we searched for 
available GWAS data for NAFLD. We downloaded 
GWAS data from the FinnGen study, which included 
3,006 cases and 450,727 controls (​h​t​t​p​​s​:​/​​/​r​1​1​​.​f​​i​n​n​​g​e​n​​.​f​i​
/​​p​h​​e​n​o​/​N​A​F​L​D). Based on the International ​C​l​a​s​s​i​f​i​c​a​
t​i​o​n of Diseases Tenth Revision (ICD-10), participants 
assigned the code K76.0 for hospital discharge or cause of 
death were designated as NAFLD cases, and those with-
out a NAFLD diagnosis were designated as controls. This 
GWAS data was used in the discovery stage in this study. 
We further obtained another large-scale GWAS statis-
tics from the GWAS Catalog, comprising 4,761 cases 
and 373,227 controls (​h​t​t​p​​s​:​/​​/​w​w​w​​.​e​​b​i​.​​a​c​.​​u​k​/​g​​w​a​​s​/​s​​t​u​d​​
i​e​s​/​​G​C​​S​T​9​0​0​5​4​7​8​2). This study defined NAFLD as any 
hospital admission with an ICD-9 or ICD-10 code relat-
ing to NAFLD (571.5; K75.8, K76.0) or any primary care 
encounter with a Read code (clinical terminology system 
used in UK Primary Care settings) relating to NAFLD 
(C32y5, J6154, J61y1, J61y7, J61y8, J61y9). Controls were 
identified as individuals who did not have a diagnosis 
of NAFLD. This GWAS data was used in the replica-
tion stage. In total, this study included 7,767 cases and 
823,954 controls. In this study, we retained the NAFLD 
nomenclature instead of the updated MASLD terminol-
ogy to align with the ICD-9/10-based case definitions 
used in the GWAS data. All samples were of European 
descent.

Characteristics analyses of ABC SNPs
ABC SNPs were defined as those SNPs located in the pre-
dicted enhancer regions, as indicated by the ABC maps. 
By overlapping the SNP list from the Single Nucleotide 
Polymorphism Database (dbSNP, ​h​t​t​p​​s​:​/​​/​w​w​w​​.​n​​c​b​i​​.​n​l​​m​.​
n​i​​h​.​​g​o​v​/​s​n​p​/) (GRCh38.p7), which contains 660,146,174 
SNPs, with the ABC maps, we identified 15,895,042 SNPs 
as ABC SNPs. For enrichment analyses, a set of control 
SNPs (non-ABC SNPs) was generated, matching the 
allele frequencies, linkage disequilibrium (LD) patterns, 
and genomic distribution of ABC SNPs using the web 
tool vSampler (​h​t​t​p​​:​/​/​​w​w​w​.​​m​u​​l​i​n​​l​a​b​​.​o​r​g​​/​v​​s​a​m​p​l​e​r​/) [35].

For enrichment analyses of genomic distribution, we 
used SnpEff (v5.1) [36] to annotate both ABC and non-
ABC SNPs. SNPs were categorized into the following 
genomic features: upstream gene, downstream gene, 
5’UTR, 3’UTR, intron, intergenic region, and others. 
Enrichment analyses of these genomic annotations were 
conducted using a two-tailed Fisher’s exact test, and the 
results were presented in a 2 × 2 contingency table. The 
table had columns representing ABC SNPs and non-ABC 
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SNPs, and rows distinguishing SNPs located within and 
outside the annotated genomic regions.

For enrichment analyses of ABC SNPs within func-
tional annotations, we obtained ChIP-seq peak data for 
histone modifications, including H3K4 monomethyl-
ation marks (H3K4me1), H3K4 trimethylation marks 
(H3K4me3), H3K27 acetylation marks (H3K27ac), 
H3K9 acetylation marks (H3K9ac), H3K27 trimethyl-
ation marks (H3K27me3), H3K36 trimethylation marks 
(H3K36me3), and transcription factor binding sites 
(TFBSs) from the ENCODE portal (​h​t​t​p​​s​:​/​​/​w​w​w​​.​e​​n​c​o​​
d​e​p​​r​o​j​e​​c​t​​.​o​r​g). Using bedtools (v2.26.0), we identified 
overlaps between ABC or control SNPs and the peaks 
of regulatory elements. The core 15 chromatin state was 
downloaded from the Roadmap Epigenomics Project (​h​
t​t​p​​s​:​/​​/​e​g​g​​2​.​​w​u​s​​t​l​.​​e​d​u​/​​r​o​​a​d​m​​a​p​/​​w​e​b​_​​p​o​​r​t​a​​l​/​c​​h​r​_​s​​t​a​​t​e​_​​l​
e​a​​r​n​i​n​​g​.​​h​t​m​l​#​c​o​r​e​_​1​5​s​t​a​t​e). Enrichment of ABC SNPs 
within these regulatory elements was assessed using a 
two-tailed Fisher’s exact test, with a 2 × 2 contingency 
table. The table had columns representing ABC SNPs and 
non-ABC SNPs, and rows distinguishing SNPs located 
within and outside the regulatory elements.

