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Abstract 

Background  Hundred-kernel weight (HKW) is a crucial determinant of maize yield. Understanding the genetic 
mechanisms underlying HKW is vital for maize breeding programs aimed at enhancing productivity. This study aimed 
to explore the genetic basis of HKW in maize using a multi-parent population (MPP), developed by crossing the com-
mon male parent Ye107 with five female parents representing a range of kernel sizes and weights. The MPP was evalu-
ated under two distinct environmental conditions (19DH and 19BS).

Results  Genotyping-by-sequencing (GBS) identified 591,483 high-quality single nucleotide polymorphisms (SNPs), 
which were used for a genome-wide association study (GWAS) and linkage analysis. The GWAS revealed 21 SNPs sig-
nificantly associated with HKW, with Zm00001d028188, a gene involved in cell wall synthesis, emerging as a key can-
didate located on chromosome 1. This gene, encodes Galacturonosyltransferase 1 (GAUT1) and overlapped with two 
identified quantitative trait loci (QTLs): qHKW1-2 and qHKW1-3, which were further validated through linkage analysis.

Conclusions  This study identified critical genetic loci and candidate genes, such as Zm00001d028188, involved 
in regulating HKW in maize. The findings provide valuable genomic resources for maize breeding, potentially contrib-
uting to the development of high-yielding maize varieties through an enhanced understanding of the genetic control 
of HKW.
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Introduction
Maize (Zea mays L.) ranks among the most impor-
tant crops globally, playing a vital role in food, feed, and 
industrial production [1]. As natural disasters, and both 
biotic and abiotic stresses continue to rise, global food 
security challenges are becoming more pronounced. 
To address these challenges and ensure food security, 

it is necessary to explore new germplasm resources to 
improve maize yield. Hundred-kernel weight (HKW) is 
one of the key factors affecting maize yield and is a pri-
mary target for enhancing maize production [2]. As a 
quantitative trait, HKW is regulated by numerous genes 
and influenced by environmental factors [1, 2]. There-
fore, understanding the genetic variation and molecu-
lar mechanisms underlying HKW in maize is crucial for 
enhancing maize production.

The genetic basis of quantitative traits has tradition-
ally been analyzed through linkage analysis in biparen-
tal populations [1, 3]. Advancements in crop genomics 
and marker-assisted selection have made QTL-based 
approaches increasingly effective in elucidating the 
genetic basis of kernel-related traits in maize, thereby 
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improving breeding efficiency for higher yields [4–7]. 
Extensive research into genetic variation in kernel yield 
has led to the identification of several QTLs associated 
with maize kernel traits [8–12]. Previous studies have 
identified several QTLs affecting maize HKW at low 
resolution [2, 13–19]. The low frequency of recombina-
tion events in the biparental populations limits the pre-
cision of QTL mapping and the development of effective 
marker-assisted tools. Moreover, the large and complex 
maize genome further complicates the fine mapping of 
QTLs and the cloning of associated genes [1]. However, 
next-generation sequencing technologies and high-
throughput SNP markers have made GWAS a powerful 
tool for fine-mapping of QTLs [1].

GWAS have been effectively applied to discover QTLs 
and potential genes associated with maize kernel traits 
[20–24], facilitating the identification of alleles linked to 
ancestral cultivars and strains carrying these alleles [25, 
26]. Furthermore, GWAS enables fine mapping of QTLs, 
as the rapid decay of linkage disequilibrium (LD) due to 
historical recombination events enhances the resolution 
of genetic loci [27]. For example, Beló et  al. while per-
forming GWAS in maize, revealed a correlation between 
the SNP haplotypes and oleic acid content in 553 maize 
inbred lines [28]. Hao et  al. [29] utilized a RIL popula-
tion and an association mapping panel to identify four 
QTLs linked to maize kernel-associated traits, including 
kernel length (KL), kernel width (KW), kernel thickness 
and HKW. Similarly, Liu et  al. [30] discovered 50 QTLs 
associated with kernel size features in the intermated B73 
× Mo17 (IBM) Syn10 doubled haploid population, with 
eight QTLs consistently observed across three diverse 
environments. Since the availability of the B73 refer-
ence genome in maize [31], GWAS has become a stand-
ard tool for exploring multigenic traits and conducting 
large cohort analyses [32], providing rapid and precise 
insights into the relationship between genetic makeup 
and phenotypic variation. Despite its effectiveness, the 
accuracy of GWAS can be compromised by false associa-
tions resulting from population structure. However, these 
limitations can be mitigated by using multi-parent pop-
ulations (MPP) [33]. Higher Genetic Diversity in MPP 
which is derived from crossing multiple diverse parental 
lines leading to much greater allelic and genetic variation 
which improves the chance of detecting rare alleles and 
provides a wider allelic series for trait dissection. Com-
pared to traditional biparental mapping, MPPs introduce 
more recombination events and reduce genetic hetero-
geneity, thus improving mapping resolution and reduc-
ing false positives [34]. Though MAGIC also has high 
diversity, but usually involves more structured crossing, 
which can limit some allele combinations. MPP also 
increases Mapping Resolution due to the accumulated 

recombination events across generations and more 
founders, MPPs offer finer mapping resolution whereas 
in biparental population low recombination leading to 
larger linkage blocks. In MAGIC though good for map-
ping resolution, but it depends on the number of found-
ers and design. Some MAGIC designs are more limited 
in recombination than others. Therefore, MPPs holds 
great potential for identifying superior genotypes with 
enhanced HKW performance.

Tropical and subtropical maize exhibit considerable 
genetic diversity, which remains largely underexplored 
[35]. Furthermore, maize maintains a relatively conserved 
gene structure and function across both temperate and 
tropical germplasms [36]. In this study, five inbred lines 
from subtropical and tropical regions, known for their 
extensive genetic diversity and high HKW, were selected 
as parental lines from the Reid, Non-Reid, and Suwan 
heterotic groups. The objectives of this study were to: 
(1) investigate the genetic mechanisms underlying HKW 
in maize; (2) identify QTLs and SNPs associated with 
HKW using combined GWAS and linkage analysis; and 
(3) identify candidate genes and conduct functional char-
acterization to uncover the genetic factors influencing 
HKW in maize, thereby laying the foundation for increas-
ing maize yield.

