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Abstract 

Glucocorticoids, acting through the glucocorticoid receptor (GR), control metabolism, maintain homeostasis, 
and enable adaptive responses to environmental challenges. Their function has been comprehensively studied, 
leading to identification of numerous tissue-specific GR-dependent mechanisms. Abundant evidence shows that GR-
triggered responses differ across tissues, however, the extent of this specificity was not comprehensively explored. It 
is also unknown how particular GR-induced molecular patterns are translated into profile of higher-level human traits. 
Here, we examine cross-tissue effects of GR activation on gene expression. We assessed changes induced by stimula-
tion with GR agonist, dexamethasone in nine tissues (adrenal cortex, perigonadal adipose tissue, hypothalamus, liver, 
kidney, anterior thigh muscle, pituitary gland, spleen, and lungs) in adult male C57BL/6 mice, using whole-genome 
microarrays. Dexamethasone induced balanced transcriptional responses across all examined tissues with 585 identi-
fied dexamethasone-regulated transcripts, including 446 with significant treatment-tissue interaction effects. Cluster-
ing analysis revealed sixteen GR-dependent patterns, including those universal across tissues and tissue-specific. We 
leveraged existing gene annotations and created new annotation sets based on chromatin immunoprecipitation 
sequencing, recent large-scale genome-wide association studies, and human transcriptome collections. As expected, 
GR-dependent transcripts were associated with essential metabolic processes (glycolysis/gluconeogenesis, lipid-
metabolism) and inflammation-related pathways. Beyond these, we found novel links between regulated gene pat-
terns and human phenotypic traits, like reticulocyte count or blood triglyceride levels. Overall effects of GR stimula-
tion are well coordinated and closely linked to biological roles of tissues and organs. Our findings provide novel 
insights into complex systemic and tissue-specific actions of glucocorticoids and their potential impacts on human 
physiology and pathology.
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Background
Glucocorticoids are steroid hormones that regulate the 
biology of organs from the early development, through 
cell differentiation, to adult physiology [1–3]. Physiologi-
cally, glucocorticoids are secreted in a circadian mode 
as effectors of the hypothalamus – pituitary – adrenal 
(HPA) axis, acting to synchronize metabolism across the 
organism [4]. In response to increased glucocorticoid 
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levels, the liver increases gluconeogenesis, while muscles 
and adipose tissue increase protein catabolism and lipol-
ysis, respectively, to provide substrates for glucose pro-
duction by the liver. This sequence leads to an increase 
in circulating glucose levels that sustains the functioning 
of the central nervous system (CNS) [5]. The activation 
of the HPA axis is particularly important for the coordi-
nation of stress response. A repetitive or robust increase 
in glucocorticoid signaling elicited by stress is consid-
ered a general risk factor contributing to the develop-
ment of pathologies, notably metabolic and psychiatric 
disorders. Glucocorticoids regulate vascular tone, bone 
mineralization, and activation of the immune system. 
Due to their potent immunosuppressant ability, syn-
thetic glucocorticoids are some of the most commonly 
prescribed drugs in the world today [6]. However, pro-
longed treatment with glucocorticoids is associated with 
serious adverse effects, which may include weight gain, 
impaired skin healing, mood disorders, euphoria, hyper-
tension, increased risk of infection, and high intraocular 
pressure. Therefore, understanding of the molecular rules 
of systemic GR stimulation to tissue-specific actions is 
mandatory for better management of multiple disorders 
associated with distinct organs.

Glucocorticoids act through glucocorticoid recep-
tors (GRs) and mineralocorticoid receptors (MRs). GR 
belongs to the nuclear receptor superfamily of transcrip-
tion factors and canonical effects of glucocorticoids are 
mediated through transactivation or transrepression of 
gene expression [7, 8]. Transactivation is based on GR 
dimerization, translocation to the nucleus, and binding to 
proximal or distal response elements. Examples of genes 
activated in this mechanism include Fkbp5  [9] and Sgk1 
[10]. An alternative mechanism, independent of direct 
GR binding to DNA, involves protein–protein interac-
tions with other transcription factors [11], such as STAT5 
as observed in the case of Igf1 [12]. Conversely, GR has 
also been reported to repress transcription through vari-
ous mechanisms that include direct DNA binding, pro-
tein–protein interactions, employment of GR isoforms, 
and secondary, indirect molecular mechanisms [13–15].

While GR is ubiquitously expressed in almost every cell 
in an organism, the effects of its activation are highly tis-
sue- and organ-specific [16, 17]. Consequently, the vast 
majority of published data focus on the effects of GR 
activation in discrete cell types and tissues. The infor-
mation including the systemic context is scarce and 
may be found in meta-analyses and reviews on tissue-
specific effects of GR elimination on general physiology 
and inflammation control [18], cross-tissue analysis of 
GR cofactors [19], cross-tissue glucocorticoid metabo-
lism [20] or GR-induced chromatin accessibility [21]. 
Comprehensive studies of glucocorticoid-induced gene 

expression profiles permit the identification of tissue-
type specific expression patterns, and open the possibil-
ity of developing synthetic glucocorticoids with targeted, 
organ-specific actions and reduced adverse effects [22]. 
However, these efforts have thus far been limited (a nota-
ble exception includes a study on the primary human 
blood cell types) [23].

To fill this gap, we investigated parallel transcrip-
tional effects of selective GR stimulation in  vivo across 
nine mammalian tissues, including key elements of the 
HPA axis. Using rigorous statistical analyses, we identi-
fied shared and tissue-specific gene clusters regulated 
by GR activation. Subsequent analyses revealed that the 
engagement of distinct co-factors shapes local alterations 
in the transcriptional landscape upon GR stimulation. 
Finally, we investigated the implications of these discov-
eries for human health and disease. To our knowledge, 
this is the first comprehensive gene expression profiling 
study across multiple tissues, linking local profiles of GR-
dependent responses with traits of human disorders.