For enrichment analyses of ABC SNPs among NAFLD-
related GWAS loci, we procured summary statistics 
from the FinnGen study. Subsequently, GWAS loci were 
defined as genomic regions encompassing SNPs in LD 
with the index SNP, with an r2 threshold of 0.2 or higher. 
Enrichment of ABC SNPs within these NAFLD-related 
GWAS loci was analyzed using two-tailed Fisher’s exact 
test, presented in a 2 × 2 contingency table (columns: 
ABC SNPs and non-ABC SNPs; rows: SNPs within and 
not within the GWAS loci). Next, to estimate the herita-
bility enrichment of ABC SNPs, we performed LD score 
regression (LDSC) using GWAS summary statistics. 
GWAS SNPs that also corresponded to ABC SNPs were 
extracted and used to generate a quantile-quantile (QQ) 
plot of the GWAS P values for those SNPs.

Pathway enrichment analyses
Pathway enrichment analyses were conducted utilizing 
Gene Ontology (GO) [37], Kyoto Encyclopedia of Genes 
and Genomes (KEGG) (http://www.genome.jp/kegg/) 
[38], Reactome Knowledgebase (https://reactome.org) 
[39], and WikiPathways (http://www.wikipathways.org) 
[40] via “g: Profiler” (​h​t​t​p​​s​:​/​​/​b​i​i​​t​.​​c​s​.​​u​t​.​​e​e​/​g​​p​r​​o​f​i​l​e​r​/) [41]. 
GO includes three complementary categories: biologi-
cal process (BP), cellular component (CC), and molecu-
lar function (MF), providing curated and predicted gene 
annotations across multiple species. KEGG is a compre-
hensive repository that integrates genomic, chemical, 
and functional data. Reactome offers detailed molecular 
insights into a wide range of biological processes, both 
normal and disease-associated. WikiPathways serves as a 

resource for biological pathways, providing a platform for 
the publication and curation of biological knowledge.

Identification of novel candidate drugs for NAFLD
To uncover potential drugs that target the candidate 
genes, we employed the Drug-Gene Interaction Data-
base (DGIdb) (https://dgidb.org) [42] to investigate ​d​r​u​
g​-​g​e​n​e interactions. DGIdb integrates data from multiple 
sources to predict druggable genes. The relationships 
between the candidate gene targets and their associated 
drugs were visualized using Cytoscape 3.10.3.

Other methods
Expression quantitative trait locus (eQTL) analyses, colo-
calization analyses, and meta-analysis are described in 
Supplementary Methods.

Statistical analyses
Demographic characteristics between cases and con-
trols were compared using the two-sided χ² test or Stu-
dent’s t-test, as appropriate. Enrichment analyses were 
conducted using a two-tailed Fisher’s exact test with 
Bonferroni correction applied, and P < 0.05 was consid-
ered statistically significant. The associations between 
genetic variants and NAFLD risk were assessed using 
unconditional multivariate logistic regression, with odds 
ratios (ORs) and 95% confidence intervals (CIs) calcu-
lated. P < 1.36 × 10− 5 (1/73,724 independent ABC SNPs 
in NAFLD GWAS data) was considered statistically sig-
nificant. All statistical analyses were performed using R 
(v4.3.1) software.

Results
Landscape of the genome-wide enhancer-gene maps of 
liver
To construct genome-wide enhancer-gene maps across 
15 liver tissues and cell lines, we computed ABC scores 
for each gene and chromatin accessible element, con-
sidering a window of 5  Mb around each gene. This was 
achieved by integrating data from enhancer accessibility 
assays (such as ATAC-seq or DNase-seq), enhancer activ-
ity marks (H3K27ac ChIP-seq), and normalized contact 
frequency data (Hi-C) (Fig. 1). The data sources are listed 
in Table S1. In total, we identified 543,486 enhancer-
gene connections involving 267,857 ABC enhancers 
and 16,872 genes regulated by identified ABC enhanc-
ers (ABC genes) (Figs.  2A-C). The average number of 
enhancer-gene connections identified was 36,232, with a 
range varying from a minimum of 31,044 to a maximum 
of 51,237. On average, each ABC enhancer was estimated 
to regulate 3.0 genes, while each gene was regulated by 
2.0 ABC enhancers (Fig.  2D and E). Additionally, the 
median genomic distance separating each enhancer-gene 
connection was found to be 33,629  bp (Fig.  2F). Of the 