Materials and methods
Plant materials, multi‑parent population construction 
and field experimental design
In this study, five inbred lines; CML312, YML32, 
CML373, CML395 and Q11 were used as female par-
ents, while the temperate inbred line Ye107 served as 
the common male parent for crossing. The F1s were self-
pollinated for seven generations using the single-seed 
method to develop a multi-parent population consist-
ing of five RIL subpopulations: pop1 (CML312 × Ye107), 
pop2 (YML32 × Ye107), pop3 (CML373 × Ye107), pop4 
(CML395 × Ye107), and pop5 (Q11 × Ye107). A total of 
813 RILs were obtained, exhibiting extensive genetic 
variation. Field experiments were conducted in two eco-
logical environments in Yunnan Province, China: Dehong 
(19DH; Longitude: 98.6ºE, Latitude: 24.4ºN) and Baoshan 
(19BS; Longitude: 98.9ºE, Latitude: 24.9ºN). The pedi-
grees, ecological types, and HKW data of the six parental 
lines are presented in Table 1.

The experimental trials were conducted using a rand-
omized complete block design (RCBD) in the 19DH and 
19BS environments, with three replicates at each loca-
tion. Each experimental plot was 4.0 m in length, with 
0.70 m row spacing and 25 cm plant spacing, contain-
ing 14 plants per row. The trials were managed using 
standard agronomic practices. For each recombinant 
inbred line (RIL), ten plants were randomly selected, and 
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hundred-kernel weight (HKW) was measured by sam-
pling 100 seeds per plant. Each measurement were rep-
licated three times, and the average HKW was calculated 
as the mean HKW of the RIL. To mitigate the impact 
of environmental factors on phenotypes, a mixed linear 
model of the lme4 package in R (v3.3.3) [37] was used to 
analyze the raw phenotypic data of each RIL subpopu-
lation across two different environments. This analysis 
was conducted using Best Linear Unbiased Prediction 
(BLUP) values, with the following formula:

where, Y represents the phenotype, μ is the intercept, 
Line refers to the effects of different genotypes, and Loc 
represents environmental effects. Rep denotes repli-
cations, while ε captures the residual error. Line × Loc 
illustrates the interaction between the genotype and envi-
ronment, and Rep (Loc) accounts for the nested effect of 
replications within each environment.

Genomic DNA isolation and Genotyping‑by‑sequencing 
(GBS)
Genomic DNA was extracted from seedlings leaves using 
the cetyltrimethylammonium bromide (CTAB) method 
[38]. The DNA was then digested and purified using the 
restriction enzymes PstI and MspI (New England Bio-
Labs, Ipswich, MA, USA). Barcode adapters were ligated 
to the DNA fragments using T4 ligase (New England Bio-
Labs). Genotyping-by-sequencing (GBS) libraries were 
constructed following the GBS protocol [39]. The ligated 
samples were pooled and purified using the QIAquick 
PCR Purification Kit (QIAGEN, Valencia, CA, USA). 
Polymerase chain reaction (PCR) amplification was per-
formed using primers complementary to the adapters. 
PCR products were then purified and quantified using 
the Qubit dsDNA HS Assay Kit (Life Technologies). 

(1)
Y = µ+ Line + Loc + (Line × Loc)+ Rep (Loc)+ ε

Fragments between 200 and 300 bp were size-selected 
using the E-gel system (Life Technologies). The library 
concentration was measured using a Qubit 2.0 fluorom-
eter and the Qubit dsDNA HS Assay Kit (Life Tech-
nologies). Sequencing was performed on an Ion Proton 
sequencer (Life Technologies, software version 5.10.1) 
using P1v3 chips. Prior to analysis in TASSEL 5.0, 80 
poly (A) bases were added to the 3’ ends of all sequencing 
reads. Plink v1.9 was used to filter SNPs, with parameters 
set to -geno 0.2 and -maf 0.05 to exclude loci with miss-
ing rates higher than 20% and minimum allele frequen-
cies lower than 5%. SNP calling was performed with the 
Genome Analysis Toolkit software [40] with the maize 
B73 reference genome [41] and annotation was com-
pleted with the ANNOVAR software [42].

Phylogenetic tree, principal component analysis, and LD 
analysis
The TreeBeST1.9.2 (https://​github.​com/​Ensem​bl/​treeb​
est) software was used to calculate the distance matrix 
between RILs and construct a phylogenetic tree.

Population structure analysis was performed using 
Admixture v1.3.0 [43]. The K value was initially set for 
cross-validation, with the assumption that the K value 
showing the minimum cross-validation error corre-
sponds to the optimal number of clusters.

Principal component analysis (PCA) was performed 
using GCTA v1.5.0, and the results were visualized using 
the scatterplot3 d package in R v4.3.2 [44].

Linkage disequilibrium (LD) decay was assessed 
using genome-wide SNPs with Pop LD decay v3.42 [45]. 
The R2 value, which estimate the extent of LD between 
markers (spanning from 0 to 1, with values closer to 1 
indicating stronger LD), was calculated using default 
parameters. The LD decay plot was generated using 
the’Plot _ OnePop.pl’script. LD decay analysis helped 
determine the minimum number of markers required 

Table 1  Details of parental lines used to develop the multi-parent population

All the plant materials used in this study are maize recombinant inbred lines, which are commonly employed in research worldwide. Therefore, registration of these 
materials is not required

Parent Pedigree Heterotic Group Ecological Type Hundred 
kernel 
weight (g)

Subpopulations Number of RILs

Ye107 Derived from US hybrid DeKalb XL80 Reid Temperate 21 - -

CML312 S89500-F2-2–2-1–1-B*5–2-16-1(DH) Non-Reid Subtropical 24 pop1 (CML312 × Ye107) 125

YML32 Suwan 1(S)C9-S8-346–2 (Kei 8902)−3-4-
4–6

Suwan Tropical 22 pop2 (YML32 × Ye107) 156

CML373 P43SR-4–1-1-2-1-B-8–1-B-B-B-1–1–3–
6(DH)

Non-Reid Subtropical 26 pop3 (CML373 × Ye107) 156

CML395 90323B-1-B-1-B*4–1-1-2-1 (DH) Non-Reid Tropical 27 pop4 (CML395 × Ye107) 196

Q11 Derived from US hybrid Reid Temperate 23 pop5 (Q11 × Ye107) 180

https://github.com/Ensembl/treebest
https://github.com/Ensembl/treebest
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for GWAS, as well as the detection efficiency and accu-
racy of the study [46].