Materials and methods
Animals
Adult male (8 to 10 weeks old) C57BL/6 J mice were 
housed in groups of 5–7 per cage (31 × 16 × 14 cm), 
under a 12-h dark/light cycle (lights on 7:00 AM, lights 
off 7:00 PM), with free access to food and water. Animals 
aged 8–10 weeks and weighing 20 to 30 g were used for 
all the experiments. While a limitation, using only male 
mice controlled for sex-based differences and enabled 
direct comparisons with previous male-focused stud-
ies. Future experiments should be performed in female 
mice to assess the differences in transcriptional response 
to dexamethasone. Experiments were performed on 24 
C57BL/6 J male mice bred at the Maj Institute of Phar-
macology of the Polish Academy of Sciences animal facil-
ity. The animal protocols used in the study were approved 
by the II local ethics committee at the Maj Institute of 
Pharmacology PAS (1156/2015, Krakow, Poland). The 
experiments were planned and executed in accordance 
with the ARRIVE guidelines [24], European and Polish 
laws concerning the use and welfare of laboratory ani-
mals (Directive 2010/63/UE, European Convention for 
the Protection of Vertebrate Animals Used for Experi-
mental and other Scientific Purposes ETS No.123, and 
Polish Law Dz.U. 2015 poz. 266).

Drug treatment and tissue collection
Mice were killed by decapitation 4 h after a single dexa-
methasone (DEX, 10 mg/kg) i.p. injection, while saline-
treated mice (10 ml/kg) served as the control group. 
Injections were performed between ZT0 and ZT2 (early 
light phase, corresponding to the nadir of endogenous 
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corticosterone) to minimize interference from the cir-
cadian rhythm, and all the mice were killed at the same 
time of the day, 4 h later (ZT4 to ZT6). The time point 
was selected based on our previous studies investigat-
ing acute transcriptional responses in vivo, as it typically 
captures both primary GR target gene induction and the 
initiation of secondary effects [25, 26]. All the mice were 
killed at the same time of the day. The dose of DEX was 
based on our [27] and others [28, 29] previous experi-
ments, paying particular attention to avoiding systemic 
toxic effects and overcoming the blockade of the blood–
brain barrier. Tissue samples (adrenal cortex, perigonadal 
adipose tissue, hypothalamus, liver, kidney, anterior thigh 
muscle, pituitary gland, spleen, and lungs) were fixed 
using the RNAlater reagent (Qiagen Inc., Valencia, CA, 
USA) and stored at −70 °C. Left–right symmetric organs 
were pooled within one sample. Pituitary tissue included 
both the anterior and posterior pituitary, while adrenal 
glands comprised both the cortex and medulla.

RNA preparation
RNA was isolated using the RNeasy Mini Kit (Qiagen 
Inc.) and further purified following the manufacturer’s 
protocol. Total RNA concentration was measured using 
a NanoDrop ND-1000 Spectrometer (NanoDrop Tech-
nologies Inc., Montchanin, DE, USA). RNA quality was 
determined by chip-based capillary electrophoresis using 
RNA 6000 Nano LabChip Kits and an Agilent Bioana-
lyzer 2100 device (Agilent, Palo Alto, CA, USA). RNA 
from two mice was randomly pooled to prepare samples 
for each microarray to reduce biological variability. For 
each tissue and treatment condition, 4–6 independent 
pooled samples were processed, resulting in a total of 83 
microarrays passing quality control.

Gene expression profiling
A starting amount of 200 ng high-quality total RNA was 
used to generate cDNA and cRNA with the Illumina 
TotalPrep RNA Amplification Kit (Illumina Inc., San 
Diego, CA, USA). The procedure consisted of reverse 
transcription with an oligo(dT) primer that also included 
a T7 promoter sequence using Array-Script. The obtained 
cDNA was used as a template for in  vitro transcription 
with T7 RNA polymerase and biotin-labeledUTP, which 
generated multiple copies of biotinylated cRNA. The 
purity and concentration of the cRNA were checked 
using an ND-1000 Spectrometer. Validated cRNA was 
then hybridized with Illumina’s direct hybridization array 
kit (Illumina). Each cRNA sample (1.5 μg) was hybrid-
ized overnight to the MouseWG-6 v2 BeadChip arrays 
(Illumina) in a multiple-step procedure according to 
the manufacturer’s instructions; the chips were washed, 
dried, and scanned on the BeadArray Reader (Illumina). 

Raw microarray data was generated using BeadStudio 
v3.0 (Illumina).

Microarray data analysis
Microarray quality control was performed using Bead-
Array R package v2.2.0. The following parameters were 
checked on all the arrays: number of outliers, number of 
beads, and percent of detected probes. After background 
subtraction, the data were normalized using quantile 
normalization and log2-transformed. The obtained signal 
was taken as the measure of mRNA abundance derived 
from the gene expression level. Statistical analysis of the 
results was performed using two-way ANOVA (for tissue 
and treatment) followed by Tukey’s HSD post-hoc tests 
(where appropriate). The false discovery rate (FDR) was 
estimated using the Benjamini and Hochberg method 
[30]. All statistical analyses were performed using the R 
software (version 4.1.1). For clustering and visualization, 
the gene expression data underwent several preprocess-
ing steps. Initially, the data was scaled using the R scale 
function to standardize the expression values across 
genes. The saline condition was then established as the 
baseline (control, CTR) by subtracting its median value 
from all samples, effectively highlighting the treatment-
induced changes. To mitigate the impact of extreme 
outliers, expression values were capped at a threshold 
of ± 5 standard deviations from the mean. For cluster-
ing, 1 minus the correlation distance was used. Hierar-
chical clustering was then performed using the R hclust 
function with the complete linkage method. Finally, the 
resulting dendrogram was partitioned into 16 distinct 
clusters using the R cutree function (specifying k = 16). 
This number was chosen empirically to balance granular-
ity and interpretability in the gene expression patterns 
observed in the heatmap (Fig.  2) and ensure most clus-
ters were sufficiently large for meaningful enrichment 
analysis.