https://www.encodeproject.org
https://www.encodeproject.org
https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state
https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state
https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state
http://www.genome.jp/kegg/
https://reactome.org
http://www.wikipathways.org
https://biit.cs.ut.ee/gprofiler/
https://dgidb.org
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identified ABC genes, 690 (4.1%) were uniquely detected 
in their respective biosamples (Fig.  2G). Compared to 
constructing ABC maps from a single biosample (i.e., 
HepG2_1) [31], our multi-biosample analyses revealed an 
additional 607 ABC genes. In summary, we constructed 
the liver-specific regulatory maps based on multi-omics 
data from liver tissues and cell lines, providing a valuable 
resource for establishing connections between non-cod-
ing SNPs and their respective target genes.

Characterization of ABC SNPs
To describe the characteristics of SNPs located within 
ABC enhancers (ABC SNPs), we obtained the list of ABC 
SNPs by integrating the whole SNP list from dbSNP data-
base, which comprises 660,146,174 SNPs, with the ABC 
maps. Compared to non-ABC SNPs, ABC SNPs were 
significantly enriched in TFBSs, 5’UTRs and upstream 
gene regions (Fig. 3A). We also examined whether ABC 
SNPs were enriched in genomic regions marked by his-
tone modification to assess their potential regulatory 
function. As expected, ABC SNPs were significantly 
enriched in active chromatin regions, including H3K27 
acetylation marks (H3K27ac), H3K9 acetylation marks 
(H3K9ac), H3K4 monomethylation marks (H3K4me1), 
H3K4 trimethylation marks (H3K4me3), and H3K36 

trimethylation marks (H3K36me3), while being less 
enriched in repressive epigenetic marks like H3K27 tri-
methylation marks (H3K27me3) (Fig.  3B). Additionally, 
ABC SNPs were found to be enriched in active chroma-
tin state, such as enhancers and active transcription start 
sites (TSSs) (Fig.  3C). Collectively, these findings offer 
compelling evidence that underscores the regulatory 
function of ABC SNPs.

We conducted an additional investigation to determine 
if ABC SNPs were enriched with susceptibility SNPs 
associated with NAFLD, utilizing GWAS summary sta-
tistics obtained from the FinnGen study, which included 
3,006 NAFLD cases and 450,727 controls (Table S2). 
Our analyses revealed that ABC SNPs are significantly 
enriched in GWAS loci for NAFLD compared to non-
ABC SNPs (Fig.  3D), suggesting that ABC SNPs may 
offer insights into NAFLD heritability. To quantify their 
contribution to NAFLD heritability, we used LD score 
regression (LDSC) and found that the heritability of 
NAFLD explained by ABC SNPs was 2.62% (SE = 0.0162), 
indicating a significant fraction (Fig.  3E). Furthermore, 
ABC SNPs showed stronger population-associated P 
values compared to the genome-wide SNPs (Fig.  3F). 
Together, these findings imply that ABC SNPs may have a 
notable role in the heritability of NAFLD.

Fig. 1  Study overview. Left: Construction of the ABC enhancer-gene maps of liver. The epigenomic data, including ATAC-seq, DNase-seq, H3K27ac ChIP-
seq and HiC-seq data were from 15 liver biosamples. The bar chart represents the characteristics of ABC maps. Middle: We integrated the constructed ABC 
regulatory maps of liver and the NAFLD GWASs. Manhattan plots show the genome-wide association statistics of the discovery and replication cohorts, 
and the validated ABC SNPs. Right: The characterization of ABC SNPs and target genes, with the graphic summary of connecting rs2017869 within the 
non-coding region to NAFLD pathogenesis. Heatmaps show the characterization of ABC SNPs. Bar chart of pathway enrichment analyses and drug-gene 
interaction network represent the characterization of ABC genes. ABC, Activity-by-Contact; ATAC-seq, assay for transposase-accessible chromatin using 
sequencing; DNase-seq, DNase I hypersensitive sites sequencing; H3K27ac ChIP-seq, H3K27ac chromatin immunoprecipitation sequencing; Hi-C, high-
throughput chromosome conformation capture; NAFLD, non-alcoholic fatty liver disease; GWAS, genome-wide association study; SNP, single nucleotide 
polymorphism; GGT1, gamma-glutamyltransferase 1
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Characterization of ABC genes associated with NAFLD
To identify novel NAFLD-associated loci and link these 
loci to their target genes, we conducted a joint analysis 
of ABC SNPs with FinnGen GWAS data in the discovery 

stage, which included 3,006 cases and 450,727 controls 
(Table S2). We identified 25,691 ABC SNPs that demon-
strated associations with NAFLD risk (P < 0.05). To con-
firm the associations between these ABC SNPs and the 