GWAS for HKW
GWAS analysis was conducted using the mixed linear 
model (MLM) implemented in the Genome-wide Effi-
cient Mixed Model Association (GEMMA) statistical 
software package (v0.98.3) [47]. The MLM analysis was 
performed using the following formula:

where y represents the phenotypic trait, X is the matrix 
of fixed effects, α is the estimated parameter of fixed 
effects, Z is the association matrix of SNP, β is the effect 
of SNPs, W is the matrix of random effects, µ is the vec-
tor of random individual effects, e is the random residual. 
The residuals (e) were assumed to have a mean of zero 
and variance e ~ (0, δe

2) [48]. A significance threshold of 
-log10(p) > 4.5 was set to identify SNPs significantly asso-
ciated with maize HKW. SNPs meeting or exceeding the 
threshold were extracted using bedtools 1.7.0 [49]. The 
GWAS results were visualized using the Manhattan and 
QQ plots generated with the CMplot 3.6.2 package in 
R v4.3.2 [44]. The significance levels of individual SNPs 
was adjusted using the Bonferroni correction, a multiple 
comparison test to control for type I error and reduce 
false positives [50].

Candidate genes associated with HKW were identi-
fied within a 50 kb region upstream and downstream 
of each SNP, using the B73 reference genome from 
MaizeGDB (http://​www.​maize​gdb.​org/, retrieved on 
August 15, 2024). Functional annotation was per-
formed to gain insights into the biological roles of the 
candidate genes.

Construction of linkage maps and QTL mapping
Allelic data of the SNPs identified through GBS to con-
struct the linkage maps for the five RIL subpopulations. 
Linkage maps were constructed using JoinMap v4.0, with 
a minimum logarithm of odds (LOD) threshold set at 
≥ 5.0.

QTL analysis for HKW was performed using QTL 
Cartographer 2.0 using the composite interval mapping 
()CIM method [51]. A permutation test with 1000 itera-
tions was conducted to determine the LOD threshold, 
which was set at 2.5 (p < 0.05) [52]. The proportion of 
phenotypic variation explained (PVE) by each QTL was 
calculated using the correlation coefficient square (R2). 
The QTLs were designated with a "q" prefix, followed by 
the trait abbreviation (HKW), the chromosome number, 
and the marker position.

(2)y = Xa + Zβ +Wµ + e

Haplotype analysis
Haploview v4.2 software [53] was used to analyze HKW-
related genes across two environments and to identify 
the superior haplotypes. A high-density genome-wide 
SNP dataset was employed to generate a haplotype map, 
highlighting haplotypes significantly associated with 
HKW based on SNP locations and LD patterns. Genes 
within these haplotypes were further characterized to 
assess evaluate functional roles and contributions to 
HKW regulation.

Results
Phenotypic analysis of HKW
This study developed a multi-parent population (MPP) 
comprising 813 F2:7 RILs derived from five parental lines 
to investigate the genetic basis of HKW in maize (Fig. 1a). 
Kernel weight differences among the parents of the MPP 
are shown in Fig. 1b, with the male parent Ye107 exhib-
iting significantly lower HKW compared to all female 
parents (Fig.  1c). ANOVA revealed significant varia-
tions in HKW across the five subpopulations (Fig. 1d-e) 
in two environments: Dehong (19DH), Baoshan (19BS). 
Descriptive statistics and the coefficient of variation 
(CV) for HKW in the five RIL subpopulations across two 
environments (19DH and 19BS) are provided in Table 2. 
The CV for HKW ranged from 14.3% (pop2) to 26.8% 
(pop4) in the 19DH environment and from 15.6% (pop2) 
to 28.9% (pop4) in the 19BS environment. To assess the 
phenotypic robustness, the correlation coefficients for 
HKW between the 19DH and 19BS environments were 
calculated, revealing highly significant positive correla-
tions of 0.767, 0.734, 0.987, 0.979, and 0.975 (p < 0.001) 
across the five subpopulations (Fig.  2). Additionally, the 
skewness of each subpopulation was below 1.0, indicat-
ing minimal bias in the distribution of HKW. ANOVA 
further showed significant effects of genotype and envi-
ronment on HKW across the two regions (P < 0.0001 and 
P < 0.01, respectively), as well as a significant genotype 
× environment interaction (P < 0.0001) (Table  3). These 
results indicate that both genetic and environmental 
factors contributed substantially to HKW variation in 
maize. Overall, the MPP demonstrated extensive varia-
tion in HKW, with consistency across the environments, 
suggesting the reliability of the phenotypic data for sub-
sequent GWAS and QTL mapping analyses.

Pearson correlation analysis (p < 0.001) revealed a 
strong and significant correlation in the performance 
of RILs across different environments, with correlation 
coefficients ranging from 0.73 to 0.99 within each pop-
ulation (Fig. 2). The correlation indicated that the RILs 
exhibited consistent hundred-kernel weight across 
environments, displaying stable phenotypes under 

http://www.maizegdb.org/
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varying environmental conditions. This suggested that 
HKW is largely unaffected by environmental factors, 
underscoring the strong genetic influence that ensures 
trait consistency. Collectively, these findings provide 
a foundation for further QTL mapping and associa-
tion studies to identify genetic loci linked to HKW in 
maize.

SNP characterization and LD decay analysis
The genotyping-by-sequencing (GBS) revealed 591,483 
high-quality SNPs, distributed across the ten maize 
chromosomes. The number of SNPs on chromosomes 
1–10 were as follows: 82,889; 67,249; 67,934; 75,637; 
57,899; 47,683; 53,494; 50,217; 44,840; and 43,631, 
respectively (Fig.  3a). Chromosome 1 contained the 

Fig. 1  Population development and comparison of the hundred-kernel weight. a The population construction scheme of the multi-parent 
population; (b) Kernel phenotypes of each parent; (c) Hundred-kernel weight of the parental lines; (d) Hundred-kernel weight of the RIL 
subpopulations in the 19DH environment; (e) Hundred-kernel weight of the RIL populations in the 19BS environments

Table 2  Phenotypic evaluation of the RIL subpopulations for HKW across two environments

Populations Environment Mean Standard 
Deviation

Skewness Kurtosis Coefficient of 
Variation (CV)

Correlation 
Coefficient 
(r)

pop1 19DH 19.854 3.243 −0.432 0.272 0.163 0.767

19BS 18.09 3.192 −0.267 0.846 0.176

pop2 19DH 20.692 2.965 0.701 1.43 0.143 0.734

19BS 19.38 3.03 0.968 1.47 0.156

pop3 19DH 16.356 3.871 0.674 1.979 0.237 0.987

19BS 14.605 3.769 0.716 2.376 0.258

pop4 19DH 15.525 4.163 0.766 1.49 0.268 0.979

19BS 14.219 4.108 0.711 1.441 0.289

pop5 19DH 14.141 3.46 0.63 0.823 0.245 0.975

19BS 13.649 3.295 0.581 1.058 0.241
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highest number of SNPs (82,889), while chromosome 
10 had the lowest (43,631). The SNP density per mega 
base (Mb) for chromosomes 1 to 10 was 269.99, 265.05, 
275.11, 288.26, 306.30, 258.60, 273.99, 293.31, 277.25, 
and 280.65, respectively, indicating an even distribution 
of SNPs across the genome. In the filtered SNP data-
set, the average missing rate was ≤ 0.19, and the average 
minor allele frequency (MAF) was 0.20, indicating that 
the dataset was suitable for subsequent GWAS analysis 
(Fig. 3b, c).