Evaluation of DEX impact on tissue‑level transcriptional 
response
We employed a comprehensive statistical approach to 
evaluate the differential impact of DEX across various tis-
sues. First, we calculated the log2 ratio of gene expression 
levels between DEX-treated and CTR samples for each 
tissue. We selected the top 50 significantly altered tran-
scripts (identified by probe IDs) with the highest abso-
lute log2 ratios (DEX vs. CTR within that tissue, among 
probes significant in the ANOVA) for each tissue to 
focus on the most responsive genes. We then computed 
the median log2 ratio for these top 50 transcripts in each 
tissue to represent the overall transcriptional response 
magnitude. To assess whether the differences in response 
across tissues were statistically significant, we performed 
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a one-way ANOVA with tissue as a factor and the log2 
ratios as the dependent variable. Following the ANOVA, 
we conducted post-hoc analyses using Tukey’s Hon-
est Significant Difference (HSD) test to identify specific 
pairwise differences between tissues. This test allowed us 
to determine which tissues exhibited significantly differ-
ent responses from others while controlling for multiple 
comparisons. The ANOVA was conducted using the R 
aov function, and Tukey’s HSD test was performed using 
the R TukeyHSD function. Statistical significance was 
set at nominal p < 0.05 for impact on tissue analyses. The 
results of these analyses were visualized using a box plot 
created with ggplot2 (version 3.3.5).

Gene enrichment analysis
Overrepresentation analyses were performed using 
Enrichr [31], a comprehensive gene set enrichment 
analysis tool that integrates data from multiple genomic 
resources. Lists of unique Entrez Gene IDs derived from 
the probes in each cluster were used as an input. Tran-
scripts were assigned to clusters using the complete 
agglomeration method. Gene lists derived from each 
cluster were input into Enrichr to identify overrepre-
sented biological processes (track GO Biological Pro-
cess 2023) drug effects (DSigDB, Drug Perturbations 
from GEO 2014), and transcription factor binding sites 
based on ChIP-seq datasets (ChEA 2022). Enrichr uti-
lizes statistical measures, including Fisher’s exact test, to 
determine the significance of enrichment. The resulting 
p-values were adjusted for multiple testing using the Ben-
jamini–Hochberg procedure to control for false discov-
ery rate (FDR). The level of significance was set at FDR 
< 0.01 and at least two DEX-regulated genes in a gene set. 
For tissue-selectivity confirmation of enriched TFs we 
analyzed expression levels of all TFs identified through 
Enrichr analysis of ChIP-seq datasets across relevant tis-
sues using two complementary approaches. First, we uti-
lized RNA-seq data from the GTEx project, where gene 
expression levels were averaged across all available sam-
ples for each tissue and normalized as counts per million 
(CPM). TFs were considered expressed in a tissue if their 
mean expression exceeded 50 CPM. Second, we exam-
ined microarray data generated in our study, where raw 
expression values were log2-transformed and averaged 
for each tissue following saline treatment. Here, TFs were 
deemed expressed when their mean signal intensity sur-
passed a threshold of log2 > 8.

Gene overlap analyses
Three datasets containing lists of (I) GR-dependent 
genes, (II) genes linked to metabolic traits, and (III) 
genes associated with various human phenotypes 
were prepared based on external resources. The lists of 

GR-regulated genes were assembled from a PubMed 
database search for publications on GR-dependent gene 
expression in different tissues of mice, rats, or humans 
(see Supplementary Table 2 for a full list of PMIDs). Only 
lists with five or more genes were included in the data-
base. Gene lists linked to human metabolite levels were 
extracted from Metabolon, and Nightingale (https://​
www.​omics​pred.​org/​Scores) databases. The resulting set 
of lists was filtered to exclude all instances with fewer 
than 3 genes, resulting in a total of 520 and 137 lists 
from Metabolon and Nightingale, respectively. The third 
set of lists was derived from genes associated with 729 
human phenotypes obtained from the Pan-UK Biobank 
database [32]. Lists of genes containing variants showing 
GWAS association with phenotypic traits were extracted 
at p-value thresholds of p < 10–8. We performed separate 
overlap analyses for each of the datasets with the lists of 
genes included in the clusters of GR-regulated transcripts 
probes identified in the current study. Mouse Entrez 
Gene IDs corresponding to the probes in each cluster 
were mapped to their human orthologs using current 
annotations from Ensembl. Statistical analyses were per-
formed using the chi-square test, followed by FDR cor-
rection for multiple tests. The total number of, 19,437 
human genes (protein-coding genes downloaded from 
Biomart 110 [33] corresponding to the universe of poten-
tial orthologs) was used as a background test set for these 
human phenotype/metabolite overlap analyses. The level 
of significance was set at FDR < 0.01.

Results
Dexamethasone regulated transcripts
To determine tissue-specific profile of GR activation, we 
administered i.p. a synthetic GR agonist, dexamethasone 
(DEX) or vehicle (CTR) to adult mice. Four hours after 
the injection, 9 tissues were isolated, RNA was extracted, 
and processed for transcriptomic profiling. Two-way 
ANOVA was performed with tissue and treatment fac-
tors to identify transcripts with altered abundance after 
DEX treatment. We found: (1) 470 DEX-regulated tran-
scripts (padj < 0.01 for treatment factor in ANOVA, with 
absolute log2 ratio > 1 in at least one tissue), (2) 446 
transcripts regulated by DEX in a tissue-specific man-
ner (padj < 0.01 for tissue-treatment interaction, with 
absolute log2 ratio > 1 in at least one tissue). There was 
a strong overlap between these two lists, with 331 tran-
scripts meeting both criteria. We used a comprehensive 
set of 585 differentially expressed transcripts identified 
by probe IDs (mapped to 362 unique Entrez gene IDs) for 
further analyses (Supplementary Table  1), representing 
all genes regulated by DEX that were present in either or 
both lists.

https://www.omicspred.org/Scores
https://www.omicspred.org/Scores
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Impact of dexamethasone on transcription in different 
tissues
To assess the specific impact of DEX on different tis-
sues, we calculated the median log2 ratio of the expres-
sion level (DEX vs. CTR) for the top 50 transcripts within 
each tissue (Fig. 1). The analysis revealed significant dif-
ferences in the transcriptional response across tissues 
(ANOVA, F(8, 441) = 13.47, p < 1e−15). The strongest 
response was observed in the kidney (KID, 1.31 mean 
log2 ratio), with a significantly higher median fold change 
compared to all other tissues (Tukey’s HSD, p < 0.05). The 
effects of DEX were noticeable in other tissues, with the 
following descending order: adipose tissue (FAT, 1.16), 
pituitary (PIT, 1.12), muscle (MUS, 1.08), lung (LUN, 
1.07), liver (LIV, 1.01), spleen (SPL, 1.01), and the adre-
nal gland (ADR, 0.93). The hypothalamus (HTH, 0.67) 
exhibited the lowest transcriptional changes, which were 
significantly lower than those in all other tissues (Tukey’s 
HSD, p < 0.05).