Fig. 2  Liver-specific genome-wide enhancer-gene maps landscape. (A-C) Bar charts represent the number of enhancer-gene connections (E-G connec-
tions) (A), ABC enhancers (B) and ABC genes (C) in each liver biosample. (D) Cumulative fractions of the number of enhancers predicted to regulate each 
gene in each liver biosample (black line; mean = 2.0) and the mean number of enhancers predicted to regulate each gene in each liver biosample (red 
line; median = 2.1). (E) Cumulative fractions of the number of genes regulated by each ABC enhancer in each liver biosample (black line; mean = 3.0) and 
the mean number of genes regulated by each ABC enhancer in each liver biosample (red line; median = 2.9). (F) Cumulative fractions of the genomic dis-
tances between the enhancer and the gene for each predicted enhancer-gene connection in each liver biosample (black line; median = 28,036 bp) and 
the median genomic distance between each enhancer-gene connection in each liver biosample (red line; median = 33,629 bp). (G) Among all identified 
ABC genes, 690 (4.1%) were uniquely detected in their respective biosamples. Compared to ABC maps constructed from a single liver biosample (e.g., 
HepG2_1), this analysis identified an additional 607 ABC genes. ABC, Activity-by-Contact
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risk of NAFLD, we assessed their effects in an indepen-
dent NAFLD cohort from European populations, com-
prising of 4,761 cases and 373,227 controls (Table S2). 
A total of 846 ABC SNPs were validated (P < 0.05 with 
the same direction of association in the discovery stage), 
which were connected to 1,181 ABC genes (Fig.  4A). 
Given that eQTL analysis is a well-established method for 
exploring the effects of genetic variants on gene expres-
sion [43], we further used the liver eQTL data from the 

Genotype-Tissue Expression Project (GTEx v8). Among 
the validated ABC SNPs, 81 SNPs were discovered to be 
eQTLs that are associated with expression of 27 genes 
(eGenes) (Table S3).

To investigate the possible role of these genes in the 
development of NAFLD, we examined their functional 
roles through pathway enrichment and drug-gene inter-
action analyses. Pathway enrichment analyses identi-
fied ten pathways significantly associated with NAFLD 

Fig. 3  Characterization of ABC SNPs. (A) Heatmap shows the genomic distribution of ABC SNPs compared with non-ABC SNPs. P-values were calcu-
lated by two-tailed Fisher’s exact test. (B) Heatmap shows the histone modification enrichment of ABC SNPs in regulatory elements including H3K27ac, 
H3K9ac, H3K4me1, H3K4me3, H3K27me3, and H3K36me3, compared with non-ABC SNPs. P-values were calculated by two-tailed Fisher’s exact test. (C) 
Heatmap shows the chromatin state enrichment of ABC SNPs compared with non-ABC SNPs. P-values were calculated by two-tailed Fisher’s exact test. (D) 
Enrichment analyses of ABC SNPs in FinnGen NAFLD-related GWAS SNPs compared with non-ABC SNPs. P-values were calculated by two-tailed Fisher’s 
exact test and bars indicate 95% CIs. (E) Proportion of GWAS heritability of NAFLD explained by ABC SNPs. The error bars represent standard error. (F) 
Quantile-quantile (QQ) plots of P values from GWAS of NAFLD. ABC SNPs were shown in comparison with genome-wide SNPs. ABC, Activity-by-Contact; 
SNP, single nucleotide polymorphism; H3K27ac, H3K27 acetylation marks; H3K9ac, H3K9 acetylation marks; H3K4me1, H3K4 monomethylation marks; 
H3K4me3, H3K4 trimethylation marks; H3K27me3, H3K27 trimethylation marks; H3K36me3, H3K36 trimethylation marks; NAFLD, non-alcoholic fatty liver 
disease; TSS, transcription start site; Transcr., transcription; Ehn, enhancers; GWAS, genome-wide association study; OR, odds ratio; CI, confidence interval
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(adjusted P < 0.05; Fig. 4B). These pathways were mainly 
related to the metabolism of one-carbon units, amino 
acid and folate. Several of these pathways have been 
implicated in NAFLD. For example, the serine and gly-
cine biosynthetic processes supply one-carbon units 
essential for one-carbon metabolism [44], which is 
strongly associated with NAFLD, with the liver serving 

as a primary site for one-carbon metabolism [45]. Addi-
tionally, the folate cycle, a key component of one-carbon 
metabolism, supports the synthesis of porphyrins, thy-
midine, purines, glutathione and S-adenosylmethionine 
(SAM) [46]. These findings indicate that the candidate 
genes in metabolism of one-carbon units may be involved 
in NAFLD.