The 591,483 SNPs were also used to evaluate the LD 
decay in the multi-parent population. At an R2 value of 
0.38, LD was estimated to decay at a physical distance 
of approximately 50 kb (Fig.  3d). This rapid LD decay 

suggested that selection has influenced genetic vari-
ation across the genome, leading to distinct LD block 
that can aid in identifying loci responsible for traits of 
interest in future GWAS studies.

Phylogenetic tree, principal component analysis, 
and population structure of HKW
The phylogenetic tree demonstrated that the 813 RILs 
were grouped into five major subgroups (Fig.  4a). The 
principal component analysis (PCA) revealed that the 
RILs could be divided into five clusters, each represent-
ing one subpopulation. However, noticeable overlap 
was observed among populations, potentially indicating 
intra-population variation or outliers based on PC1, PC2, 
and PC3 (Fig. 4b).

Population structure analysis confirmed that 813 RILs 
were divided into five subgroups when K=5 (Fig.  4c). 
Overall, the findings from the population structure and 
phylogenetic analyses were in agreement with the prin-
cipal component analysis. Nonetheless, the presence of 
heterogeneous clusters or hybrids with differing allele 
frequencies indicated gene introgression during the 
breeding process.

GWAS for HKW
Significant variation in the HKW was observed among 
the RILs of the MPP in both the 19DH and 19BS envi-
ronments (Fig.  5). GWAS was performed using the 

Fig. 2  Heat map illustrating the overall correlation of the RILs within each of the five subpopulations across two environments

Table 3  Analysis of variance (ANOVA) for hundred-kernel weight 
(HKW) of the multi-parent population (MPP) at two locations in 
Yunnan Province, China

**  indicates p < 0.01

**** indicates p < 0.0001

Source of variation df Sum of squares Mean squares F value

Genotype 812 93,726 115.4**** 11.75

Environment 1 2403 2403** 108.6

Genotype × Environ-
ment

812 10,219 12.59**** 1.293

Error 1624 15,801 9.73
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Fig. 3  Genetic diversity and LD decay map. a SNP distribution across chromosomes in 1-Mb intervals, with SNP count represented by a scale 
from green-to-red colour scale; (b) Distribution of SNP missing rate percentage; (c) Distribution of MAF in the RILs; (d) LD decay (R2) plot 
across the five RIL subpopulations

Fig. 4  Genetic diversity analysis of the 813 RILs of the multi-parent population. a Phylogenetic tree; (b) Principal component analysis; (c) Bayesian 
clustering diagram of the 813 RILs at K = 5
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MLM, which incorporated population structure and 
kinship matrix as covariates to minimize the risk of 
false-positives. The Q-Q plots confirmed effective con-
trol of false-positive associations for HKW (Fig.  5a-c). 
At a significant threshold of -log10(p) ≥ 4.5, 21 SNPs 
significantly associated with HKW were identified 
(Table  4). Among these, five SNPs were identified in 
the 19DH environment, six in the 19BS environment, 
and 10 based on the BLUP values (Fig.  5; Table  4). 
The significant SNPs were distributed across chro-
mosomes 1, 2, 4, 5, 6, 8, and 9). Notably, several SNPs 
were consistently detected across multiple environ-
ments. For instance, SNP-25750352 on chromosome 1 

was identified in both the 19BS environment and BLUP 
values. SNP-73091888 on chromosome 2 was detected 
in the 19DH and 19BS environments, as well as for the 
BLUP values, while SNP-176207154 on chromosome 2 
was consistently identified in both the 19DH environ-
ment and BLUP values. Similarly, SNP-233438083 on 
chromosome 4 was identified across the 19DH, 19BS 
environments, and BLUP values, and SNP-182679880 
on chromosome 4 was identified in the 19BS environ-
ment and BLUP values. Additionally, SNP-51610984 
on chromosome 5 and SNP-36178213 on chromosome 
9 were both identified in the 19DH environment and 
BLUP values.

Fig. 5  GWAS results for HKW. a Frequency distribution, Manhattan plot, and Q-Q plot of HKW in the 19DH environment; (b) Frequency distribution, 
Manhattan plot, and Q-Q plot of HKW in the 19BS environment; (c) Frequency distribution, Manhattan plot, and Q-Q plot of HKW based on BLUP 
values
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QTL mapping of HKW
QTL mapping for HKW was conducted in five subpop-
ulations across two distinct environments. The LOD 
threshold for identifying QTL was set at ≥ 2.5 [54]. As the 
SNPs identified through GWAS overlapped with the QTL 
intervals identified in pop3 (CML373 × Ye107), the link-
age map construction results of pop3 are described here. 
A high-density genetic map of pop3 was constructed 
using 2,265 polymorphic SNPs, with a total genetic dis-
tance of 4926.27 cM, and an average inter-marker dis-
tance of 2.17 cM. Chromosome 1 contained the highest 
number of SNPs (327), while chromosome 6 had the low-
est (163) (Table 5). The genetic map information for the 
remaining four subpopulations is also provided Table 5.

In pop1, three QTLs for HKW were identified: 
qHKW4-1, qHKW1-1, and qHKW6-1, explaining 7.3%, 
7.8%, and 7.4% of the phenotypic variance, respectively 
(Fig. 6; Table 6). Among them, QTL qHKW4-1 on chro-
mosome 4 exhibited the highest LOD (3.26) and the 
largest additive effect (0.97) across both environments. 
Two additional QTLs (qHKW1-1 on chromosome 1 and 
qHKW6-1 on chromosome 6) were also identified in the 
19BS environment, with additive effects of −1.010 and 
0.923, respectively.

In pop2, two QTLs, qHKW3-1 on chromosome 3 and 
qHKW4-2 on chromosome 4 (LOD 4.3), were detected in 
the 19DH environment (Fig. 6), accounting for 6.9% and 
6.5% of the phenotypic variation, respectively (Table 6).