Dexamethasone‑regulated gene expression patterns
To identify gene expression patterns, we used a list of 585 
unique microarray probe values modified in response 
to DEX administration. Upon standardization for tis-
sue-specific basal expression, hierarchical clustering of 
these probe values revealed 16 clusters (Fig.  2, clusters 
named from A to P). These clusters were selected for 
further analysis based on containing at least 6 unique 
corresponding Entrez Gene IDs to allow for meaningful 

enrichment analysis. The number of probes belonging to 
individual clusters ranged from 8 to 117, with a median of 
23. The corresponding number of unique genes per clus-
ter ranged from 6 to 93 (Supplementary Table 1). Six clus-
ters (A to F) contained transcripts mostly downregulated 
by DEX, while 10 clusters (G-P) contained probes gener-
ally upregulated by DEX. Notably, only a few clusters (D, 
K, I, O, P) featured transcripts regulated similarly across 
all tissues. In these sets, we found numerous known GR-
dependent transcripts, such as members of the clock 
machinery (including Bhlhe40, Dpd, Per1), regulators of 
inflammatory response (Cdkn1a, Cxcl10, Sphk1), MAPK 
signaling pathway (Dusp1, Dusp4, Map3k6) and many 
other bona fide GR targets (Tsd22d3, Ddit4, Sgk1, Fkbp5). 
The majority of clusters (A, B, C, E, F, G, H, J, K, M, N) 
contained transcripts preferentially regulated in selected 
tissues. This data point to a highly tissue-specific pattern 
of transcriptional regulation by DEX.

In silico analysis of promoter regions 
of differentially‑regulated genes
Next, we examined the transcriptional mechanisms influ-
enced by the GR. To this end, we analyzed the overrep-
resentation of GR binding sites across identified clusters, 
using ChIP-seq data processed through Enrichr (ChEA 
2022) (Supplementary Table  3). The analysis revealed 
a significant overrepresentation of GR (encoded by 
NR3C1 gene) binding sites in clusters P (15 genes, padj = 
8.3*10–6), K (9, padj = 3.0*10–5), O (10, padj = 1.1*10–3), I 
(7, padj = 2.9*10–3), and D (14, padj = 0.037), that is, exclu-
sively in clusters containing transcripts regulated by DEX 
throughout multiple tissues (compare with Fig.  2). To 
explore the transcriptional control beyond the GR, we 
identified the transcription factor binding sites (TFBS) 
overrepresented (padj < 1*10–1) in each cluster (see Fig. 3). 
NR3C1 was found in the top 10 significantly enriched 
TFBS of four clusters (I, K, O, P). For remaining clusters, 
a variety of TFBS were identified, representing known 
GR transcriptional cofactors and effectors: LXR (clus-
ters H, I, L, upregulated), RXR (clusters H, I, L, upregu-
lated), CLOCK (clusters K, P), EZH2 (clusters F, O), 
PPARA (cluster I, upregulated), RNF2 (cluster O), SOX2 
(clusters D, M), and TP53 (cluster O). This data indicate 
that tissue-specific transcriptional effects of GR stimula-
tion engage discrete, tissue-specific cofactors. To further 
explore tissue specificity, we quantified baseline mRNA 
expression of genes encoding these enriched TFs across 
the nine examined tissues using control samples (Fig. 3, 
Supplementary Table  3). We discovered that 94.6% of 
overrepresented TFs can be found (mean log2 expression 
value > 8) in tissues where they are enriched.

Fig. 1  Dexamethasone treatment affects gene expression 
in different tissues. Barplots (mean ± SD) of log2 ratio for the top 
50 transcripts are shown for each tissue to represent overall tissue 
impact. ADR—adrenal cortex, FAT—perigonadal adipose tissue, 
HTH—hypothalamus, KID—kidneys, LIV—liver, LUN—lungs, MUS—
anterior thigh muscle, PIT—pituitary gland, SPL—spleen. Significant 
differences in fold changes between tissues obtained by a Tukey 
HSD test are indicated by # (vs. Kidney; p < 0.05) and by * (vs. 
Hypothalamus; p < 0.05)
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Functional classification of regulated transcripts
To gain insight into the biological processes associated 
with the observed gene expression patterns, we per-
formed gene ontology (GO) enrichment analysis, using 
Enrichr. Restricting the analysis to terms that included 
at least two genes per term, we identified 336 GO term 
overrepresentations in all 16 clusters (280 unique terms, 
p < 0.05; Supplementary Table 4). This analysis revealed 
several key biological processes with broad, high-level 
terms, overrepresented in multiple clusters and low-level 
terms, associated with individual clusters. The crite-
ria of being overrepresented in at least four clusters was 

met by terms: “Negative Regulation Of Cellular Process” 
(GO:0048523; clusters D, K, O, P) and “Positive Regu-
lation Of Cell Population Proliferation” (GO:0008284; 
clusters B, D, K, O). Interestingly, in both cases, there 
are different transcripts contributing to the overlap in 
the particular clusters. Genes involved in “Negative 
Regulation of Cellular Processes” include Irf1, Il1b, Sox7, 
Ifit3 (cluster D), Bmp4, Txnip, Axp11, Tob2 (cluster K), 
Cdkn1a, Tex, Rgcc, Sox17, Dcun1d3 (cluster O), Dusp1, 
Tp53inp1, Rhob (cluster P). Genes involved in “Posi-
tive Regulation of Cell Population Proliferation” include 
Wnt3a, Sox11 (cluster B—tissue-selective), Fgf7, Esm1, 