Fig. 4  Characterization of ABC genes associated with NAFLD. (A) Manhattan plots for the associations between ABC SNPs and NAFLD risk in NAFLD 
GWAS data. The grey dots represent the SNPs that are not associated with NAFLD risk (P > 0.05). The blue dots represent the genome-wide SNPs as-
sociated with NAFLD risk (P < 0.05). The pink dots represent the ABC SNPs associated with NAFLD risk (P < 0.05) in the discovery stage. The yellow dots 
represent the validated ABC SNPs in the replication stage (P < 0.05). The red line indicates the significance threshold of P = 0.05. The x-axis represents the 
genomic position (human genome assembly hg38), and the y-axis shows the -log10(P). (B) Bar chart shows the results of pathways enrichment analy-
ses. (C) Drug-gene interaction network. ABC, Activity-by-Contact; SNP, single nucleotide polymorphism; NAFLD, non-alcoholic fatty liver disease; GWAS, 
genome-wide association study
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Currently, no medications have been clinically 
approved for the treatment of NAFLD [47]. However, 
drugs that improve insulin resistance [14, 48], modulate 
disordered lipid metabolism [48], inhibit oxidative stress 
[49], provide anti-inflammatory and anti-fibrotic effects 
[50], and correct gut microbiota dysbiosis [51], may offer 
potential therapeutic benefits for NAFLD. To discover 
potential therapeutic drugs for NAFLD, we utilized the 
Drug-Gene Interaction Database (DGIdb) to investigate 
medications that target the 27 candidate genes implicated 
in NAFLD. These analyses identified 36 approved drugs 
targeting 6 genes: gamma-glutamyltransferase 1 (GGT1), 
actin gamma 1 (ACTG1), secreted phosphoprotein 1 
(SPP1), EPH receptor A2 (EPHA2), protein Z vitamin 
K-dependent plasma glycoprotein (PROZ), and serine 
hydroxymethyltransferase 1 (SHMT1) (Fig.  4C; Table 
S4). Among these 6 genes, SHMT1 was previously recog-
nized as a promising therapeutic target for NAFLD [52]. 
The other five genes have not been reported as NAFLD 
targets. Notably, GGT1, a target of the drug liothyronine, 
arouses our interest (Table S4). Liothyronine, a thyroid 
hormone medication used to manage hypothyroidism, 
has been observed to be associated with a significantly 
higher incidence in patients with NAFLD compared to 
age-matched controls [53, 54]. Together, these findings 
suggest novel therapeutic targets for NAFLD and war-
rant further investigation into their potential clinical 
applications.

GGT1 at 22q11.23
Next, we focused on GGT1 for further analyses. Among 
the regulatory SNPs in this candidate gene, rs2017869 at 
22q11.23 emerged as the most promising SNP, as this SNP 
showed the highest ABC score (0.219345; Table S5). This 
SNP showed significantly associated with NAFLD, which 
reached the statistical significance threshold (OR = 1.10, 
95% CI = 1.04–1.16, P = 5.97 × 10− 4 in the discovery stage; 
OR = 1.06, 95% CI = 1.02–1.11, P = 4.15 × 10− 3 in the repli-
cation stage; Pmeta = 1.24 × 10− 5).

The eQTL and colocalization analyses facilitate prioriti-
zation of candidate causal genes. Thus, to further confirm 
that GGT1 is the potentially causative gene at this locus, 
we checked the results of eQTL using several publicly 
available datasets (Supplementary Methods). According 
to the GTEx v8 database, the risk allele C of rs2017869 
exhibited a significant association with elevated expres-
sion levels of the GGT1 gene in liver tissue (β = 0.43; 
P = 4.57 × 10− 8; Table S6). This eQTL signal was further 
replicated in blood samples from the GTEx database, 
as well as in liver tissues and blood from both the QTL-
base and eQTLGen databases (Table S6). These eQTL 
analyses indicated that GGT1 stands out as a highly prob-
able candidate gene at this locus. Furthermore, we con-
ducted colocalization analyses. Although the posterior 

probability of hypothesis 4 (PP.H4) for GGT1 (PP.H4 
score = 0.3; data not shown) was higher than those of 
nearby genes, it failed to meet the predefined colocaliza-
tion threshold of 0.8, precluding definitive conclusions on 
colocalization.

To further investigate the role of GGT1 in NAFLD 
development, we examined the pathways associated with 
GGT1. Among the ten identified pathways, GGT1 was 
enriched in pathways such as “serine family amino acid 
biosynthetic process”, “serine family amino acid meta-
bolic process”, “proteinogenic amino acid biosynthetic 
process”, “L-amino acid biosynthetic process”, “amino 
acid biosynthetic process”, and “alpha-amino acid biosyn-
thetic process” (Fig. 5A). Previous studies have suggested 
that altered amino acid concentrations are frequently 
observed in NAFLD, with serine exhibiting a negative 
association with NAFLD [55, 56]. Additionally, serine 
synthesis, coupled one-carbon metabolism, produces 
glutathione, which is essential for maintaining redox 
balance. Glutathione is a primary substrate for gamma-
glutamyl transferase (GGT), the enzyme encoded by 
GGT1. These findings highlight the crucial role of GGT1 
in NAFLD.