Table 4  SNPs significantly associated with HKW identified across three environments

Env Chr SNP ref alt -log10(P) Additive Effect Dominance 
Effect

19DH 2 73,091,888 G A 5.52 −3.84 0.22

2 176,207,154 G A 4.61 - -

4 233,438,083 C T 4.92 −0.5 0.82

5 51,610,984 T G 5.13 1.2 0.53

9 36,178,213 G A 5.56 0.9 0.68

19BS 1 25,750,352 T A 4.7 0.8 −0.59

1 25,750,317 C T 4.54 −1.7 −0.77

2 73,091,888 G A 5.17 −3.44 1.42

4 182,679,880 T C 4.82 1.37 0.49

4 233,438,083 C T 4.93 −0.18 0.76

4 182,680,064 A G 4.55 −1.14 0.47

BLUP 1 25,750,352 T A 4.5 0.81 0.2

2 73,091,888 G A 5.58 −2.97 0.65

2 176,207,154 G A 4.6 - -

4 182,679,880 T C 4.56 0.65 0.57

4 228,845,293 C T 4.51 −0.51 0.5

4 233,438,083 C T 5.19 −0.25 0.95

5 51,610,984 T G 4.59 1.1 0.72

6 165,885,324 A T 4.74 0.92 0.09

8 101,736,982 T A 4.54 −1.06 0.38

9 36,178,213 G A 5.46 0.76 0.68

Table 5  Summary statistics of genetic linkage maps for the five subpopulations

Populations Total SNP_
number

SNP_number (max) SNP_number (min) Length (cM) Inter-marker 
Distance 
(cM)

pop1 981 Chr1 (180) Chr10 (38) 1045.83 1.07

pop2 638 Chr1 (115) Chr8 (37) 581.28 0.91

pop3 2265 Chr1 (327) Chr6 (163) 4926.27 2.17

pop4 2021 Chr1 (278) Chr9 (128) 4593.45 2.27

pop5 1443 Chr1 (226) Chr10 (71) 2875.24 1.99
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In pop3, four QTLs: qHKW1-2, qHKW3-2, qHKW5-
1 and qHKW1-3 were identified, explaining 6.3%, 5.6%, 
5.9% and 6.2% of phenotypic variation, respectively 

(Fig.  6; Table  6). Notably, qHKW1-3 on chromosome 1 
displayed the highest LOD score of 4.34.

In pop4, eleven QTLs were detected, explaining phe-
notypic variation ranging from 4.7%−8.0% across both 

Fig. 6  QTL mapping for HKW in five subpopulations (a) Pop1; (b) Pop2; (c) Pop3; (d) Pop4; (e) Pop5. Blue represents bin markers, orange indicates 
the 19DH environment, and purple represents the 19BS environment
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environments. The QTL qHKW2-1 showed the highest 
LOD value of 4.82 in both environments (Fig. 6). Among 
these, six QTLs (qHKW8-1, qHKW10-1, qHKW5-2, 
qHKW7-2, qHKW10-3 and qHKW10-4) exhibited posi-
tive additive effects, suggesting they positive regulatory 
role in HKW.

In pop5, ten QTLs were detected, explaining pheno-
typic variation ranging from 4.6% to 15.2%. The QTL 
qHKW5-8 had the highest LOD of 7.95 across both envi-
ronments. Additionally, qHKW5-4 and qHKW5-7 exhib-
ited positive additive effects, indicating positive effects 
on HKW (Fig. 6).

Identification of candidate genes regulating HKW in maize 
through combined GWAS and QTL mapping
Through co-localization analysis of GWAS and QTL 
mapping, candidate genes regulating HKW in maize were 
identified. A comparative analysis of the QTL mapping 

and GWAS revealed a SNP on chromosome 1 (SNP-
25750352), identified through GWAS in both the 19DH 
and 19BS environments which overlapped with the QTL 
intervals of qHKW1-2 (Fig.  7a) and qHKW1-3 (Fig.  7b) 
identified in pop3 for the 19DH and 19BS environ-
ments, respectively. These QTLs explained 6.2%−6.3% 
of the phenotypic variation for HKW (Table 6). A com-
prehensive screening of candidate genes within a 50 kb 
region upstream and downstream of SNP-25750352 led 
to the identification of four potential candidate genes; 
Zm00001d028185, Zm00001d028186, Zm00001d028187, 
and Zm00001d028188 (Table  7). Functional annota-
tion was conducted using MaizeGDB, InterPro, Uni-
Prot, and NCBI databases, as well as published relevant 
literatures. Based on functional annotation, one gene, 
Zm00001d028188 was identified as a likely candidate 
related to HKW (Table  8) (Fig.  7c). Zm00001d028188, 
which spans 6,693 bp, was located was located 9,968 

Table 6  List of QTLs linked to HKW identified in five RIL subpopulations

Populations QTL Chr Environment Position (cM) Mapping Interval (Mb) LOD additive R2