Fig. 2  Hierarchical clustering of dexamethasone-induced transcriptional alterations. Relative levels of all transcripts (585) with differential 
expression are shown as a heat map (Supplementary Table 1). Data were standardized for the expression level in each tissue. Colored rectangles 
represent transcript abundance 4 h after injection of DEX or CTR in the specific tissue, as indicated below the heatmap. The intensity of the color 
is proportional to the standardized values (between −4 and 4) from each microarray (according to the scale below the heatmap). Gene clusters 
are depicted as colors and letters (A-P) on the left. Clustering was performed using Pearson correlation as distance, the results are summarized 
on the dendrogram shown on the right. Clusters A-F are classified as down-regulated (DOWN). Clusters G-P are classified as up-regulated (UP) 
in response to DEX
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Clec7a, Il1b, S1pr2 (cluster D), Bmp4, Tsc22d1, Aqp11 
(cluster K), Cdkn1a, Sphk1, Slc25a33, Fgfr2 (cluster O).

Gene ontology terms overrepresented in at least three 
clusters include: Apoptotic Process (GO:0006915), 
Negative Regulation Of Multicellular Organismal Pro-
cess (GO:0051241), Regulation Of p38 MAPK Cascade 
(GO:1,900,744), Positive Regulation Of Cold-Induced 
Thermogenesis (GO:0120162), Positive Regulation 
Of Multicellular Organismal Process (GO:0051240), 
Regulation Of Gene Expression (GO:0010468), Regu-
lation Of Phagocytosis (GO:0050764). In line with 
expectations, terms associated with metabolism and 

inflammatory response were enriched both in broad or 
tissue-selective clusters, including: Glucose Homeo-
stasis (GO:0042593) in clusters O (Pdk4, Lrrc8a) and L 
(Obp2a, Pck1), Regulation Of Glucose Metabolic Process 
in cluster K (GO:0010906; Slc45a3, Gnmt), Acute Inflam-
matory Response in cluster L (GO:0002526; Crp, Itih4, 
Hp), Cellular Response To Cytokine Stimulus in cluster 
D (GO:0071345; Irf1, Il1b, Ccl4), “Steroid Biosynthetic 
Process in cluster L (GO:0006694; Hsd3b2, Cyp8b1, 
Slc27a5). An example of tissue-specific functional cell 
reprogramming is the presence of genes connected to 
“Fat Cell Differentiation” (GO:0045444) and “Regulation 

Fig. 3  The spectrum of putative transcriptional regulators among the DEX-induced gene expression patterns. The heatmap presents the statistical 
significance of enrichment of binding sites for transcription factors (TF) in the regulatory regions of genes from the clusters identified in this work. 
The information about TFs binding data were obtained from the ChEA 2022 database. The columns represent GR-responsive genes grouped 
in clusters labeled A to P. UP and DOWN are combined groups of all DEX-increased and DEX-decreased transcripts, respectively. For each cluster, 
the number of genes and the observed direction of the transcriptional regulation (‘ + ’ increase, ‘-’ decrease) are indicated. Statistically significant 
results are represented by colored squares: padj. < 0.2 (gray); padj. < 0.1 (light red); padj. < 0.05 (medium red); padj. < 0.01 (dark red); padj. < 0.001 
(deep red). TFs were annotated as specified in the legend. The dots represent tissue co-localization between DEX-induced gene expression 
patterns and corresponding TF expression in at least one tissue associated with the gene cluster (as detailed in Supplementary Table 3). Up to 10 
top statistically significant results per cluster with a minimum of two genes per term were included. Light green dots represent TF expression 
level in tissues based on GTEx data (mean CPM > 50) [34]. Dark green dots represent TF expression measured in our dataset (mean log2 value 
for the control group > 8). Full results are listed in Supplementary Table 3
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of Cold-Induced Thermogenesis” (GO:0120151) in clus-
ter C, specifically downregulated by DEX in the adipose 
tissue. The results indicate that GR through activation 
of tissue-specific molecular programs is involved in 
regulation of biological pathways in multiple organs and 
systems.

Overlap between observed and previously reported 
glucocorticoid‑induced gene transcription patterns 
and published drug perturbation datasets
To further investigate the GR-dependent gene expression 
patterns, we performed analyses of functional overlap 
between the clustered genes and a set of external gene 
lists. The first set of gene lists was obtained from tran-
scriptional studies involving GR stimulation. The dataset 
was compiled for this research and included 91 gene lists 
from 37 studies, which investigated GR-dependent tran-
scriptional changes in various tissues and cell types. In 
total, 45 lists from 26 studies were found to have a sta-
tistically significant overlap with at least one of the gene 
clusters identified in this study. Out of these, 35 lists 
significantly overlapped with the full list of 585 DEX-
induced transcripts. Genes included in clusters O and 
P overlapped respectively with 19 and 23 lists of genes 
obtained from the literature (Fig.  4, Supplementary 
Table 2), confirming that those clusters contain bona fide 
GR targets regulated ubiquitously across tissues.

Next, we exploited our resource of DEX-regulated clus-
ters to inspect drug gene-expression signatures, based on 
published studies available through Enrichr—Drug Per-
turbations from GEO and DSigDB [35]. Using the Drug 
Perturbations dataset, we identified drugs and conditions 
overlapping with particular clusters. Similar to the manu-
ally curated DEX literature database, in the Enrichr per-
formed analysis showed that DEX regulation was found 
(at adjusted p < 0.1) predominantly in broadly regulated 
clusters O (GSE484 mouse lung; GSE7683 mouse chon-
drocytes; GSE34313 human airway smooth muscle; 
GSE44208 mouse skeletal muscle; GSE37474 human tra-
becular meshwork), P (GSE484 mouse lung; GSE34313 

human airway smooth muscle; GSE34313 mouse pla-
centa; GSE37474 human trabecular meshwork; GSE2342 
mouse B-cells; GSE7683 mouse chondrocytes) and K 
(GSE29912 rat liver; GSE484 mouse lung; GSE4165 
mouse placenta). Additionally, DEX was previously found 
to regulate genes from clusters B (GSE7683 mouse chon-
drocytes), and D (GSE37474 human trabecular mesh-
work). The search also included other steroid drugs, 
which were previously found to regulate genes included 
in several of the clusters, namely hydrocortisone (GR/
MR agonist, GDS3071, cluster P), methylprednisolone 
(GR agonist, GDS964, clusters D, I, K, L, O, P), estradiol 
(Estrogen Receptor agonist, GSE11567, clusters B, D, I, K, 
L, P), mifepristone (GR/Progesterone Receptor antago-
nist, GSE39270, cluster G). Other metabolic drugs were 
also found as regulators of particular clusters: troglita-
zone (clusters I, K, O), glipizide (clusters I, L), cholecal-
ciferol (cluster I), and probucol (clusters B, K, L, P).