We next investigated potential drug targets for GGT1. 
Drug-gene interaction analyses from DGIdb revealed 17 
approved drugs or compounds that interact with GGT1 
(Fig. 5B; Table S4), some of which have significant clinical 
relevance. Among these drugs, Liothyronine may provide 
benefits to patients with NAFLD through the supplemen-
tation of thyroid hormone [53, 54]. Diclofenac sodium, 
indomethacin and piroxicam-beta-cyclodextrin complex 
are non-steroidal anti-inflammatory drugs (NSAIDs), 
while dexamethasone is a glucocorticoid. Both NSAIDs 
and glucocorticoids exhibit anti-inflammatory effects, 
which are a key therapeutic strategy in the treatment of 
NAFLD [57, 58]. Ursodiol, known for its hepatoprotec-
tive properties in NAFLD [59], has been shown to signifi-
cantly reduce GGT levels [60].Collectively, these findings 
underscore the crucial role that GGT1 plays in the patho-
genesis of NAFLD and its potential as a promising thera-
peutic target.

EPHA2 at 1p36.13
Besides the rs2017869-GGT1, the rs1497406-EPHA2 pair 
seemed to be an interesting finding. The SNP rs1497406, 
located at 1p36.13, was previously found to be associated 
with GGT concentration [61]. However, the candidate 
gene for rs1497406 was not identified in that study [61]. 
In contrast, using the ABC regulatory maps, we identified 
EPHA2, which was one of the five novel NAFLD targets, 
as the target gene of rs1497406. Therefore, we identi-
fied another SNP-gene pair, rs1497406-EPHA2, which 
was significantly associated with NAFLD (OR = 1.12, 
95% CI = 1.06–1.19, P = 3.81 × 10− 5 in the discovery 
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stage; OR = 1.07, 95% CI = 1.03–1.12, P = 7.99 × 10− 4 in 
the replication stage; Pmeta = 2.14 × 10− 7). To validate 
this finding, we performed eQTL and colocalization 
analyses (Supplementary Methods), demonstrating that 

the NAFLD-associated SNP rs1497406 colocalizes with 
eQTL signals for EPHA2 (Fig. 6A; Table S7). Thus, these 
findings indicate that EPHA2 plays a consistent and piv-
otal role in regulating GGT levels, thereby influencing 

Fig. 5  Associated pathways and drugs of GGT1 at 22q11.23. (A) Bubble plot shows the pathways associated with GGT1. The x-axis represents the enriched 
pathways, while the y-axis represents the -log10(P). (B) Sankey diagram indicates the identified drugs of drug-gene interaction analyses from DGIdb tar-
geting GGT1. The right blocks indicate the corresponding categories of these drugs. GGT1, gamma-glutamyltransferase 1; DGIdb, Drug-Gene Interaction 
Database
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Fig. 6  EPHA2 at 1p36.13. (A) The NAFLD GWAS summary statistics were obtained from the FinnGen study. The liver eQTL summary statistics for EPHA2 
were downloaded from GTEx v8. The LD values (r2) between the SNP rs1497406 and the other SNPs are based on European populations (from the 1,000 
Genomes Project, Phase 3). The colocalization analyses were performed using the R package “coloc” (v5.2.3) and achieved a posterior probability of 
hypothesis 4 (PP.H4) score of 0.98, suggesting that the eQTLs and GWAS associations were highly likely to colocalize. (B) Drug-gene interaction network 
indicates the identified drugs of drug-gene interaction analyses from DGIdb targeting EPHA2. EPHA2, EPH receptor A2; NAFLD, non-alcoholic fatty liver 
disease; GWAS, genome-wide association study; eQTL, expression quantitative trait locus; GTEx, Genotype-Tissue Expression; SNP, single nucleotide poly-
morphism; LD, linkage disequilibrium; DGIdb, Drug-Gene Interaction Database
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the risk of developing NAFLD, positioning it as another 
potential candidate gene for NAFLD.

The drug-gene interaction analyses identified four 
approved drugs targeting EPHA2, including regorafenib 
and sorafenib, which are clinically utilized as antitumor 
agents for the treatment of HCC (Fig.  6B). Regorafenib 
has been reported to induce hepatotoxicity by inhibiting 
EPHA2 Ser897 phosphorylation, suggesting a potential 
role for EPHA2 in liver damage [62]. Additionally, exist-
ing studies indicate that targeting EPHA2 can effectively 
treat liver fibrosis [63], further supporting its significance 
in the development of NAFLD. Collectively, EPHA2 
emerged as a potential susceptibility gene influencing 
NAFLD risk in our analyses.