pop1 qHKW4-1 4 19DH 32.43–35.25 174,665,020–179,452,217 3.26 0.972 0.073

qHKW1-1 1 19BS 76.36–84.14 129,544,100–161,031,973 2.72 −1.01 0.078

qHKW6-1 6 19BS 31.99–35.39 117,608,108–123,131,912 3.2 0.923 0.074

pop2 qHKW3-1 3 19DH 18.45–18.76 194,541,734–197,589,267 2.79 0.893 0.069

qHKW4-2 4 19DH 58.6–65.52 21,832,586–56,256,452 4.3 −0.951 0.065

pop3 qHKW1-2 1 19DH 116.6–135.58 16,415,666–37,617,674 3.88 0.939 0.063

qHKW3-2 3 19DH 48.86 172,317,351 2.5 −0.899 0.056

qHKW5-1 5 19DH 118.64–119.21 13,061,656–16,193,567 2.55 −0.872 0.059

qHKW1-3 1 19BS 116.6–135.58 16,415,666–37,617,674 4.34 0.92 0.062

pop4 qHKW1-4 1 19DH 258.5 110,271,115 4.18 −8.372 0.078

qHKW2-1 2 19DH 241.93–268.55 121,041,846–143,902,975 4.82 −1.44 0.074

qHKW8-1 8 19DH 191.54–192.67 70,331,236–70,065,277 2.79 1.062 0.051

qHKW10-1 10 19DH 26.58–39.67 93,255,109–94,521,734 3.61 1.27 0.061

qHKW10-2 10 19DH 323–325.06 99,629,009–115,803,388 2.74 −1.511 0.051

qHKW5-2 5 19BS 153.62 94,062,594 2.58 3.75 0.047

qHKW5-3 5 19BS 293.12–297.41 209,017,559–212,846,310 2.84 −1.03 0.05

qHKW7-1 7 19BS 98.19–109.01 102,426,594–103,961,439 4.51 −1.809 0.055

qHKW7-2 7 19BS 351.36–358.36 79,299,094 3.02 1.318 0.069

qHKW10-3 10 19BS 23.58–37.67 93,255,109–94,521,734 4.1 1.402 0.08

qHKW10-4 10 19BS 385.38–400.4 32,566,456–34,038,128 3.6 1.166 0.062

pop5 qHKW5-4 5 19DH 35.62–42.75 197,451,243–206,096,177 3.31 0.851 0.053

qHKW5-5 5 19DH 63.02–64.65 18,288,409–135,237,637 7.12 −6.334 0.139

qHKW5-6 5 19DH 73.71–74.71 122,872,553 3.1 −4.219 0.09

qHKW6-2 6 19DH 149.38–157.96 42,219,374–62,328,938 3.47 −0.961 0.054

qHKW8-2 8 19DH 160.2–163.53 76,588,355–95,585,833 2.61 −0.793 0.048

qHKW5-7 5 19BS 35.62–42.75 197,451,243–206,096,177 3.2 0.785 0.049

qHKW5-8 5 19BS 63.02–64.65 18,288,409–135,237,637 7.95 −6.371 0.152

qHKW5-9 5 19BS 73.71–74.71 122,872,553 3.66 −4.28 0.102

qHKW6-3 6 19BS 149.38–161.25 41,513,372–62,328,938 3.56 −0.845 0.046

qHKW8-3 8 19BS 154.2–164.53 76,588,355–95,585,833 3.48 −0.83 0.057



Page 12 of 18Shi et al. BMC Genomics          (2025) 26:496 

bp downstream of SNP-25750352 (Fig.  7i). This gene 
encodes Galacturonosyltransferase 1 (GAUT1), a key 
enzyme responsible for transferring galacturonic acid 
into UDP-GalA (uridine 5’-diphosphate galacturonic 
acid), which is essential for the synthesis of pectin poly-
saccharides in plant cell wall components.

Haplotype analysis
Through QTL mapping and GWAS analyses, candi-
date genes associated with HKW in maize were identi-
fied. A comparative analysis of the QTL mapping and 
GWAS results revealed that a SNP on chromosome 1 
(SNP-25750352) was located within the QTL intervals 

Fig.7  Identification of candidate genes associated with maize HKW. a QTLs identified in pop3 across different chromosomes in the 19DH 
environment; (b) QTLs identified in pop3 across different chromosomes in the 19BS environment; (c) LD block of candidate genes 
of Zm00001d028188; (d) Comparison of two haplotypes (CC and GG) for HKG in the 19DH environment and (e) 19BS environment; (f) Comparison 
of the two haplotypes for HKW in each subpopulation in the 19DH environment and (g) 19BS environment; (h) Proportion of the two haplotypes 
in five subpopulations; (i) Genomic position of Zm00001d028188 and its associated SNP
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of qHKW1-2 (Fig.  7a) and qHKW1-3 (Fig.  7b). These 
QTLs explained 6.2%−6.3% of the phenotypic vari-
ation for HKW, indicating the strong reliability and 
consistency of these QTL intervals (Table 6).

Haplotype analysis was conducted for the signifi-
cant SNP, SNP-25750352, which was located in close 
proximity to the candidate gene Zm00001d028188 on 
chromosome 1 (Fig.  7c). Zm00001d028188, spanning 
6.693 kb was located 9.968 kb downstream of SNP-
25750352 (Fig.  7i). The analysis was conducted to 
identify the superior haplotype involved in regulating 
HKW in maize. Haplotype analysis revealed two hap-
lotypes: Hap A (CC) and Hap B (GG) in 813 RILs from 
the MPP. Among these, haplotype B exhibited higher 
HGW, with a significant difference observed between 
Hap A and Hap B (Fig.  7 d, e) in both the 19DH and 
19BS environments (Fig. 7 f, g). Therefore, Hap B was 
hypothesized to be the superior haplotype enhancing 
HKW in maize. Both haplotypes exhibited varying fre-
quencies across different subpopulations (Fig. 7h). Hap 
A (CC) was observed across all subpopulations, while 
the superior haplotype, Hap B (GG) was present in 
pop1, pop2, pop3, and pop4, with pop3 exhibiting the 
highest frequency of Hap B (Fig.  7  h). This suggested 
that the high HKW observed in the pop3 subpopula-
tion may be attributed to the Hap B (GG) haplotype. 
The parental line CML373 is likely to carry this supe-
rior haplotype, indicating that pop3 warrants further 
attention in breeding programs.

These findings provide valuable insights into the 
genetic and functional basis of HKW, highlighting 
Zm00001d028188 and its associated SNP as poten-
tial targets for improving maize yield traits through 
marker-assisted selection.

Additive and dominant effect analysis of SNPs associated 
with HKW
Analysis of the SNP, SNP-25750352, associated with 
HKW, revealed strong additive and dominant effects 
under different environmental conditions (Table 9). The 
results indicated that this SNP consistently demonstrated 
a positive effect on maize HKW, highlighting its poten-
tial role. This finding underscores the role of both addi-
tive and dominant effects in controlling maize HKW. 
Notably, the additive effects observed in the 19DH, 19BS 
environments, as well as in the BLUP values were posi-
tive, indicating that the allele carried by the parent Ye107 
contributed to increased HKW.

Discussion
Comparison of significant loci linked to HKW 
with previously reported QTLs
A key objective of maize breeding programs is to 
enhance grain production. Factors such as plant den-
sity, the number of ears per plant, and ear weight deter-
mine grain yield per unit area. Ear weight, in turn, is 
influenced by the number of rows per ear, the number 
of kernels per row, and kernel weight. These traits are 

Table 7  Candidate genes located within 50 kb of significant SNPs and Functional Annotation

Marker Allele Start End Candidate Gene Functional Annotation

SNP-25750352 T/A 25,738,664 25,741,208 Zm00001 d028185 Remorins are plant-specific plasma 
membrane-associated proteins

25,742,203 25,745,382 Zm00001 d028186 Pentatricopeptide repeat (PPR) proteins

25,755,280 25,759,748 Zm00001 d028187 O-Glycosyl hydrolases (3.2.1.)