To further elucidate the potential environmental 
and pharmacological factors influencing the observed 
gene expression patterns, we analyzed the association 
between our gene clusters and known chemical pertur-
bations using the Comparative Toxicogenomics Data-
base (CTD) implemented in Enrichr. We identified the 
top overrepresented chemical perturbations across vari-
ous gene clusters, focusing on those affecting multiple 
clusters (see Supplementary Table  5). Notably, aflatoxin 
B1 (CTD:00007128) and calcitriol (CTD:00005558) 
emerged as the most widely influential, each associated 
with 10 different clusters including both up- and down-
regulated genes. Other significant perturbations included 
anisomycin (associated with 9 clusters), benzo[a]pyrene 
(CTD:00005488, 9 clusters), estradiol (CTD:00005920, 9 
clusters), and tetradioxin (CTD:00006848, 9 clusters).

This analysis revealed several important insights: First, 
substantial overlap between identified broad clusters 
(particularly O and P) with existing literature-derived 
gene lists provides robust validation that these clus-
ters contain genuine GR target genes with cross-tissue 
relevance. Second, the fact that 45 lists from 26 studies 

(See figure on next page.)
Fig. 4  Heatmap of gene overlaps between the GR-dependent transcriptional patterns and literature-based GR-dependent gene lists for various 
tissues and cells. Lists of genes for tissues and cell types were extracted from transcriptomic studies of GR-dependent gene expression (PMIDs 
are provided in the rightmost column). The chi-square test was used to assess the overlap between the clusters of GR-regulated genes (x-axis) 
and literature (y-axis). χ2 values were transformed in the following way: log2(χ2 + 1) and are displayed in each rectangle of the heatmap (white 
blocks—no overlap; red blocks—higher overlap). Values in brackets within each square indicate the number of overlapping genes. Statistically 
significant results are indicated as colored frames: padj < 0.01 (green frames); padj < 0.0001 (purple frames). The gene clusters are labeled at the top 
of the columns. For each cluster, the number of genes and the observed direction of the transcriptional regulation (‘ + ’ increase, ‘ − ’ decrease) 
are indicated. Cluster UP and cluster DOWN represent combined groups of all DEX-induced and DEX-decreased transcripts, respectively. The row 
description on the right of the heatmap provides details on the gene lists obtained from the literature (’+’represents upregulation and’−’represents 
downregulation). The gene lists presented on the heatmap are organized according to hierarchical clustering, indicated by both row and column 
dendrograms. An extended table summarizing gene list overlaps is included in Supplementary Table 2
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showed significant overlap demonstrates the biologi-
cal reproducibility of these findings across different 
experimental contexts. Third, beyond DEX, the analy-
sis revealed significant overlap with other steroid drugs 

(hydrocortisone, methylprednisolone, estradiol, mifepris-
tone), suggesting common regulatory pathways. Fourth, 
The overlap with patterns associated with metabolic 
drugs (troglitazone, glipizide, cholecalciferol, probucol) 

Fig. 4  (See legend on previous page.)
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points to potential crosstalk between glucocorticoid sign-
aling and metabolic pathways.

GR‑dependent transcriptional signatures show specific 
associations with human health‑related traits
We explored the associations between GR-dependent 
transcriptional patterns and gene lists associated with 
human phenotypic traits. Gene-phenotype associations 
were obtained from the Pan-UK Biobank study [36]. 
Among the 729 phenotypes examined, 11 were identified 
as showing a statistically significant overlap (padj < 0.01). 
Detailed examination revealed that cluster I particularly 
overlapped with phenotypic traits. This cluster, contain-
ing transcripts upregulated predominantly in the kid-
ney and the pituitary gland, was identified as potentially 
connected to four phenotypes: three associated with 
reticulocyte count, and one linked to blood triglyceride 
levels. Additionally, cluster D turned out to contained 
transcripts related to varicose veins and alanine ami-
notransferase levels. Another finding was the identifica-
tion of genes connected to systolic blood pressure among 

transcripts in cluster O. Notably, oppositely-DEX-regu-
lated gene clusters showed associations with distinct sets 
of health-related phenotypes (Fig.  5A, Supplementary 
Table 6).

Subsequently, we investigated the relationship between 
GR-dependent transcripts and genes associated with 
human metabolite levels. This analysis was performed 
on 654 lists of genes extracted from human metabolome 
GWAS results [37]. We found statistically significant 
associations with lists of genes connected to six meta-
bolic traits. Gene lists connected to the four traits over-
lapped with the group of genes induced by DEX (Fig. 5B, 
cluster UP). Transcripts induced by DEX in the kidney 
clusters I and L overlapped with four and two traits, 
respectively. Transcripts included in cluster L were asso-
ciated with LDL and HDL diameter, whereas cluster I 
overlapped with gene lists related to triglyceride levels 
and HDL diameter (Fig.  5B, Supplementary Table  6). 
These data uncovered several examples of complex func-
tional interactions between GR-regulated genes and 
physiological parameters of the organism.