Discussion
Despite the identification of SNPs associated with 
NAFLD through large-scale GWASs, mapping SNPs 
located in non-coding regions, particularly those located 
within enhancers, to their target genes continues to pose 
a notable challenge. In this study, we integrated large-
scale multi-omics data to construct the most comprehen-
sive genome-wide regulatory maps of the liver utilizing 
the ABC model. We identified 543,486 enhancer-gene 
connections, involving 267,857 enhancers and 16,872 
target genes. Enrichment analyses revealed that the 
ABC SNPs are significantly enriched in active chromatin 
regions and active chromatin state, providing strong evi-
dence for their regulatory role. By combining the regula-
tory maps and GWAS data, we systematically identified 
ABC SNPs associated with NAFLD risk in European pop-
ulation. Among these identified SNPs, we found that the 
ABC SNP rs2017869, with the highest ABC score, is sig-
nificantly associated with NAFLD risk. Therefore, GGT1 
was identified as a novel NAFLD susceptibility gene with 
rs2017869 in its enhancer region. Additionally, our study 
also indicated that EPHA2, another novel susceptibility 
gene, may play a pivotal role in NAFLD by modulating 
GGT levels. These findings emphasize the significance of 
the ABC regulatory maps in linking non-coding SNPs to 
their respective target genes, providing valuable insights 
into the regulatory mechanisms of NAFLD development. 
Given the minimal clinical differences between NAFLD 
and MASLD [64], our findings also hold significant 
implications for research on MASLD.

Although previous studies have established ABC 
enhancer-gene connections in liver biosamples, these 
analyses typically relied on data from only one or two 
liver biosamples to construct the ABC maps [30, 31]. 
Given the considerable diversity within major liver cell 
populations [65], there is a need to expand the scope of 
ABC regulatory maps. To address this, we systematically 
explored available epigenomic data from the liver and 
integrated datasets from 15 liver tissues and cell lines to 

build more comprehensive ABC regulatory maps. Com-
pared to the number of the ABC genes identified in a sin-
gle liver biosample (HepG2_1) [31], our expanded ABC 
maps uncovered an additional 607 ABC genes. This pro-
vides a more extensive resource of regulatory maps for 
investigating the genetic risk factors associated with the 
development of liver diseases.

The ABC regulatory maps offer a distinct advantage in 
clearly delineating enhancer-gene relationships, facilitat-
ing the linkage of GWAS signals in enhancer regions to 
their target genes. Previous GWASs have identified sev-
eral common SNPs in genes such as PNPLA3, TM6SF2, 
MBOAT7, GCKR, and HSD17B13, which are consistently 
and robustly associated with NAFLD [66]. However, most 
of these SNPs are located within coding sequences (Table 
S8), highlighting the challenges of connecting non-cod-
ing SNPs associated with NAFLD to their underlying 
target genes. By integrating the ABC maps with GWAS 
data, we reported for the first time that rs2017869, a non-
coding GWAS signal located in the enhancer region of 
GGT1 at 22q11.23, may influence NAFLD risk. To the 
best of our knowledge, no previous GWAS has linked 
risk SNPs mapped to the GGT1 gene to NAFLD. There-
fore, by using ABC regulatory maps, we successfully 
identified GGT1 as a novel gene influencing NAFLD risk. 
Additionally, we examined whether NAFLD-associated 
SNPs were located within ABC enhancers of these well-
established NAFLD susceptibility genes. Among the five 
NAFLD susceptibility genes analyzed, the integration of 
the ABC maps and GWAS summary data revealed that 
only TM6SF2 expression may be regulated by NAFLD-
associated SNPs in its ABC enhancer, thereby influencing 
NAFLD risk (Table S9).