25,760,320 25,767,012 Zm00001 d028188 Galacturonosyltransferase 1 (GAUT1)

Table 8  Candidate genes identified through combined GWAS and QTL mapping analyses

Marker Chromosome Position Mapping Interval Candidate Gene Gene Annotation

SNP-25750352 1 25750352 bp 25,700,317–25,800,352 Zm00001 d028188 Galacturonosyltransferase 1 (GAUT1)

qHKW1-2、qHKW1-3 1 135.58 cM 16,415,666–37,617,674

Table 9  Additive and dominant effects of SNP-25750352 across 
different environments

Env SNP Chr Position additive 
effect

dominant 
effect

19DH SNP-25750352 1 25,750,352 1.166 −0.453

19BS 0.815 −0.395

BLUP 1.251 −0.406
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inherited quantitatively and are affected by genotype, 
environments, and genotype-by- environment interac-
tions. In this study, a multi-parent population (MPP) 
consisting of 813 RILs were developed using five tropi-
cal and subtropical inbred lines as female parents and 
one temperate inbred line as the male parent. Through 
QTL mapping and GWAS, multiple QTLs and one 
candidate gene related to HKW were identified. Previ-
ous studies have reported several QTLs linked to HKW 
across various populations and environments, located 
at different physical positions. In this study, a candidate 
gene on chromosome 1 was identified, and compari-
son with previous studies revealed overlapping QTLs 
mapped to chromosome 1. For instance, Hao et  al. [29] 
reported qHKW1-1, located within the physical inter-
val of 14,638,761–16,825,635 bp in an RIL population, 
with an LOD score of 4.60 and a PVE of 7.39%, which 
overlapped with the QTL intervals (qHKW1-2 and 
qHKW1-3) identified in our study. Similarly, Liu et  al. 
[15] identified qHKW1-4, spanning a physical interval 
of 26,697,162–43,754,904 bp, with an LOD value of 6.82 
and a PVE of 12.23%. In the present study, two QTLs, 
qHKW1-2 and qHKW1-3 were identified on chromo-
some 1 and were tightly linked to HKW, with LOD values 
ranging from 3.88 to 4.34, and a PVE of 6.2–6.3%. One 
SNP (SNP-25750352) identified during GWAS was sig-
nificantly associated with HKW and was located within 
the intervals of these QTLs, spanning a physical dis-
tance of 16,415,666–37,617,674 bp. Comparative analy-
sis revealed that these QTLs are located within a critical 
region on chromosome 1, that overlaps with the intervals 
reported in earlier studies [15, 29]. The SNP co-located 
within these QTL intervals may represent a novel candi-
date locus associated with HKW, offering an important 
clue for future investigations into the genetic regulation 
of HKW in maize.

Genetic basis of HKW in maize
This study identified a significant QTL for HKW in 
pop3 (CML373 × Ye107), with haplotype analysis show-
ing considerable variation in HKW-related haplotypes 
across the five subpopulations. HKW, a crucial determi-
nant of kernel yield, is a quantitative trait regulated by 
multiple genes and influenced by environmental factors 
[1, 2]. Previous research has shown that HKW in maize 
is controlled by multiple genes, each typically having a 
small effect. Over the past three decades, approximately 
1,920 QTLs associated with kernel size and kernel weight 
have been reported across diverse maize populations and 
environments, of which 528 were specifically associated 
with HKW [55]. Despite this large number of identified 
kernel-related QTLs, results are often been inconsistent, 
and beneficial alleles are rarely identified. For instance, 

previous studies have identified multiple QTLs associ-
ated with HKW, including five QTLs identified tightly 
linked to HKW in an F2:3 population [56], nine QTLs 
and five significant SNPs in a RIL population of 204 lines 
[29], and 15 QTLs in an F2:3 population of 270 individu-
als [15]. In general, yield components, such as (ear row 
number (ERN), kernel number per row (KNR), and ker-
nel weight (KW) are positively correlated with kernel 
yield [57]. For instance, Huo et al. [14] found significant 
correlations between ear length (EL), KNR, ERN and ear 
weight (EW), while Xie et  al. [58] observed strong cor-
relations between ear diameter (ED) and kernel number 
per ear (KNE), along with moderate correlations with 
kernel yield.

Kernel development in maize begins with vegetative 
growth, when the shoot apical meristem (SAM) initiates 
the formation of leaves and axillary meristems (AMs), 
which give rise to ear primordia. As the plant transitions 
to reproductive growth, the SAM and AMs develop into 
inflorescence meristems (IMs), which eventually form 
the ear-like inflorescence. The peripheral regions of the 
IM generate indeterminate spikelet meristems (SPMs), 
each of which produces two spikelet meristems (SMs). 
Each SM gives rise to an upper flower meristem (FM) 
and a basal flower meristem (BM), though the BM usually 
aborts, and only the upper floret matures into a kernel 
[59]. Thus, the regulation of ear initiation, size, spikelet 
morphology, and developmental determinacy is crucial 
for shaping ear architecture and improving maize yield.

In this study, male parents with low HKW were 
selected for three key reasons: (1) Crossing low-HKW 
male parents with high-HKW female parents may pro-
duce hybrids with better yield or other agronomic 
advantages; (2) Male parents with low HKW may harbor 
favorable alleles that contribute to traits such as stress 
resistance, adaptability, or quality; (3) Such crosses may 
support the development of new varieties aligned with 
specific market demands or breeding objectives.

Screening and identification of candidate genes regulating 
HKW in maize
A comprehensive analysis of the genetic basis of hun-
dred kernel weight (HKW) in maize was conducted 
using a MPP consisting of five subpopulations and com-
prising a total of 813 F2:7 RILs. This study integrated 
QTL mapping, GWAS, and candidate gene identifica-
tion to uncover the genetic basis underlying HKW in 
maize. The results highlighted a significant SNP (SNP-
25750352), associated with HKW, consistently identi-
fied in the 19BS environment and in BLUP values. This 
SNP is located 9.968 Mb upstream of the candidate gene 
Zm00001d028188. Previous genetic studies have shown 
that mutations in ZmBES1/BZR1-5 reduced kernel size 
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(length and width) and HKW in maize, while its overex-
pression enhances seed length, width, and weight in rice 
and Arabidopsis [60]. In addition, certain transcription 
factors, such as ZmGRAS11, positively regulate HKW by 
controlling the expansion of maize [61].

To further explore the genetic basis of HKW, candidate 
genes were screened within a 50 kb region upstream and 
downstream of the significant SNPs. Functional annota-
tion of these genes was performed using databases such 
as MaizeGDB, InterPro, and NCBI, along with infor-
mation from relevant literatures. The analysis identi-
fied four candidate genes, Zm00001 d028185, Zm00001 
d028186, Zm00001d028187, and Zm00001d028188, with 
Zm00001d028188, located on chromosome 1, confirmed 
as the potential candidate gene regulating HKW.