Fig. 5  GR-dependent transcriptional patterns overlap with groups of genes associated with (A) human phenotype- or (B) metabolism-related 
traits. A The heatmap on the left presents an overlap between the GR-regulated genes and human phenotype-associated gene lists. Lists of genes 
associated with phenotypes were extracted from the Pan-UK Biobank database (phenocodes are provided). B The right panel presents the overlap 
between the clusters of GR-dependent genes and gene lists associated with metabolite levels (based on Metabolon and Nightingale databases). 
The chi-square test was used to examine the overlap of the lists of the GR-regulated (columns) and phenotype- or metabolism-associated genes 
(rows). χ2 values were transformed using the formula: log2(χ2 + 1) and are presented in each rectangle of the heatmap. The intensity of the red 
color is proportional to the level of overlap, as indicated in the legend (white, no overlap; red, high-level overlap). The statistical significance 
of the overlap is pinpointed using two thresholds: padj < 0.01 (green frames) and padj < 0.0001 (purple frames). Values in brackets in each box 
show the number of overlapping genes. The results with a minimum of three genes were included. The identified gene clusters are indicated 
on top column labels with the number of genes inside brackets. Cluster UP and cluster DOWN represent combined groups of DEX-induced 
and DEX-decreased transcripts, respectively. For each cluster, the number of genes and the observed direction of the transcriptional regulation 
(‘ + ’ increase, ‘ − ’ decrease) are indicated. The row description presented on the right of the heatmaps provides details on lists of human 
phenotypes and metabolomes from genome-wide association studies (GWAS). The gene lists presented on the heatmaps are organized according 
to hierarchical clustering, indicated by both row and column dendrograms. To reduce redundancy, for cases where the overlap contained the same 
genes for more than one phenotype, only the phenotype with the lowest padj is displayed. Full results are available in Supplementary Table 6



Page 11 of 15Piechota et al. BMC Genomics          (2025) 26:462 	

Discussion
We have comprehensively analyzed DEX-induced gene 
expression patterns across multiple tissues within the 
context of the functional annotations and human pheno-
type associations. Globally, the magnitude of the effect on 
various tissues is similar, with one exception—the hypo-
thalamus, where the impact of DEX is less prominent 
than in other tissues. This observation may be explained 
by limited DEX penetration through the blood–brain 
barrier [38].

Examination of the transcriptional effects of systemic 
GR activation revealed complex mechanisms behind 
tissue-specific and non-tissue-specific responses to 
DEX. Notably, four upregulated (P, K, O, and I) and one 
downregulated (D) cluster seemingly represent a set of 
core GR-responsive genes that may play foundational 
roles in coordinated glucocorticoid action across tis-
sues. Accordingly, these clusters show significant enrich-
ment for direct GR binding sites, unlike the clusters that 
define tissue-specific responses. The shared transcripts 
include well-established GR-responsive genes like Fkbp5, 
Tsc22d3, and Dusp1 [25, 39–41]. Most of these core 
genes were found previously to be regulated by glucocor-
ticoids in specific contexts [25, 42–45].

A key strength of this study is the parallel profiling of 
GR responses across multiple tissues in vivo under iden-
tical experimental conditions. While numerous studies 
have investigated GR effects in specific tissues [25], or 
even multiple cell types [23], and meta-analyses attempt 
to synthesize these [17, 18], our approach minimizes con-
founding variables (such as differing treatments, time 
points, genetic backgrounds, or platforms) that com-
plicate cross-study comparisons. This allows for a more 
direct and reliable assessment of both shared systemic 
responses and genuine tissue-specific transcriptional 
signatures orchestrated by GR activation, providing a 
unique systemic perspective.

Strikingly, more than two-thirds of DEX-induced 
changes were controlled in a tissue-selective manner 
(significant interaction between treatment and tissue fac-
tors), in agreement with the previously postulated tissue 
specificity of glucocorticoid response [46, 47]. This heter-
ogeneity suggests that rather than pursuing a single, uni-
fied biological mechanism, glucocorticoids orchestrate 
a diverse array of tissue-specific responses that together 
contribute to systemic homeostasis.

An intriguing finding was the lack of overrepresenta-
tion of GR binding sites in clusters showing high regional 
selectivity (A, B, C, E, F, G, H, J, L, M, N). This pattern 
suggests that DEX-induced changes in these clusters may 
be mediated through indirect transcriptional mecha-
nisms. Indeed, our analysis revealed enrichment of 
binding sites for other transcription factors in specific 

clusters. For instance, LXR and RXR, known GR inter-
actors [48], were prominently enriched in clusters H, I, 
and L. CLOCK, which is a known regulator of GR activ-
ity [49], showed significant enrichment in clusters K and 
P. The enrichment of PPARA, which tends to occupy the 
same sites on chromatin as GR [50, 51], was observed 
in cluster I and EZH2 enrichment was observed in clus-
ters F and O. This data point to an important crosstalk 
between glucocorticoid signaling and other regulatory 
pathways involved in metabolism and epigenetic regula-
tion, respectively [52]. The SOX2 enrichment, a known 
inhibitor of GR binding to chromatin [53], in clusters D 
and M, and TP53 in clusters N and O, further highlights 
the diversity of regulatory networks potentially influenc-
ing selected aspects of GR activity. We observed strong 
concordance between tissue-specific enrichment patterns 
and mRNA expression levels for several TFs identified in 
specific clusters. For instance, Nr1h3 (encoding LXRα) 
showed high expression in the liver, adipose tissue, and 
spleen, aligning with the enrichment of LXR sites in clus-
ters H, I, and L which feature upregulated genes in these 
tissues such as LIV, FAT, SPL, KID, PIT, ADR, HTH, and 
MUS. Similarly, Ppara expression was highest in the liver, 
kidney, and adipose tissue, consistent with its enrich-
ment in cluster I (upregulated mainly in the kidney and 
pituitary). Conversely, Sox2 showed prominent expres-
sion in the pituitary and hypothalamus, correlating with 
its enrichment in clusters D and M where tissue-specific 
effects were noted. While mRNA levels do not perfectly 
equate to protein activity, these correlations suggest that 
the differential availability of specific transcription fac-
tors across tissues contributes to the tissue-specific tran-
scriptional outcomes following GR stimulation. These 
findings show that the tissue-specific effects of glucocor-
ticoids are achieved through a complex interplay of direct 
GR-mediated transcription and indirect regulation via 
other transcription factors and signaling pathways [53, 
54]. Our data highlight the key role of recruitment of tis-
sue-specific transactivators or transrepressors in shaping 
the GR-induced transcriptional reprogramming at the 
single-organ resolution.