The identification of rs2017869-GGT1 and rs1497406-
EPHA2 pairs prompted us to investigate SNPs associ-
ated with gamma-glutamyl transferase (GGT) levels. Seo 
et al. identified that two SNPs within GGT1 are strongly 
associated with GGT levels (rs5751901, P = 6.44 × 10− 15; 
rs2006092, P = 1.26 × 10− 15) [67]. Similarly, Yuan et al. 
found that rs4820599 is associated with GGT levels, with 
a P value of 4.0 × 10− 11 [68]. All these three SNPs are in 
strong LD with our identified SNP rs2017869 (r2 > 0.6). 
GGT, encoded by GGT1, is well established as a key bio-
marker for NAFLD and plays a critical role in regulating 
glutathione (GSH) levels. As the primary substrate of 
GGT, GSH has anti-oxidation as one of its most critical 
biological functions. Previous studies have demonstrated 
that oral administration of GSH has therapeutic effects 
on NAFLD patients [69], while reduced GGT activity 
could benefit these patients [70]. These findings indicate 
that GGT1 contributes to NAFLD through GGT-medi-
ated degradation of GSH, which impairs the suppression 
of oxidative stress. In addition, rs1497406 was previously 
found to be associated with GGT concentration [61]. 
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According to the ABC regulatory maps, its target gene 
is EPHA2, suggesting a link between EPHA2 and GGT 
levels. These findings collectively suggest that the rela-
tionship between dysregulated GGT levels/activity and 
oxidative stress may be a key determinant in NAFLD. Our 
study provides evidence that enhancer SNPs (rs2017869 
and rs1497406) regulate the target genes (GGT1 and 
EPHA2) and suggests that altered expression of these 
genes affects GGT levels, thereby influencing NAFLD 
through oxidative stress mechanisms. Further investiga-
tion should focus on the precise molecular mechanisms 
and biological functions of these two genes.

In our analyses, the effect size of rs2017869 was rela-
tively small (OR = 1.10 in the discovery stage). As stud-
ies grow larger in scale, the average effect size of the 
novel identified variants will decrease [71]. However, for 
insights into disease pathogenesis, validated small-effect 
loci can reveal novel causal mechanisms [72]. It should 
be noted that although the effect sizes of some SNPs are 
small, those on molecular phenotypes and therapeutic 
effects of gene targets can be large [73, 74]. For example, 
an identified enhancer SNP rs4810856 associated with 
colorectal cancer (CRC) also exhibited small OR value 
(OR = 1.11, 95% CI = 1.04–1.16, P = 4.02 × 10− 5). However, 
this SNP was validated as a CRC risk locus via functional 
studies [31]. Therefore, SNPs with small effect sizes may 
remain clinically significant.

Drugs targeting the identified candidate genes, par-
ticularly GGT1, could represent promising therapeutic 
agents for NAFLD, as their mechanisms align with estab-
lished therapeutic strategies [48–50], such as modulating 
oxidative stress, regulating lipid metabolism, and exert-
ing anti-inflammatory effects. Future research eluci-
dating the impact of enhancer SNPs on drug responses 
could further advance precision medicine. Numerous 
studies have demonstrated that SNPs are associated with 
both disease susceptibility and drug responses [75, 76], 
establishing a theoretical and clinical foundation for indi-
vidualized treatment. Notably, Sun et al. revealed that the 
enhancer SNP rs2017869 of GGT1 alters the outcomes of 
neoadjuvant chemotherapy in breast cancer by regulating 
GGT levels [77]. This finding provides a critical reference 
for future validation of rs2017869 and rs1497406 in mod-
ulating drug responses.

Our study has several limitations. First, due to the cell-
type specificity of enhancer elements, the use of epig-
enomic data from single-cell technologies would provide 
a more detailed understanding of enhancer-gene con-
nections. However, such resources are currently limited. 
Second, the ABC approach does not fully encompass the 
impacts of distal enhancers and may fail to account for 
other forms of transcriptional or post-transcriptional 
regulatory elements. Third, the ABC model depends on 
computational predictions to ascertain enhancer-gene 

connections. To validate putative gene-element interac-
tions at transcriptional, functional, and spatial levels, 
experimental validation would be required in further 
studies. Luciferase reporter assays can assess the tran-
scriptional regulatory activity of candidate DNA ele-
ments by linking enhancers to a luciferase reporter gene. 
CRISPR-Cas9-mediated genome editing can function-
ally disrupt specific regulatory elements to determine 
their necessity for target gene expression. Chromosome 
conformation capture (3  C) techniques such as Hi-C 
can map three-dimensional chromatin architecture to 
verify physical interactions between genes and regula-
tory elements. Fourth, the PP.H4 score of 0.3 for GGT1 
in colocalization analysis suggested no conclusive signal, 
weakening the causal claim for rs2017869. Thus, further 
investigation with experimental validation is required. 
Fifth, as our analyses were primarily based on individu-
als of European descent, the findings are likely more 
applicable to this population. Replication in multi-ethnic 
cohorts is critical to determine whether these results are 
generalizable beyond Europeans.

Conclusions
In conclusion, our study provides the most comprehen-
sive ABC regulatory maps of the liver to date by inte-
grating multi-omics data that reflects the activity of 
candidate regulatory elements and chromatin interaction 
frequencies. This resource serves as a valuable reference 
for identifying regulatory variants and prioritizing genes 
susceptible to liver diseases, including NAFLD.
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