Zm00001d028185 encodes Remorins, a group of plant 
plasma membrane proteins involved in membrane-
cytoskeleton interactions, potentially affecting maize 
seed development [62]. Zm00001d028186 encodes pen-
tatricopeptide repeat (PPR) proteins, which are key 
RNA-binding proteins that regulate RNA stability and 
protein synthesis, thereby affecting seed size and quality 
[63]. Zm00001d028187 encodes O-Glycosyl hydrolases, 
enzymes that hydrolyze the glycosidic bonds, which may 
play a significant role in maize seed development [64].

Zm00001d028188 encodes Galacturonosyltransferase 
1 (GAUT1), a key enzyme responsible for transferring 
galacturonic acid into UDP-GalA (uridine 5’-diphosphate 
galacturonic acid), which is essential for the synthesis of 
pectin polysaccharides in plant cell walls. This process 
is fundamental to the synthesis of pectin, an essential 
component for growth, development, and environmen-
tal adaptation [65]. The GAUT gene family plays diverse 
roles in cotton fiber development, including fiber elonga-
tion and fiber thickening [66]. Persson et al. [67] showed 
that GAUT2 influences the accumulation of glucuronate 
xylan and hypergalacturonic acid, contributing to the 
linkage of the xylan polymer to the secondary cell wall 
and thereby maintaining the structural integrity of sec-
ondary cell wall. Caffall et al. [68] further confirmed that 
that expression of GAUT gene plays key role in cell wall 
biosynthesis. GAUT1 may affect water absorption, nutri-
ent storage and seed quality by regulating cell wall flex-
ibility and strength, thus affecting the hundred-kernel 
weight [69]. Further investigation into the functional 
and regulatory mechanisms of GAUT1 will provide valu-
able insights for maize improvement. Targeting GAUT1 
through gene editing or transgenic approaches could 
enhance HKW, leading to improved yield and quality. 
Since this study was tested at two sites, 19DH and 19BS, 
further studies need to be evaluated in field experi-
ments at more sites to determine the performance of 
HKW. Also, the findings needs to be further validated 

by independent studies, populations and genetic back-
grounds to validate these genomic regions/candidate 
gene, before jumping into genetic manipulation for crop 
improvement efforts. In conclusion, Zm00001d028188 
could be a potential candidate gene involved in the 
genetic regulation of maize ear and kernel development, 
and could serve as a promising target in breeding pro-
grams aimed at producing higher-yielding and better-
quality maize varieties.

Additive and dominant effects on HKW
The genetic control of HKW in maize is complex and 
polygenic, with individual genes contributing to HKW 
through cumulative additive effects. Genetic analyses 
have revealed that the additive effects vary among differ-
ent loci [15, 17]. Some genes enhance HKW indirectly by 
improving kernel size, filling efficiency, or developmen-
tal processes, thus playing a crucial role in maize breed-
ing. Genes with larger additive effects holds potential to 
significantly improve HKW [15], providing a theoretical 
framework for selection breeding. In addition to additive 
effects, HKW is influenced by dominant effects and envi-
ronmental factors. In dominant effects, a dominant allele 
masks the effect of a recessive allele, while environmen-
tal effects modulate the trait expression in response to 
external factors. The interaction between additive, domi-
nant, and environmental factors determines the overall 
expression of HKW and its adaptability across diverse 
environments [13]. Therefore, effective breeding strate-
gies must consider these combined effects to achieve sta-
ble improvements in hundred-kernel weight. Advances in 
molecular breeding have enabled more precise analysis 
of additive effects, providing a theoretical basis for their 
application in practical breeding. These developments 
facilitate the improvement of HKW under varying envi-
ronmental conditions, ultimately supporting higher yield 
and improved maize quality.

The influence of negative additive effects of QTLs and its 
biological significance
In this study, we found that multiple QTLs showed 
negative additive effects on maize HKW traits. For 
example, in pop1, qHKW1-1 is located on chromo-
some 1 and has an additive effect of −1.01. In pop2, 
qHKW4-2 is located on chromosome 4 and exhibited a 
negative additive effect of −0.951, indicating that alleles 
at these loci reduce HKW. The manifestation of these 
effects across the five populations may be attributed 
to several factors: (1) Certain QTLs may have adverse 
effects on grain weight in specific genetic backgrounds 
but may be favorable under different conditions. For 
example, yield-related QTLs may contribute to the 
tradeoff between grain number and grain weight [30]. 
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(2) Some QTLs may affect grain weight by regulating 
the grain filling process, which can be constrained by 
overall plant growth and nutrient distribution [70]. (3) 
Additionally, these effects may involve gene-environ-
ment (G × E) interactions that influence trait stability 
and performance. For example, QTLs in some crops 
have shown opposite effects under varying cultivation 
conditions [71]. Overall, the presence of QTLs with 
negative additive effects highlights the complexity of 
HKW regulation in maize and underscores the impor-
tance of considering population-specific and environ-
mental contexts in breeding and genetic improvement 
strategies.

Conclusion
In this study, five RIL subpopulations were developed by 
crossing tropical and subtropical inbred lines with a tem-
perate inbred line to explore the genetic basis of hundred 
kernel weight (HKW) in maize. Through combined QTL 
mapping and GWAS analyses, co-localized loci linked 
to HKW were identified. QTL mapping using the tropi-
cal germplasms led to the discovery of two novel QTLs, 
qHKW1-2 and qHKW1-3, on chromosome 1. Nota-
bly, one significant SNP, SNP-25750352, was co-located 
within these QTL intervals on chromosome 1 and found 
in close proximity to the candidate gene Zm00001 
d028188. This gene encodes GAUT1, a galacturonic acid 
transferase involved in plant cell wall biosynthesis, espe-
cially by transferring galacturonic acid from UDP-GalA 
to pectin polysaccharides. The identification of SNP-
25750352 and Zm00001 d028188 contributes to a deeper 
insights into the genetic regulation underlying HKW in 
maize. The identification of this SNP and candidate gene 
in the tropical germplasms underscores their significant 
role in regulating maize HKW. Therefore, exploring trop-
ical maize germplasms to uncover novel genes affecting 
HKW could be a key strategy for improving maize yield. 
Further research should focus on functionally validating 
these candidate genes using gene editing technologies 
such as CRISPR-Cas9 or RNA interference (RNAi).
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