There are several consequences of the observed tissue-
selectivity of GR responsiveness for the biology of the 
system. First, the multidirectional nature of these effects, 
namely simultaneous upregulation of gluconeogenesis 
genes (cluster K), lipid metabolism (cluster I) and the 
modulation of inflammatory response genes (cluster D) 
may reflect an body’s attempt to increase the availabil-
ity of energy resources while simultaneously suppressing 
excessive inflammation. This pattern is highly relevant 
for increased periods of physiological activity, such as 
the beginning of the active phase (peak of plasma gluco-
corticoid concentration) and is reminiscent of the acute 
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stress response. In the context of chronic stress or pro-
longed glucocorticoid exposure, however, these adap-
tive responses may become maladaptive. For instance, 
the persistent upregulation of genes involved in glu-
cose metabolism could contribute to the development 
of insulin resistance and type 2 diabetes, while chronic 
suppression of immune-related genes might increase sus-
ceptibility to infections [55].

The data prompt us to also reconsider our current 
model of GR action, particularly in metabolic regula-
tion. For example, while the GR-dependent regulation 
of glucose metabolism is thought to be uniform across 
tissues, our data demonstrate highly tissue-specific pat-
terns of key metabolic gene regulation by DEX (Igfbp1 in 
cluster H, Slc45a3 and Gnmt in cluster K, Pck1 in cluster 
L, Pdk4 and Lrrc8a in cluster O) (see [56–58]). Regula-
tion of Eno2 [59], central to the glycolytic pathway, and 
Pck1 [60], a key enzyme in gluconeogenesis, exemplifies 
the direct modulation of glucose production and utili-
zation. Meanwhile, Igfbp1 [61], which influences insulin 
sensitivity, and Insig2 [62], involved in lipid metabolism, 
showcase the indirect routes through which DEX affects 
glucose homeostasis.

The consequences of GR regulation for human dis-
ease were further revealed through the overlap analysis 
with data from the Pan-UK Biobank [32]. Notably, the 
discovery that cluster (I) of genes upregulated predomi-
nantly in the kidney and pituitary gland, correlates with 
phenotypes related to blood triglyceride levels, suggests 
a potential role for these tissues in mediating the sys-
temic effects of glucocorticoids on lipid metabolism. 
The genes involved in this action are Angptl4, Apoa1, 
Apoc1, Cdkal1, Ppp2r3a, Snx10, and Tsku [63]. The anal-
ysis exploiting drug perturbation datasets and metabo-
lite-associated gene lists corroborates this notion. The 
association with metabolic drug signatures (such as tro-
glitazone, glipizide) may indicate the molecular basis for 
glucocorticoids’ diabetogenic effects. DEX-induced gene 
clusters showing connections to human metabolic traits, 
particularly lipid metabolism (cluster I with triglyceride 
levels and HDL diameter and cluster L—LDL and HDL 
diameter) provide insights into how glucocorticoids 
influence systemic lipid profiles. The associations with 
physiological traits appear to be mediated through tis-
sue-specific interactions with other transcription factors, 
such as PPARs, rather than through direct GR homodi-
mer activation. Hence, our findings highlight the complex 
effects of glucocorticoids on metabolism, as evidenced by 
the diverse regulation profiles of key genes such as Pck1 
in gluconeogenesis, Insig2 in lipid metabolism, and Apoc4 
in triglyceride levels. These findings also suggest poten-
tial biomarkers and targets for managing metabolic side 
effects of glucocorticoid therapy (such as Apoc4, Asgr1).

The observed associations highlight potential mecha-
nisms by which chronic stress might contribute to met-
abolic syndrome and cardiovascular disease. The link 
between systolic blood pressure and genes from cluster O 
suggests a potential contribution of glucocorticoids in the 
etiology of cardiovascular disorders. Significant overlaps 
with other steroid drugs (such as hydrocortisone, meth-
ylprednisolone, estradiol) indicate that shared molecu-
lar pathways of steroid hormones might be exploited to 
counteract these effects [23, 64]. Overlaps with genes 
responsive to various chemical perturbations (such as 
aflatoxin B1 and benzo[a]pyrene) in multiple tissues may 
also suggest activation of antitoxicological mechanisms 
by stress. Thus, our findings provide a molecular frame-
work for understanding how the initially adaptive effects 
of glucocorticoids under acute stress can, may lead to the 
development of stress-related pathologies, emphasizing 
the delicate balance that glucocorticoid signaling must 
maintain for optimal physiological function.

Several limitations of this study should be acknowl-
edged. The transcriptomic data were generated using 
whole-genome microarrays. While providing a broad 
overview, this technology has inherent limitations com-
pared to RNA-sequencing, including a narrower dynamic 
range, reduced sensitivity for detecting low-abundance 
transcripts, and an inability to identify novel transcripts 
or splice variants not covered by the array probes. Con-
sequently, some DEX-regulated transcripts, particularly 
those expressed at very low levels or representing novel 
isoforms, may not have been captured in our analysis. 
Furthermore, the study focused on a single time point 
post-DEX administration (4 h), capturing a snapshot of 
transcriptional changes but not the full dynamic response 
profile. Finally, only male mice were used to control 
for sex-based variability; future studies should include 
female mice to investigate potential sex differences in 
GR-mediated transcriptional responses across tissues.

In conclusion, our comprehensive analysis bridges the 
intricate molecular mechanisms of GR-mediated tran-
scriptional regulation with clinically relevant phenotypes. 
Moreover, we demonstrate that the dichotomy between 
direct GR-dependent regulation of shared responses 
and indirect regulation of tissue-specific effects repre-
sents a fundamental principle of glucocorticoid action. 
This new mechanistic understanding of how a single 
nuclear receptor can orchestrate diverse tissue-specific 
responses through differential engagement with local 
transcriptional networks provides a framework for devel-
oping more targeted therapeutic approaches that could 
potentially harness tissue-specific regulatory mecha-
nisms while minimizing systemic effects. Future research 
could build upon these findings to further elucidate 
the complex interplay between GR and tissue-specific 
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transcriptional machinery, potentially leading to more 
selective glucocorticoid-based therapies.
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